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This paper discusses ideas for adaptive learning which can capture dynamic aspects ofreal-world datasets. Broadly, 
we explore two approaches. The first examines ways of updating the classification rule as suggested by some moni­
toring process (similar to those used in a quality control problem), and this is applied to linear, logistic and quadratic 
discriminant. The second approach examines nonparametric classifiers based explicitly on the data and ways in which 
the data can be dynamically adapted to improve the performance. These methods are tried out on simulated data and 
real data from the credit industry. 

Key words: Adaptive Discrimination, Incremental Learning, Kernel Classifier, Nearest Neighbour, Pattern Recogni­
tion 

1 Introduction 

In classical supervised learning, the available examples (the training data) are usually used to learn a classifier. In many 
practical situations in which the environment changes, this procedure ceases to work. In the project Statlog (Michie, 
Spiegelhalter and Taylor, 1994) we encountered this situation in the case of a dataset on automatic transmissions and 
a credit-scoring application. Generally speaking, the application of a discrimination algorithm to classify new, unseen 
examples will be problematic if one of ~e following events occurs after the "learning phase": 

(i) The number of attributes changes. We have experienced this case in a credit-scoring application that certain cus­
tomer infonnation can no longer be stored due to legal requirements. On the other hand, it has also been the case 
that one is able to get more information than before about the customers, i.e. one can consider more attributes; 

(ii) The number of attributes remains the same but the interpretation of the records of the datasets changes over the 
time. In this situation the distribution of at least one class is gradually changing. 

To solve this problem one could simply relearn the rule provided that there are enough new examples with known class, 
but this could be very wasteful. An alternative is Incremental learning. For example, Utgoff ( 1989) has developed 
an algorithm that produces the same decision tree as would be found if all the examples had been available at once, 
and Utgoff ( 1994) bas recently devised an improved algorithm (ITI) which can handle continuous variables, multiple 
classes, noise etc .. However, this cannot deal with the problem in item (ii) above since some of the old data should be 
downweighted or discarded as no longer being representative of the current population. 

A closely related topic is that of drifting concepts. For example, early work was done by Schlimmer and Granger 
(1986) with his STAGGER system. See also Schlimmer (1987) and more recent work by Kubat and Widmer (1995). 
De Raedt and Bruynooghe(l992) argue that incremental concept-learning-when formulated in a logical framework 
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- can be understood as an instance of the more general problem of belief updating. This insight allows for potential 
interesting cross-fertilization between these areas. 

This paper discusses ideas for adaptive learning which can capture dynamic aspects of real-world datasets. Al­
though some of these ideas have a general character and could be applied to any supervised algorithm, here we focus 
attention on nonparametric methods as well as linear, logistic and quadratic discriminant. The dynamic nearest neigh­
bour classifier modifies the "training data" by keeping a record ofusefulness as well as the age of the observation. The 
kernel density estimation uses a weighted average of kernel functions with the weight being determined by the age, 
whereas the other classical methods use a quality control type-system to update rules appropriately. 

Suppose that batches of observations are used to monitor the performance of the classifier or any change in the class 
populations. There are several quantities that could be monitored using a Shewhart-type quality control plot: 

I . the average probability of (maximum) class membership; 

2. the means and covariances of the most recent batch of observations for each class; 

3. the error rates; 

These can be plotted in time-series fashion, with appropriate warning and action limits indicating that the process has 
changed. In this scenario we envisage that the learning will be done at discrete time points, preferably (but not neces­
sarily) using the previous rule to find an updated rule. This approach enables us to model large sudden changes in the 
populations. A significant change detected by the measures in 1. and 2. above is a warning sign which suggests that 
the classifier should be adapted. If, in addition, the measure used in 3. is also significantly changing, then the necessity 
to adapt the algorithm is more pronoUiiced. If it is the case that 1. and 2. suggest that an adaptation is required, but 
measure 3. is apparently not changing, then a more appropriate learning algorithm may be required. 

2 Changing the Classifier 

In this section we discuss ways of updating the classifier either by explicitly changing the rule which has been learned, 
or by changing the learning data by substituting or adding more recent observations. Suppose that we examine the data 
in batches of size m and that, at time t + mk we detect a change which requires adaptation in the learned rule. Any 
algorithm can be totally relearned from recent observations after a change in one of the classes has been detected. More 
interestingly, we can consider how best to re-use previously learned information. 

2.1 Updating the "rules" 

One method is to allow the weights to depend on the performance of the classifier. Suppose that we have a current rule 
which is used on the next batch of observations and results in an error rate of ecunent · Suppose also that if the new 
data is used to obtain a rule, then this would give an error rate for this batch of enew , although this rate could be badly 
biased, since the training and test data are the same. If these error rates are very different this suggests that the current 
rule should be updated. One approach is to obtain a revised rule which is a weighted average of these two rules with 
weights proportional to 1 - ecurrent and 1 - enew . Another possibility is to build an error rule from previous error 
rates and compare the current error ecurrent to that or some function thereof. 

2.2 Updating the "data" · 

We can use a "similarity" rule to throw away observations in the current training set which are different- i.e. they are 
close in feature space, but have different class label-from those recently observed. Alternatively, the older observations 
can be eliminated or a kind of moving window with a predefined number of observations, possibly representative and 
new ones, could be used. We try a possible implementation whereby old data are discarded and new data are included 
in the "template" used for establishing a rule according to their perceived usefulness. As presented, this system will 
have some limitations. For example, if there are drifting populations then new data will be incorrectly classified, but 
should nevertheless be included in the template set. This point is taken up in a nearest neighbour implementation in 
section 3.2. Note that this approach can be used for any (not just similarity-based) algorithms. 



3 Algorithm Details 

For logistic, quadratic and linear discrimination we have implemented a type of quality control system in which the 
error rate is monitored. There are various scenarios: (i) in the case of small increases in error, the rule is updated; 
(ii) in the case of large increases, the rule is re-learned only using the most recent batch of data; (iii) in the case of 
small decreases in error, no change is made to the existing classifier. For the linear and logistic rules, the classifier is 
completely relearned when the error rate for the current batch exceeds an action limit of a standard deviations (sos) 
above the mean, and is otherwise modified unless the error rate is less than 8 sos below the mean. The quadratic rule 
has a similarly defined action limit(E) and warning limit (8) SDs as well as amovingwindow(ws) and an editing factor, 
'Y · Full details of the approach can be found in Nakhaeizadeh et al. (1997). 

3.1 Kernel Density Estimation and Classification 

Suppose that we have data x 1 , x 2 , . . . , Xn from some unknown distribution f ( x). The usual kernel estimator is given 
by 

f(x) = _!.__ tK(x - Zi) 
nh h 

i=l 

where K (.) is the kernel function, and h is the bandwidth which controls the amount of smoothing, with appropriate 
modifications for multivariate observations. Numerous researchers have tackled the problem of choosing an appropriate 
bandwidth which is based on the data- see, for example, Wand. and Jones (1995) for references. However, most of the 
results are related to minimizing integrated mean squared error (IMSE) which is given by E J(f - /) 2 . It is worth 
noting that such a policy for choosing h may not work very well in a classification setting when we want to minimize 
the expected misclassification rate which for two classes is given by 

say, (I) 

where 11"i is the prior probability that the data belongs to class C;.. The usual approach of taking a Taylor series ex­
pansion to obtain an asymptotic quantity does not work here, and the fact that the limits of the integral are random 
variables makes this look intractable. A simulation illustrates that the optimal h1, h2 to minimize IMSE can be quite 
different to those which minimize expected error rate. In this example, 100 observations were simulated from each of 
N(O, 1), N(2 , 0.52). For each of 100 samples we calculated Ji and f2 using a range of different smoothing parameters. 
For these distributions, (h1, h2) = (0.422, 0.211) minimize the asymptotic IMSE, whereas the error rate is minimized 
for (h1 , h 2 ) = (0.720, 0.215) . We could consider estimates of Ii, i = 1, 2 in equation (1) given by (for i = 1) 

• 1 " /, (:i: - Zj) I1(h) = - L.J K -- dx . 
hn1 :z:;EC1 f;..2 (:z:)>l•-i(:z:) h 

(2) 

In this case h = 0 gives the usual leave-one-out, or cross-validation estimate of the error rate, since the integral in (2) 
will be 1 if fh 2 (:i:i) > A2 (xi) and 0 otherwise. So although h = 0 will give an unbiased estimate of the error, a 
value of h > 0 can give a better estimate (in terms of mean squared error). Again, analytical results are difficult and 
simulations are required in order to determine good choices of h and thence good choices of h1 and h2. 

We now turn to the dynamic version of the kernel estimator, which in the simple case is given by 

• 1 ~ (X-Xt) h(x) = hlf. L.J WtK -h-
T t:l 

(3) 

as an estimate of the density h ( x) at time T when we have previously observed :Ct in the class of interest. Here Wt 

are weights and NT is a normalizing constant. For example, we could choose Wt = e->-(T-t) in which case NT = 
(1- e->.T)/(1- e->-) or 

Wt = { 1 for T 2'.: t > T - W 
0 otherwise 

in which case NT = W. Using either of these parameterizations for wt requires choice of either>. or W, in addition to 
the smoothing parameter h. Of course both parameters must be chosen for each class. Again, analytic calculations ap­
pear to be intractable even for IMSE and very simple dynamic models. However, numerical calculations are simplified 
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by noting that simple updating formulae can be derived expressing f T ( x) in terms of fT- l ( x) and a kernel function of 
XT . 

In this paper we consider experiments on real and simulated dynamic data in which we train on an initial set of data 
(ordered by time), choosing any parameters by cross-validation and then testing on observations in the second part of 
the data. The kernel function is is the Normal density which gives a classifier equivalent to a nearest neighbour rule for 
h sufficiently small, although there are numerical difficulties for very small h. 

3.2 Nearest Neighbour 

A dynamic I-nearest neighbour algorithm has been developed in which examples are given a nominal weight of 1 when 
they are first observed. Then all observations "age" at a rate v, to allow for the fact that in a dynamic system older 
examples are likely to be less useful. In addition, future examples which are classified affect the existing weights so 
that: (i) If the new observation i& correctly classified by the nearest neighbour, but would be incorrectly classified by 
the second nearest neighbour, then the nearest neighbour gets its weight increased by 'Y (a sort of condensing factor); 
(ii) If the new observation is incorrectly classified by the nearest neighbour, but would have been correctly classified by 
the second nearest neighbour, then the nearest neighbour gets its weight decreased by€ (a sort of editing factor). This 
approach essentially keeps a "record of usefulness" for each of the observations in the current training set. 

The weight, w( x ), of each example then behaves like a Markov Chain with an absorbing barrier at 0, whose prop­
erties can be studied in order to get some idea of suitable choices for the three parameters: v, 'Y and €. For example, 
the drift of the weight of an example, say at x, is 

drift(w(:z:)) = -v + -yp(x) - €q(x) 

where p( x) is the probability that this example will be the nearest observation to the next example and that the situation 
described in (i) above occurs, and q( x) is the probability that this example will be the nearest observation to the next 
example and that the situation described in (ii) above occurs. 

This can give the expected time for an example to become "extinct" ( w( x) :::; 0) (i.e. no longer used for future 
classification), and the expected number of examples in the classification set at any given time (assuming some sort of 
equilibrium). · 

Note that this use of weights is distinct from that used by Cost and Salzberg ( 1993) in the modified value differ­
ence metric (MVDM) in which the weights were used to adjust the distance between observations by associating an 
importance for each example. In our case the weights are merely used to reflect the age of the observation, as well as 
a measure of usefulness, in order to determine whether the example should be retained at this time; they are not used 
to modify the distance metric. Related ideas on feature weighting can also be found in Aha ( 1989) and Wettschereck 
and Aha (1995). 

4 Results 

In this section we describe some results of our adaptive updating ideas and compare them to conventional statistical 
classification methods in an example. The simplest and nonadaptive approach is to use the classification rule that was 
learned from the training data and apply that to all batches, with no updating. A small modification is to update the 
priors according to the new data, and a further modification is to use the priors which are estimated using only the last 
batch. An alternative benchmark method is to completely re-learn the rule at each time point. 

4.1 Simulated data 

We tried out some of the above ideas on two simulated datasets (datl and dat2). At each of 1000 time points we gen­
erate an example with 3 variables (X 1 , X 2 , X3) from 2 classes. We use the first 500 observations as the training data 
and the remaining 1500 as test data. The distributions of each class has 2 independent normal variables (with unit stan­
dard deviation) and a uniformly distributed (on [O, 1)) ''noise" variable. The mean of the noise variable µ 3 = 0.5 was 
independent of time; the means of the normal variables vary with time as follows: 

datl: Class 1 has µ 1 , µ 2 = 0 fort :::; 750 and µ 1 , µ 2 = t/1000 for 751 :::; t :::; 1000, whereas Class 2 differs in that 
µ2 = 2 fort S 750 and µ2 = 2 + t/1000 for 751 St S 1000, so that there is no change to the distributions until two 
thirds of the testing phase, when there is a sudden jump followed by a slow drift. 



dat2: Class 1 has µ 1 , µ 2 = 0 and Class 2 has µ 1 = 2t/1000 , µ 2 = 2 - 2t/1000 for 1 :::; t :::; 1000. In this case there 
. is a gradual shift in the training and test phase of the second group in the mean of (X1 , X 2 ) from (0 , 2) to (2, 0) . 

Since we split the testing data into batches of 50 observations (which always corresponds to 25 observations from each 
class) the change should happen in batch 21 when applying dat 1 and should go through the whole training and testing 
phase when considering dat2. Note that for the both datasets, the observations were ordered so that the priors (however 
estimated) were always equal. 

Table 1 shows the results of our calculations using the updating-rule approach. It can be seen that our updating 
routine achieves better performances than both conventional approaches. In order to see where the improvement oc­
curred, we monitored the error rates of single batches. As expected due to the large training set, there was no great 

data set datl dat2 
parameters/method mean error 
1 = 0.25,ws= 300, 6 = 3, € = 2 0.164 0.232 

data set datl dat2 1 = 0.25,ws= 600 , 6 = 3, € = 2 0.168 0.241 
parameters/method linear logistic linear logistic 1 = 0.5,ws= 300, 6 = 3, € = 2 0.165 0.236 
6 = 0.5 , a = 2 0.166 0.163 0.228 0.231 1 = 0.5,ws= 500, 6 = 2.5, € = 1.5 0.164 0.229 
6 = l,a = 3 0.160 0.168 . 0.229 0.223 1 = l,ws= 300, 6 = 3, € = 2 0.175 0.239 
no-learn 0.186 0.175 0.360 0.366 no-learn 0.190 0.353 
re-learn 0.166 0,163 0.271 0.273 re-learn 0.175 0:267 

Table l: Average error rates of linear and logistic discrimi- Table 2: Average error rates of quadratic rule applying 
nation rule applying the updating approach the data learning approach (4.2) (ws =window size) 

difference between our classification procedures until the drift occurred (i.e. the no-learn routine achieved best results 
in that area) in the data datl . But from batch 21 onwards our classifier was much better than conventional methods, 
with the no-learning rule worst. The error rates of the linear updating rule with parameters a = 3, 6 = 1 after this 
batch were 5.2% and 8.4% smaller than the re-learn and no-,Jearn rules. The second data set caused greater problems 
for our discriminant function. But here also our algorithm showed higher success rates than the other approaches. 

If we consider the quadratic (data-learn) approach, we get similar results (see Table 2). For the first 20 batches of 
dat l all routines seem to have almost the same performance, although the relearning method is slightly more accurate 
than the other ones. But again after the shift and during the drift ( dat 1) the no-learn method loses performance, whereas 
the relearning rule works almost as well as our algorithms. But as soon as we apply the overall drift data set ( dat2) to the 
different approaches the enhancement by our algorithm is obvious. The monitoring process shows almost constant error 
rates, while the error rates of the re-learn approach gradually increases (the no-learn rule completely ceases to work: 
three batches produced error rates of 50 percent). We used a set of parameters from which the reader can observe the 
effects of changing them. 

The kernel classifier showed a similar pattern. We tried 4 approaches: (i) h1, h2 were trained on the test data, but 
the classifier was not updated (no-learn); (ii) the classifier was updated using all observations thus far observed (with 
no change in the smoothing parameters); the dynamic kernel estimator given by equation (3) with (iii) a weighted ex­
ponential decay (.A) and (iv) a window of width W learned from the training data. In the latter two cases, 2 parameters 
for each of the two classes were chosen by cross-validation. The results are given in Table 3. 

Method Error rate estimated parameters 
datl dat2 datl dat2 

(i) no-learn (( h1, h2 )) 0.201 0.357 (.75, .8) (1.5, 1.5) 
(ii) all-data (( h1, h2)) 0.167 0.274 (.75, .8) (1.5, 1.5) 
(iii) exponential wieghts ((h1, h2, .A1, .A2)) 0.173 0.239 (3, 3, .08, .08) (1, 1, .06, .06) 
(iv) moving window ((h1, h2, W1 , W2)) 0.165 0.231 (1.5, 1.5, 210, 245) (1.6, 1.6, 95, 250) 

Table 3: Error rates for kernel classifier on simulated data. See text for further details of (i}-(iv) 
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4.2 Real data 

The data set concerns applications for credit; the class indicates the success of the application (i.e. two classes). There 
are 156 273 observations which cover a 2-year period. Originally there were many qualitative attributes which were 
then coded into indicator variables (since all the programs used here require real-valued data). Subsequently, 15 of 
these 0/1 variables were used for classification purposes. The initial 10-fold cross-validation was computed using the 
first 5000 observations. Subsequently, we used batch sizes of 1000. The error rates are shown in Table 4 for the linear 
and logistic approach and in Table 5 in the case of the quadratic method. Figure 1 suggests that there is a shift in 

param. I approach linear logistic 

o = 0.25, a= 2 7.97 - parameters of quadratic I approach e 
o = 0.5 , a= 2 7.96 7.45 'Y = 0,ws= 3000, o = 100, e = 100 11.94 
o = 0.5 , a= 1 8.54 - 'Y = 1,ws= 3000, o = 7, e = 8 8.789 
o = 1, a= 3 8.49 7.46 'Y = 0.25,ws= 5000, o = 1, e = 3 8.865 
o = 1.5 , a= 2 8.56 7 .36 'Y = 0.7,ws= 7000, o = 1, e = 2 8.861 
o = 2, a = 4 - 7.33 'Y = 0.5,ws= 5000, o = 1.5, e = 3 8.830 
o = -1 , a= 1 7 .73 7.45 'Y = 0.3,ws= 8000, o = 1, e = 4 8 .863 
no-learn 8.97 8.26 no-learn 8.974 
re-learn 8.97 8.97 re-learn 8 .974 

Table 4: Average error rates(%) oflinear and logistic 
discrimination rule applying the updating approach 
(section 4.1) and using real data 

Table 5: Average error rates(%) of quadratic discrimination 
rule applying the data-learn-approach (section 4.2) and using 
real data 

0.3 batch 
error rate 

0.25 

0.2 ------ ---- -- --
0.15 

0.1 
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r-__ ,-.. ~-,.-;__-_-__ A_ ---- • 

0 20 40 
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=- - ········--· 
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:- ... ~ - - ----- -... -- ,... ... ... _ Operation limit --- .:;,,,....-..,.. ... ~ -..... -- -- ~,_ .. 
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..,. ----~-------~--·---... - -- - -- ---- -
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Figure 1: Typical output of monitoring process for linear and logistic discrimination applying the "errorlearn approach". 
This example uses the real data and compares linear adaptive discrimination(+) with parmeters o = 0.5, a= 2.0 and 
re-learn method (o). 

the data in batches 30 - 50 which was where our algorithms showed the greatest difference in the success rates. For 
example the linear update process only differed from the conventional methods in this region. Unexpectedly the re-learn 
and no-learn approaches had the same success rates when using the linear discriminant rule. As expected the logistic 
approach showed the best performance, but even here we could find parameters that improved the overall performance. 
Also astonishing were the results when applying the parameters (a= 1, o = 1), which causes only relearning at certain 
steps but no updating at all. 

As in previous studies the quadratic discriminant rule did not work as well as the other classifiers in the case that 
the data was binary. This was even more true of the kernel classifier, although the poor performance may have been 
due in part to the fact that we neither scaled the binary data, nor considered a different smoothing parameter in each 
dimension. So in effect we worked with the assumption that the variables were independent with common variance 
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Figure 2: Error rates for two kernel classifiers. The"•" points are for a non-dynamic classifier in which the priors 
were updated according to the proportions observed in the previous batch. The 'I' points were for a movmg window 
classifier, equation (3) with (W1, W2) = ( 400, 3000) and ( h1, h2) = ( .25, .25) 

which was certainly not the case. The kernel classifier which was kept fixed gave an overall error rate of over 20% 
(note that the default rule only gives 10.5%), whereas updating the prior to reflect the proportions in the last batch gave 
a small improvement to 18.2%. The dynamic version (moving window) gave a large improvement to 10.4%; still only 
just better than the default rule, but with more careful choice of smoothing, indicates what may be possible. 

The "static" nearest neighbour classifier gave an error rate of 9. I% whereas the dynamic version is faster (since 
the number of sites stored was about 2000 less) and gave an error rate of7.4%. Details of the training and parameter 
selection can be found in Nakhaeizadeh et al. ( 1996). 

5 Conclusions 

Stationarity is a key issue which will affect the performance of any dynamic classification algorithm. For example, if 
the changes which occur in the training phase are very different from the nature of the changes which take place during 
testing then the way the parameters are updated is likely to be deficient. It could be agued that it is best to update 
whenever a new observation becomes available (as is done with the kernel classifier and nearest neighbour algorithm 
above) but we would argue that methods should include a monitoring process even if this monitoring is not normally 
used to update the rules. The reason for this is that, even if a continuous updating method is adopted, the optimal amount 
ofupdating (or the way in which updating is performed) can still vary over the time span of the data. Furthermore, most 
forms of monitoring will make use of batch-whether natural or artificial- information in order to be more confident 
about the size of any change that has occurred. However, we leave open the question of using a moving window for · 
monitoring purposes. 
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