
Statistical Aspects of Classification in Drifting Populations

C. C. Taylor
Department of Statistics,

University of Leeds,
Leeds LS2 9JT, UK

charles@amsta.leeds.ac.uk

G. Nakhaeizadeh
Daimler-Benz Forschung und Technik,

Postfach 2360,
89013 Ulm DE

nakhaeizadeh@dbag.ulm.DaimlerBenz.com

Abstract

G. Kunisch,
Department of Stochastics,

University of Ulm,
Ulm DE

This paper discusses ideas for adaptive learning which can capture dynamic aspects ofreal-world datasets. Broadly,
we explore two approaches. The first examines ways of updating the classification rule as suggested by some moni­
toring process (similar to those used in a quality control problem), and this is applied to linear, logistic and quadratic
discriminant. The second approach examines nonparametric classifiers based explicitly on the data and ways in which
the data can be dynamically adapted to improve the performance. These methods are tried out on simulated data and
real data from the credit industry.

Key words: Adaptive Discrimination, Incremental Learning, Kernel Classifier, Nearest Neighbour, Pattern Recogni­
tion

1 Introduction

In classical supervised learning, the available examples (the training data) are usually used to learn a classifier. In many
practical situations in which the environment changes, this procedure ceases to work. In the project Statlog (Michie,
Spiegelhalter and Taylor, 1994) we encountered this situation in the case of a dataset on automatic transmissions and
a credit-scoring application. Generally speaking, the application of a discrimination algorithm to classify new, unseen
examples will be problematic if one of ~e following events occurs after the "learning phase":

(i) The number of attributes changes. We have experienced this case in a credit-scoring application that certain cus­
tomer infonnation can no longer be stored due to legal requirements. On the other hand, it has also been the case
that one is able to get more information than before about the customers, i.e. one can consider more attributes;

(ii) The number of attributes remains the same but the interpretation of the records of the datasets changes over the
time. In this situation the distribution of at least one class is gradually changing.

To solve this problem one could simply relearn the rule provided that there are enough new examples with known class,
but this could be very wasteful. An alternative is Incremental learning. For example, Utgoff (1989) has developed
an algorithm that produces the same decision tree as would be found if all the examples had been available at once,
and Utgoff (1994) bas recently devised an improved algorithm (ITI) which can handle continuous variables, multiple
classes, noise etc .. However, this cannot deal with the problem in item (ii) above since some of the old data should be
downweighted or discarded as no longer being representative of the current population.

A closely related topic is that of drifting concepts. For example, early work was done by Schlimmer and Granger
(1986) with his STAGGER system. See also Schlimmer (1987) and more recent work by Kubat and Widmer (1995).
De Raedt and Bruynooghe(l992) argue that incremental concept-learning-when formulated in a logical framework

521

- can be understood as an instance of the more general problem of belief updating. This insight allows for potential
interesting cross-fertilization between these areas.

This paper discusses ideas for adaptive learning which can capture dynamic aspects of real-world datasets. Al­
though some of these ideas have a general character and could be applied to any supervised algorithm, here we focus
attention on nonparametric methods as well as linear, logistic and quadratic discriminant. The dynamic nearest neigh­
bour classifier modifies the "training data" by keeping a record ofusefulness as well as the age of the observation. The
kernel density estimation uses a weighted average of kernel functions with the weight being determined by the age,
whereas the other classical methods use a quality control type-system to update rules appropriately.

Suppose that batches of observations are used to monitor the performance of the classifier or any change in the class
populations. There are several quantities that could be monitored using a Shewhart-type quality control plot:

I . the average probability of (maximum) class membership;

2. the means and covariances of the most recent batch of observations for each class;

3. the error rates;

These can be plotted in time-series fashion, with appropriate warning and action limits indicating that the process has
changed. In this scenario we envisage that the learning will be done at discrete time points, preferably (but not neces­
sarily) using the previous rule to find an updated rule. This approach enables us to model large sudden changes in the
populations. A significant change detected by the measures in 1. and 2. above is a warning sign which suggests that
the classifier should be adapted. If, in addition, the measure used in 3. is also significantly changing, then the necessity
to adapt the algorithm is more pronoUiiced. If it is the case that 1. and 2. suggest that an adaptation is required, but
measure 3. is apparently not changing, then a more appropriate learning algorithm may be required.

2 Changing the Classifier

In this section we discuss ways of updating the classifier either by explicitly changing the rule which has been learned,
or by changing the learning data by substituting or adding more recent observations. Suppose that we examine the data
in batches of size m and that, at time t + mk we detect a change which requires adaptation in the learned rule. Any
algorithm can be totally relearned from recent observations after a change in one of the classes has been detected. More
interestingly, we can consider how best to re-use previously learned information.

2.1 Updating the "rules"

One method is to allow the weights to depend on the performance of the classifier. Suppose that we have a current rule
which is used on the next batch of observations and results in an error rate of ecunent · Suppose also that if the new
data is used to obtain a rule, then this would give an error rate for this batch of enew , although this rate could be badly
biased, since the training and test data are the same. If these error rates are very different this suggests that the current
rule should be updated. One approach is to obtain a revised rule which is a weighted average of these two rules with
weights proportional to 1 - ecurrent and 1 - enew . Another possibility is to build an error rule from previous error
rates and compare the current error ecurrent to that or some function thereof.

2.2 Updating the "data" ·

We can use a "similarity" rule to throw away observations in the current training set which are different- i.e. they are
close in feature space, but have different class label-from those recently observed. Alternatively, the older observations
can be eliminated or a kind of moving window with a predefined number of observations, possibly representative and
new ones, could be used. We try a possible implementation whereby old data are discarded and new data are included
in the "template" used for establishing a rule according to their perceived usefulness. As presented, this system will
have some limitations. For example, if there are drifting populations then new data will be incorrectly classified, but
should nevertheless be included in the template set. This point is taken up in a nearest neighbour implementation in
section 3.2. Note that this approach can be used for any (not just similarity-based) algorithms.

3 Algorithm Details

For logistic, quadratic and linear discrimination we have implemented a type of quality control system in which the
error rate is monitored. There are various scenarios: (i) in the case of small increases in error, the rule is updated;
(ii) in the case of large increases, the rule is re-learned only using the most recent batch of data; (iii) in the case of
small decreases in error, no change is made to the existing classifier. For the linear and logistic rules, the classifier is
completely relearned when the error rate for the current batch exceeds an action limit of a standard deviations (sos)
above the mean, and is otherwise modified unless the error rate is less than 8 sos below the mean. The quadratic rule
has a similarly defined action limit(E) and warning limit (8) SDs as well as amovingwindow(ws) and an editing factor,
'Y · Full details of the approach can be found in Nakhaeizadeh et al. (1997).

3.1 Kernel Density Estimation and Classification

Suppose that we have data x 1 , x 2 , . . . , Xn from some unknown distribution f (x). The usual kernel estimator is given
by

f(x) = _!.__ tK(x - Zi)
nh h

i=l

where K (.) is the kernel function, and h is the bandwidth which controls the amount of smoothing, with appropriate
modifications for multivariate observations. Numerous researchers have tackled the problem of choosing an appropriate
bandwidth which is based on the data- see, for example, Wand. and Jones (1995) for references. However, most of the
results are related to minimizing integrated mean squared error (IMSE) which is given by E J(f - /) 2 . It is worth
noting that such a policy for choosing h may not work very well in a classification setting when we want to minimize
the expected misclassification rate which for two classes is given by

say, (I)

where 11"i is the prior probability that the data belongs to class C;.. The usual approach of taking a Taylor series ex­
pansion to obtain an asymptotic quantity does not work here, and the fact that the limits of the integral are random
variables makes this look intractable. A simulation illustrates that the optimal h1, h2 to minimize IMSE can be quite
different to those which minimize expected error rate. In this example, 100 observations were simulated from each of
N(O, 1), N(2 , 0.52). For each of 100 samples we calculated Ji and f2 using a range of different smoothing parameters.
For these distributions, (h1, h2) = (0.422, 0.211) minimize the asymptotic IMSE, whereas the error rate is minimized
for (h1 , h 2) = (0.720, 0.215) . We could consider estimates of Ii, i = 1, 2 in equation (1) given by (for i = 1)

• 1 " /, (:i: - Zj) I1(h) = - L.J K -- dx .
hn1 :z:;EC1 f;..2 (:z:)>l•-i(:z:) h

(2)

In this case h = 0 gives the usual leave-one-out, or cross-validation estimate of the error rate, since the integral in (2)
will be 1 if fh 2 (:i:i) > A2 (xi) and 0 otherwise. So although h = 0 will give an unbiased estimate of the error, a
value of h > 0 can give a better estimate (in terms of mean squared error). Again, analytical results are difficult and
simulations are required in order to determine good choices of h and thence good choices of h1 and h2.

We now turn to the dynamic version of the kernel estimator, which in the simple case is given by

• 1 ~ (X-Xt) h(x) = hlf. L.J WtK -h-
T t:l

(3)

as an estimate of the density h (x) at time T when we have previously observed :Ct in the class of interest. Here Wt

are weights and NT is a normalizing constant. For example, we could choose Wt = e->-(T-t) in which case NT =
(1- e->.T)/(1- e->-) or

Wt = { 1 for T 2'.: t > T - W
0 otherwise

in which case NT = W. Using either of these parameterizations for wt requires choice of either>. or W, in addition to
the smoothing parameter h. Of course both parameters must be chosen for each class. Again, analytic calculations ap­
pear to be intractable even for IMSE and very simple dynamic models. However, numerical calculations are simplified

523

by noting that simple updating formulae can be derived expressing f T (x) in terms of fT- l (x) and a kernel function of
XT .

In this paper we consider experiments on real and simulated dynamic data in which we train on an initial set of data
(ordered by time), choosing any parameters by cross-validation and then testing on observations in the second part of
the data. The kernel function is is the Normal density which gives a classifier equivalent to a nearest neighbour rule for
h sufficiently small, although there are numerical difficulties for very small h.

3.2 Nearest Neighbour

A dynamic I-nearest neighbour algorithm has been developed in which examples are given a nominal weight of 1 when
they are first observed. Then all observations "age" at a rate v, to allow for the fact that in a dynamic system older
examples are likely to be less useful. In addition, future examples which are classified affect the existing weights so
that: (i) If the new observation i& correctly classified by the nearest neighbour, but would be incorrectly classified by
the second nearest neighbour, then the nearest neighbour gets its weight increased by 'Y (a sort of condensing factor);
(ii) If the new observation is incorrectly classified by the nearest neighbour, but would have been correctly classified by
the second nearest neighbour, then the nearest neighbour gets its weight decreased by€ (a sort of editing factor). This
approach essentially keeps a "record of usefulness" for each of the observations in the current training set.

The weight, w(x), of each example then behaves like a Markov Chain with an absorbing barrier at 0, whose prop­
erties can be studied in order to get some idea of suitable choices for the three parameters: v, 'Y and €. For example,
the drift of the weight of an example, say at x, is

drift(w(:z:)) = -v + -yp(x) - €q(x)

where p(x) is the probability that this example will be the nearest observation to the next example and that the situation
described in (i) above occurs, and q(x) is the probability that this example will be the nearest observation to the next
example and that the situation described in (ii) above occurs.

This can give the expected time for an example to become "extinct" (w(x) :::; 0) (i.e. no longer used for future
classification), and the expected number of examples in the classification set at any given time (assuming some sort of
equilibrium). ·

Note that this use of weights is distinct from that used by Cost and Salzberg (1993) in the modified value differ­
ence metric (MVDM) in which the weights were used to adjust the distance between observations by associating an
importance for each example. In our case the weights are merely used to reflect the age of the observation, as well as
a measure of usefulness, in order to determine whether the example should be retained at this time; they are not used
to modify the distance metric. Related ideas on feature weighting can also be found in Aha (1989) and Wettschereck
and Aha (1995).

4 Results

In this section we describe some results of our adaptive updating ideas and compare them to conventional statistical
classification methods in an example. The simplest and nonadaptive approach is to use the classification rule that was
learned from the training data and apply that to all batches, with no updating. A small modification is to update the
priors according to the new data, and a further modification is to use the priors which are estimated using only the last
batch. An alternative benchmark method is to completely re-learn the rule at each time point.

4.1 Simulated data

We tried out some of the above ideas on two simulated datasets (datl and dat2). At each of 1000 time points we gen­
erate an example with 3 variables (X 1 , X 2 , X3) from 2 classes. We use the first 500 observations as the training data
and the remaining 1500 as test data. The distributions of each class has 2 independent normal variables (with unit stan­
dard deviation) and a uniformly distributed (on [O, 1)) ''noise" variable. The mean of the noise variable µ 3 = 0.5 was
independent of time; the means of the normal variables vary with time as follows:

datl: Class 1 has µ 1 , µ 2 = 0 fort :::; 750 and µ 1 , µ 2 = t/1000 for 751 :::; t :::; 1000, whereas Class 2 differs in that
µ2 = 2 fort S 750 and µ2 = 2 + t/1000 for 751 St S 1000, so that there is no change to the distributions until two
thirds of the testing phase, when there is a sudden jump followed by a slow drift.

dat2: Class 1 has µ 1 , µ 2 = 0 and Class 2 has µ 1 = 2t/1000 , µ 2 = 2 - 2t/1000 for 1 :::; t :::; 1000. In this case there
. is a gradual shift in the training and test phase of the second group in the mean of (X1 , X 2) from (0 , 2) to (2, 0) .

Since we split the testing data into batches of 50 observations (which always corresponds to 25 observations from each
class) the change should happen in batch 21 when applying dat 1 and should go through the whole training and testing
phase when considering dat2. Note that for the both datasets, the observations were ordered so that the priors (however
estimated) were always equal.

Table 1 shows the results of our calculations using the updating-rule approach. It can be seen that our updating
routine achieves better performances than both conventional approaches. In order to see where the improvement oc­
curred, we monitored the error rates of single batches. As expected due to the large training set, there was no great

data set datl dat2
parameters/method mean error
1 = 0.25,ws= 300, 6 = 3, € = 2 0.164 0.232

data set datl dat2 1 = 0.25,ws= 600 , 6 = 3, € = 2 0.168 0.241
parameters/method linear logistic linear logistic 1 = 0.5,ws= 300, 6 = 3, € = 2 0.165 0.236
6 = 0.5 , a = 2 0.166 0.163 0.228 0.231 1 = 0.5,ws= 500, 6 = 2.5, € = 1.5 0.164 0.229
6 = l,a = 3 0.160 0.168 . 0.229 0.223 1 = l,ws= 300, 6 = 3, € = 2 0.175 0.239
no-learn 0.186 0.175 0.360 0.366 no-learn 0.190 0.353
re-learn 0.166 0,163 0.271 0.273 re-learn 0.175 0:267

Table l: Average error rates of linear and logistic discrimi- Table 2: Average error rates of quadratic rule applying
nation rule applying the updating approach the data learning approach (4.2) (ws =window size)

difference between our classification procedures until the drift occurred (i.e. the no-learn routine achieved best results
in that area) in the data datl . But from batch 21 onwards our classifier was much better than conventional methods,
with the no-learning rule worst. The error rates of the linear updating rule with parameters a = 3, 6 = 1 after this
batch were 5.2% and 8.4% smaller than the re-learn and no-,Jearn rules. The second data set caused greater problems
for our discriminant function. But here also our algorithm showed higher success rates than the other approaches.

If we consider the quadratic (data-learn) approach, we get similar results (see Table 2). For the first 20 batches of
dat l all routines seem to have almost the same performance, although the relearning method is slightly more accurate
than the other ones. But again after the shift and during the drift (dat 1) the no-learn method loses performance, whereas
the relearning rule works almost as well as our algorithms. But as soon as we apply the overall drift data set (dat2) to the
different approaches the enhancement by our algorithm is obvious. The monitoring process shows almost constant error
rates, while the error rates of the re-learn approach gradually increases (the no-learn rule completely ceases to work:
three batches produced error rates of 50 percent). We used a set of parameters from which the reader can observe the
effects of changing them.

The kernel classifier showed a similar pattern. We tried 4 approaches: (i) h1, h2 were trained on the test data, but
the classifier was not updated (no-learn); (ii) the classifier was updated using all observations thus far observed (with
no change in the smoothing parameters); the dynamic kernel estimator given by equation (3) with (iii) a weighted ex­
ponential decay (.A) and (iv) a window of width W learned from the training data. In the latter two cases, 2 parameters
for each of the two classes were chosen by cross-validation. The results are given in Table 3.

Method Error rate estimated parameters
datl dat2 datl dat2

(i) no-learn ((h1, h2)) 0.201 0.357 (.75, .8) (1.5, 1.5)
(ii) all-data ((h1, h2)) 0.167 0.274 (.75, .8) (1.5, 1.5)
(iii) exponential wieghts ((h1, h2, .A1, .A2)) 0.173 0.239 (3, 3, .08, .08) (1, 1, .06, .06)
(iv) moving window ((h1, h2, W1 , W2)) 0.165 0.231 (1.5, 1.5, 210, 245) (1.6, 1.6, 95, 250)

Table 3: Error rates for kernel classifier on simulated data. See text for further details of (i}-(iv)

525

4.2 Real data

The data set concerns applications for credit; the class indicates the success of the application (i.e. two classes). There
are 156 273 observations which cover a 2-year period. Originally there were many qualitative attributes which were
then coded into indicator variables (since all the programs used here require real-valued data). Subsequently, 15 of
these 0/1 variables were used for classification purposes. The initial 10-fold cross-validation was computed using the
first 5000 observations. Subsequently, we used batch sizes of 1000. The error rates are shown in Table 4 for the linear
and logistic approach and in Table 5 in the case of the quadratic method. Figure 1 suggests that there is a shift in

param. I approach linear logistic

o = 0.25, a= 2 7.97 - parameters of quadratic I approach e
o = 0.5 , a= 2 7.96 7.45 'Y = 0,ws= 3000, o = 100, e = 100 11.94
o = 0.5 , a= 1 8.54 - 'Y = 1,ws= 3000, o = 7, e = 8 8.789
o = 1, a= 3 8.49 7.46 'Y = 0.25,ws= 5000, o = 1, e = 3 8.865
o = 1.5 , a= 2 8.56 7 .36 'Y = 0.7,ws= 7000, o = 1, e = 2 8.861
o = 2, a = 4 - 7.33 'Y = 0.5,ws= 5000, o = 1.5, e = 3 8.830
o = -1 , a= 1 7 .73 7.45 'Y = 0.3,ws= 8000, o = 1, e = 4 8 .863
no-learn 8.97 8.26 no-learn 8.974
re-learn 8.97 8.97 re-learn 8 .974

Table 4: Average error rates(%) oflinear and logistic
discrimination rule applying the updating approach
(section 4.1) and using real data

Table 5: Average error rates(%) of quadratic discrimination
rule applying the data-learn-approach (section 4.2) and using
real data

0.3 batch
error rate

0.25

0.2 ------ ---- -- --
0.15

0.1

0.05
r-__ ,-.. ~-,.-;__-_-__ A_ ---- •

0 20 40

------,---------Action limit

·-·····--..... .
=- - ········--·
: --· :-- .;; ._:_:.; • ..:,.. ---- _ _ ~-... Mean Error

-~..... -=--~ -... --:...;...,..; -

60

:- ... ~ - - ----- -... -- ,... _ Operation limit --- .:;,,,....-..,.. ... ~ -..... -- -- ~,_ ..

bat~~ 100

..,. ----~-------~--·---... - -- - -- ---- -
120 140

Figure 1: Typical output of monitoring process for linear and logistic discrimination applying the "errorlearn approach".
This example uses the real data and compares linear adaptive discrimination(+) with parmeters o = 0.5, a= 2.0 and
re-learn method (o).

the data in batches 30 - 50 which was where our algorithms showed the greatest difference in the success rates. For
example the linear update process only differed from the conventional methods in this region. Unexpectedly the re-learn
and no-learn approaches had the same success rates when using the linear discriminant rule. As expected the logistic
approach showed the best performance, but even here we could find parameters that improved the overall performance.
Also astonishing were the results when applying the parameters (a= 1, o = 1), which causes only relearning at certain
steps but no updating at all.

As in previous studies the quadratic discriminant rule did not work as well as the other classifiers in the case that
the data was binary. This was even more true of the kernel classifier, although the poor performance may have been
due in part to the fact that we neither scaled the binary data, nor considered a different smoothing parameter in each
dimension. So in effect we worked with the assumption that the variables were independent with common variance

"'?
C>

-§
e C\.I a; c)

0

. -...

1 1
•• 1 1

1 1
1

11 \~ 1

1

. . .

1
1 ••

1 . . .· 1

....
1 1 •

111 ~ •• • •
1 1 •

. 1 1 111t
1

·. ·.·.

50 100 150

batch

Figure 2: Error rates for two kernel classifiers. The"•" points are for a non-dynamic classifier in which the priors
were updated according to the proportions observed in the previous batch. The 'I' points were for a movmg window
classifier, equation (3) with (W1, W2) = (400, 3000) and (h1, h2) = (.25, .25)

which was certainly not the case. The kernel classifier which was kept fixed gave an overall error rate of over 20%
(note that the default rule only gives 10.5%), whereas updating the prior to reflect the proportions in the last batch gave
a small improvement to 18.2%. The dynamic version (moving window) gave a large improvement to 10.4%; still only
just better than the default rule, but with more careful choice of smoothing, indicates what may be possible.

The "static" nearest neighbour classifier gave an error rate of 9. I% whereas the dynamic version is faster (since
the number of sites stored was about 2000 less) and gave an error rate of7.4%. Details of the training and parameter
selection can be found in Nakhaeizadeh et al. (1996).

5 Conclusions

Stationarity is a key issue which will affect the performance of any dynamic classification algorithm. For example, if
the changes which occur in the training phase are very different from the nature of the changes which take place during
testing then the way the parameters are updated is likely to be deficient. It could be agued that it is best to update
whenever a new observation becomes available (as is done with the kernel classifier and nearest neighbour algorithm
above) but we would argue that methods should include a monitoring process even if this monitoring is not normally
used to update the rules. The reason for this is that, even if a continuous updating method is adopted, the optimal amount
ofupdating (or the way in which updating is performed) can still vary over the time span of the data. Furthermore, most
forms of monitoring will make use of batch-whether natural or artificial- information in order to be more confident
about the size of any change that has occurred. However, we leave open the question of using a moving window for ·
monitoring purposes.

References

Aha, D. W. (1989). Incremental, instance-based learning of independent and graded concept descriptions. In Proceed-

527

ings of the Sixth International Workshop on Machine Learning, Ithaca, NY, pp. 387-391. Morgan Kaufmann.

Cost, S. and Salzberg, S. (1993). A weighted nearest neighbour algorithm for learning with symbolic features. Machine
Learning 10, 57-78. ·

De Raedt, L. and Bruynooghe, M . (1992). Belief updating from integrity constraints and queries. Artificial Intelli­
gence 53, 291-307.

Kubat, M. and Widmer, G. (1995). Adapting to drift in continous domaiiiS. In Lecture Notes in Artificial Intelligence,
Volume 912, pp. 307-310.

Michie, D. M., Spiegelhalter, D. J. and Taylor, C. C. (Eds.) (1994). Machine Learning, Neural and Statistical Classi­
fication . Chichester: Ellis Horwood.

Nakhaeizadeh, G., Taylor, C. C. and Kunisch, G. (1996). Dynamic aspects of statistical classification. In Intelligent
Adaptive Agents, AAA! Technical report No. WS-96-04, Menlo Park, CA, pp. 55-64. AAAI Press.

Nakhaeizadeh, G., Taylor, C. C. and Kunisch, G. (1997). Dynamic supervised learning: Some basic issues and appli-.
cation aspects. to appear.

Schlimmer, J. C. (1987). Incremental adjustment of representations for learning. In Fourth International Workshop on
Machine Learning, pp. 79-90. Irvine, CA:Morgan Kaufmann.

Schlimmer, J. C. and Granger, R. (1986). Incremental learning from noisy data. Machine Learning 1, 317-354.

Utgoff, P. E. (1989). Incremental learning of decision trees. Machine Leaming 4, 161-186.

Utgoff, P. E. (1994). An improved · algorithm for incremental induction of decision trees. In Proceedings of Eleventh
Machine Learning Conference, Rutgers University. Morgan Kaufmann.

Wand, M. P. and Jones, M. C. (1995). Kernel Sm,oothing. London: Chapman and Hall.

Wettschereck, D. and Aha, D. W. (1995). Weighting features. In M. Veleso and A. Aamodt (Eds.), Proceedings of
the 1st International Conference on Case~Based Reasoning Research and Development, Volume 1010 of LNAI,
Berlin, pp. 347-358. Springer Verlag.

