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Abstract 

Minimum Message Length (MML) is an invariant 
Bayesian point estimation technique which is also con­
sistent and efficient. We provide a brief overview of 
MML inductive inference (Wallace and Boulton (1968) , 
Wallace and Freeman (1987)) , and how it has both 
an information-theoretic and a Bayesian interpretation. 
We then outline how MML is used for statistical pa­
rameter estimation, and how the MML mixture mod­
elling program, Snob (Wallace and Boulton (1968), Wal­
lace (1986) , Wallace and Dowe(1994)) uses the message 
lengths from various parameter estimates to enable it to 
combine parameter estimation with selection of the num­
ber of components. The message length is (to within 
a constant) the logarithm of the posterior probability 
of the theory. So, the MML theory can also be re­
garded as the theory with the highest posterior proba­
bility. Snob currently assumes that variables are uncor­
related, and permits multi-variate data from Gaussian, 
discrete multi-state, Poisson and von Mises circular dis­
tributions. 

1 Introduction - About Minimum 
Message Length (MML) 

The Minimum Message Length (MML)[37, pl85][43] 
(and, e.g., [5, pp63-64][38]) principle of inductive infer­
ence is based on information theory, and hence lies on the 
interface on computer science and statistics. A Bayesian 
interpretation of the MML principle is that it variously 
states that the best conclusion to draw from data is the 
theory with the highest posterior probability or, equiv­
alently, that theory which maximises the product of the 
prior probability of the theory with the probability of 
the data occuring in light of that theory. We quantify 
this immediately below. 

Letting D be the data and H be an hypothesis (or 
theory) with prior probability Pr(H), we can write the 
posterior probability Pr(H!D) = Pr(H&D)/Pr(D) 
Pr(H). Pr(DjH)/ Pr(D), by repeated application of 
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Bayes's Theorem . Since D and Pr(D) are given and we 
wish to infer H , we can regard the problem of maximis­
ing the posterior probability, Pr(H!D), as one of choos­
ing H so as to maximise Pr(H). Pr(DIH) . 

An information-theoretic interpretation of MML is 
that elementary coding theory tells us that an event of 
probability p can be coded (e.g. by a Huffman code) by 
a message of length l = - log2 p bits . (Negligible or no 
harm is done by ignoring effects of rounding up to the 
next positive integer.) 

So, since - log2 (Pr(H). Pr(D!H)) = - log2(Pr(H)) -
log2 (Pr(DjH)), maximising the posterior probability, 
Pr(HID) , is equivalent to minimising 

MessLen = -log2(Pr(H))-log2 (Pr(DIH)) (1) 

the length of a two-part message conveying the theory, 
H , and the data, D, in light of the theory, H . Hence 
the name "minimum message length" (principle) for thus 
choosing a theory, H , to fit observed data, D. The prin­
ciple seems to have first been stated by Solomonoff[31, 
p20] and was re-stated and apparently first applied in a 
series of papers by Wallace and Boulton[37, p185][4][5, 
pp63-64][6, 8, 7, 38] dealing with model selection and 
parameter estimation (for Normal and multi-state vari­
ables) for problems of mixture modelling (also known as 
clustering, numerical taxonomy or, e.g. [3], "intrinsic 
classification"). 

An important special case of the Minimum Message 
Length principle is an observation of Chaitin[9] that data 
can be regarded as "random" if there is no theory, H, de­
scribing the data which results in a shorter total message 
length than the null theory results in. For a comparison 
with the related Minimum Description Length (MDL) 
work of Rissanen[28, 29], see, e.g., [32]. We discuss later 
some (other) applications of MML. 

2 Parameter Estimation by 
MML 

Given data x and parameters B, let h(B) be the prior 
probability distribution on B, let p(xlB) be the likelihood, 



let L = - logp(xlB) be the negative log-likelihood and 
let 

(2) 

be the Fisher information , the determinant of the (Fisher 
information) matrix of expected second partial deriva­
tives of the negative log-likelihood. Then the MML es­
timate of B [43, p245] is that value of B minimising the 
message length, 

- log(h(B)p(x lB)/ jF{i)) + l / 2 log(e/12) (3) 

(If € is the measurement accuracy of the data and N 
is the number of data things, then we add the constant 
term N log(l /€) to the length of the message . This is 
elaborated upon elsewhere[43 , p245][39, ppl-3] .) 

The two-part message describing the data thus com­
prises first , a theory, which is the MML parameter esti­
mate(s) , and , second , the data given this theory. 

It is reasonably clear to see that a finite coding can be 
given when the data is discrete or multi-state. For con­
tinuous data, we also acknowledge that it must only have 
been stated to finite precision by virtue of the fact that 
it was able to be (finitely) recorded . (In practice[41], as 
below equation (3), we assume that, for a given continu­
ous or circular attribute, all measurements are made to 
some accuracy, t: .) Just as all recorded data is finitely 
recorded and can be finitely ·represented, by acknowl­
edging an uncertainty region in the MML estimate of 
approximately[43, 36, 39] v12/ F(O) , the MML estimate 
is stated to a (non-zero) finite precision. The MML es­
timate has a genuine, non-zero, prior probability (not a 
density) and can be encoded by a genuine finite code, 
(Indeed , the object of MML is to choose a finitely stated 
estimate or hypothesis , H , to make the two-part message 
of length - log2(Pr(H)) - log2(Pr(DIH)) stating H fol­
lowed by D given H as short as possible.) The MML 
theory is thus different , in general , from the standard 
Bayesian maximum a posteriori (MAP) theory. 

In the remainder of this section , we give several ex­
amples of the result of using the MML formula to ob­
tain parameter estimates from "innocuous" priors. For 
the Gaussian , multi-state and Poisson distributions, the 
MML estimate can be written in a simple analytic form 
and closely approximates the Maximum Likelihood (ML) 
estimate. For the von Mises distributiOn, the estimators 
take a messier form[30, 18, 39, 14). 

The following two sections are on extending MML pa­
rameter estimation to MML mixture modelling, and on 
the invariance[43, 38] of MML and the consistency and 
efficiency[43 , 36, 1] of MML. Further sections mention al­
ternative mixture modelling programs, and applications 
of and extensions to the Snob program. 

2.1 Gaussian Variables 

For a Norm al distribution (with sample size, N), as­
suming a uniform prior on µ and a scale-invariant , 
l/cr prior on er , we get that the Maximum Likelihood 
(ML) and MM L estimates of the mean concur, i.e., that 
fl.MML =µ ,'VIL= i:. Letting s2 = L ;(x; - x) 2

, we get 
that cr2 ML = s2 /N and[37, p190) that 

•) 2 
<T-Miv!L = s /(N - 1) (4) 

corrects this minor but well-known bias in the Maximum 
Likelihood estimate. 

2.2 Discrete, Multi-State Variables 

Since multi-state attributes are discrete , the above issues 
of measurement accuracy do not arise. 

For a multi-state distribution with M states, a 
( "colourless" ) uniform prior , h(f) = (M-1)!, is assumed 
over the ( M - 1 )-dimensional region of hyper-volume 
1/(M-1)! given byp1+ P2+ ... +pM=l; p;;:::O . 

Letting nm be the number of things in state m and 
N = n 1 + ... +nM , minimising the message length formula 
gives that the MML estimate of Pm is given[37, p187(4), 
pp191-194][41) by 

Pm= (nm+ 1/2)/(N + M/2) (5) 

This nominally gives rise to a (minimum) message 
length[37, p187(4),p194(28)] of 

(M-1) log(N /12+1)/2-log(M-1)!-L(nm+l/2) logftm 
m 

(6) 
for both stating the parameter estimates and then en­
coding the things in light of these parameter estimates. 

2.3 Poisson Variables 

Earlier versions of Snob originally[37, 33, 34] permitted 
models of classes whose variables were assumed to come 
from a COlllbination of either (discrete) multi-state or 
(continuous) Normal distributions. Snob has since been 
augmented by permitting Poisson distributions and von 
Mises circular distributions[39, 40, 14]. 

With a the population rate, c the total count and 
t the total time, with a prior on the rate , r , of 
h(r) = (l/a) .e-rfc.x, we get an MML estimate of 

TMML = (c + 1/2)/(t + 1/a) (7) 



2.4 von Mises Circular Variables 

The von Mises distribution . J\!h(µ , t1: ), with mean direc­
tionµ , and concentration parameter , K, is a circular ana­
logue of the Normal distribution[l8, 21 , 39], - both be­
ing maximum entropy distributions . Letting Io(K) be 
the relevant normalisation constant , it has probability 
density function (p.d.f.) 

f (xiµ, K) = ( l/ 2rr Io( x:) )e" cos(x-µ) (8) 

and corresponds to the distribution of the angle , x , of a 
circular pendulum in a uniform field (at angle µ) sub­
jected to thermal fluctuations , with x: representing the 
ratio of. field strength to temperature. For small x: , it 
tends to a uniform distribution and for large x:, it tends 
to a Normal distribution with variance 1/ x:. Circular 
data arises commonly in many fields[l8 , 12). 

MML estimation of the von Mises concentration pa­
rameter, x:, is obtained by minimising the earlier formula 
for the message length , using[39) a uniform prior onµ in 

[O, 27T) and the prior h3 (x:) = x:/(1 + x: 2)
312 on x:. The 

contrast between MML and ML estimation is sharper 
for the von Mises distribution than it is for the Nor­
mal , multi-state and Poisson distributions, with Monte 
Carlo simulations[39, ppl2-18] showing a very impres­
sive performance by the MML estimator against ML 
and other classical rivals (e.g. marginalised Maximum 
Likelihood)[30, 18] . 

Being able to associate a message length both with the 
number of components and, in turn , with each compo­
nent enables us to use (the minimisation of) the message 
length as a natural metric for model selection. 

2.5 Corrections (and missing data) 

Additionally, in calculating the length of the part 2 of the 
message, D given H , appropriate corrections are made 
(e.g. Shepherd's approximation for the Normal distri­
bution, or when M > N for the multi-nomial distribu­
tion) to account for expected effects on this length of 
rounding-off parameter values to limited precision. 

We further note that, in principle, a separate code­
word of some length can be set aside for missing data. 
The transmission of the missing data will thus be of con­
stant length regardless of the hypothesised classification, 
and as such will affect neither the minimisation of the 
message length nor the (statistical) inference. 

2.6 A note on higher dimensions 

A slight saving can be made in the length of the state­
ment of a message of two or more parameters by gener­
alising the I-dimensional case at the start of this section 

to permit (e.g.) in '2 dimensions, the uncertainty re­
gion to be a hexagon rather than a rectangle since (in 
short) both hexagons and rectangles tile the Euclidean 
plane but a hexagon has a smaller (average or) expected 
squared distance from its centre than a rectangle or any 
other tiling shape. This is quantified elsewhere [43, 39] in 
terms of lattice constants[l l] for optimally1 tesselating 
Voronoi regions. 

3 Applying MML to Mixture 
Modelling - the Snob Program 

Snob uses MML for bot.h the model selection (number 
of components and assignment of data things to com­
ponents) and parameter estimation (estimating means 
and standard deviations, etc.) . Snob will prefer to hy­
pothesise the existence of an additional component in 
the data precisely when the information cost of stating 
the parameter estimates for this additional component 
is more than offset by the information gain in stating 
the things assigned to this new component in terms of 
the newer, more appropriate , parameter estimates. Re­
call throughout the equivalence[38] between the proba­
bility paradigm and the message length paradigm, with 
an event of probability p corresponding to a message of 
length l = - log2 p bits, and a message of length l bits 
corresponding to a probability of p = 2-1. That stated 
and understood, it seems conceptually simpler to con­
tinue below in the message length paradigm. 

3.1 Stating the message - a first draft 

Following earlier work[37, 33, 34, 41], we suppose the 
data (for mixture modelling) to be given as a matrix of 
D attribute values for each of N "things", with some at­
tribute values possibly missing. We assume the variables 
to be independent of one another. 

The first part of the message, stating the hypothesis, 
H, comprises several concatenated message fragments , 
stating in turn: 

la. The number of components. (All numbers are 
considered equally likely a priori, although this could 
easily be modified.) 

lb. The relative abundance of each component. (Cre­
ating names or labels for each component of length 
- log2 of the relative abundance, via a Huffman code, 
gives us a way of referring to components later when, 
e.g., we wish to say which component a particular data 
thing belongs to.) · 

1 in terms of minimum average squared distance from the centre 
for a region of unit hyper-volume 
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le. For each component , the distribution parameters 
of the component (as discussed in Sect.ion 2) . Ea.ch pa­
rameter is considered to be specified to a precision of 
the order of its expected estimation error or uncertainty 
(see Section 2 or, e.g. , (39, pp3-4)) . For a larger compo­
nent , the parameters will be encoded to greater precision 
and hence by longer fragments than for a less abundant 
component . 

ld. For each thing , the component to which it is esti­
mated to belong. (This can be done using the Huffman 
code referred to in 1 (b) above.) 

Having stated in part 1 of the message above , our 
hypothesis , H , about how many components there are 
and what the distribution parameters (µ, r:r , etc.) are 
for each attribute for each component , in part 2 of the 
message we need to state the data, D , in light of this 

·hypothesised model , H . 
The details of the encoding and of the calculation of 

the length of part 1 of the message may be found in 
Section 2 and elsewhere(37 , 39] . It is perhaps worth not­
ing here that since our objective is to minimise the mes­
sage length (and maximise the posterior probability) , we 
never need construct a message - we only need be able 
to calculate its length . 

Given that part 1 ( d) of the message told us which com­
ponent each thing was estimated to belong to and that , 
for each component , part l(c) gives us the (MML) esti­
mates of the distribution parameters for each attribute , 
part 2 of the message now encodes each attribute value 
of each thing in turn in terms of the distribution param­
eters (for each attribute) for the thing's component . 

3.2 Stating the message more concisely 
using partial assignment 

Part 1( d) of the message described in the previous 
section (§3.l) implicitly restricts us to hypotheses, H , 
which assert with 100% definiteness which component 
each thing belongs to. Given that the population that 
we might encounter could consist of two different but 
highly over-lapping distributions, forcing us to state def­
initely which component each thing belongs to is bound 
to cause us to mis-classify outliers from one distribu­
tion as belonging to another. In the case of two over­
lapping (but distinguishable) 1-dimensional Normal dis­
tributions, this would cause us to over-estimate the dif­
ference in the component means and under-estimate the 
component standard deviations. 

Since what we seek is a message which enables us to 
encode the attribute values of each thing as concisely 
as possible, we note that a shorter message than that of 
Section 3.1 can be obtained by a probabilistic (or partial) 

assignment of things to components. The reason for this 
is that(33 , §3](34, p 77] if p(j , x), j = 1, . ., .J , is the proba­
bility of component j generating datum x , then the total 
assignment of x to its best component results in a mes­
sage length of - log(maxj p(j , x)) to encode x whereas, 
letting P(x ) = Lj p(j, x), a partial assignment of x hav­
ing probability p(j,x)/P(x) of being in component j re­
sults in a shorter message length of - log( P( x)) to en­
code x. As shown in [33 , §3](34, p77][41] , this shorter 
length is achievable by a message which asserts definite 
membership of each thing by use of a special coding trick. 

4 Consistency, invariance and ef­
ficiency of MML estimates 

If the outcomes of any random process are encoded us­
ing a code that is optimal for that process , the result­
ing binary string forms a completely random process(43, 
p241]. This fact and the fact that general MML codes 
are (by definition) optimal implicitly suggest that , given 
sufficient data, MML will converge as closely as possible 
to any underlying model. Indeed , MML can be thought 
of as extending Chaitin 's idea of randomness[9] to al­
ways trying to fit given data with the shortest possible 
computer program (plus noise) for generating it . This 
general convergence result for MML has been explicitly 
re-stated elsewhere[36 , l]. Similar arguments show that 
MML estimates are not only consistent, but that they 
are also efficient , i.e., that they converge to any true un­
derlying parameter value as quickly as possible. 

The fact that VF transforms like a prior is a basis 
used by some to choose VF as a Jeffrey 's prior. Al­
though we do not wish to advocate the use of a Jeffrey 's 
prior, we do note that h/VF is invariant under parame­
ter transformation. Since the likelihood function is also 
invariant under parameter transformation, we see from 
equation (3) that MML is also invariant under parameter 
transformation[43, 38]. 

The problem of model selection and parameter estima­
tion in mixture modelling can, at its worst, be thought 
of as a problem for which the number of parameters 
to be estimated grows with the data. It is well known 
that Maximum Likelihood can become inconsistent (or 
very inefficient) with such problems, e.g. multiple factor 
analysis[35] and the Neyman-Scott problem[24, 16]. 

5 Alternative Bayesian methods 

In doing inductive inference of mixture models from 
data, there are several levels of inference that we might 



conceivably wish to make. We might wish simply to in­
fer the most likely number of components. Or , alterna­
tively, we might wish to infer the number of components , 
their relative abundances and the parameter values as­
sociated with each component. Or , we might further 
wish to infer the above and a probabilistic assignment 
of things to components. It is these last two variations 
which are variously understood by the term "mixture 
modelling". Finally, one might wish to infer the number 
of components and the identities of their members with­
out regard to parameter estimation. This form is often 
termed "clustering". 

MAP (maximum a posteriori) operates on a density 
and must marginalise over (or integrate out) parameters 
to estimate memberships, and must likewise marginalise 
over memberships to estimate parameters . MAP (like 
penalised likelihood methods) is unable consistently to 
estimate both parameter values and class memberships. 
Let us see why this is: consider some estimate of the 
number of components followed by parameter estimates 
for each of these components. (We could , for example , 
have two equally abundant and substantially overlapping 
I-dimensional Normal distributions with the same stan­
dard deviation , a- .) If we assign each thing to its most 
probable class, there will be a neat division of things to 
classes, a division which will not be consistent with the 
original estimates of means and a- . 

Rather than obtain probabilities from densities of 
real-valued parameters by integrating (as MAP does) , 
MML obtains such probabilities by rounding-off (or 
quantising) 2 the possible parameter estimates into cod­
ing blocks (or uncertainty regions) as discussed in Sec­
tion 2. By shortening the length of the message to a 
minimum, MML arrives at the (quantised) theory of the 
highest probability (see Section 1) whose resulting binary 
string forms[43, p 241][41, p 41] a completely random 
process. The fact that the first part of the message 
string3 and the second part of the message are com­
pletely random (and "noise" ) means that the coding 
trick4 causes the assignment of data things to compo­
nents to be done (pseudo-)randomly in a way which is 
consistent with the parameter estimates. If we do not 
minimise the message length (by taking advantage of the 
coding trick), as with MAP estimation, inconsistencies 
will arise. 

Results of Barron and Cover[l] show MML to be con­
sistent for any i.i.d. problem, and other results[36][43, p 
241] show MML (and Strict MML[38, 43]) to be consis­
tent and efficient for problems of arbitrary generality. 

2 hence, Peter Cheeseman (private communication) refers to 
MML as "quantised Bayes" 

3 and part Id in particular see Section 3.1 
4 see Section 3.2 
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Furthermore, whereas MML is known to be 
invariant[:38, 43) under l-to-1 transformat ions , the MAP 
(posterior mode) estimate is known generally not to be 
invariant under 1-to-1 transformations - e.g. , von Mises 
circular parameter estimation[l4) in polar and Cartesian 
co-ordinates. 

While the authors do not advocate MAP, another 
Bayesian method which the authors do advocate Is es­
timation by minimising the Expected Kullback-Leibler 
distance (min EKL) . Like the MML estimator , min EKL 
is invariant under re-parameterisation. Work to appear5 

follows Wallace[36] and shows strong similarities between 
Strict MML[38, 43] and min EKL (as is easily seen in the 
case of M-state Bernoulli sampling) . 

6 Alternative mixture modelling 
programs 

The first Snob program (since out-dated)(37) was possi­
bly the first program for Gaussian mixture modelling , 
although many statistical and machine learning ap­
proaches to this problem have been developed since (e.g., 
McLachlan et al.(23, 22), D. Fisher's CobWeb(17)). Dis­
cussions of early alternative algorithms for Gaussian 
mixture modelling have been given by Boulton(3). 

6.1 Comparison with AutoClass II 

Like Snob, AutoClass II [10] assumes6 a prior distribu­
tion over the number of classes and independent prior 
densities over the distribution parameters of the sample 
class densities. However[34), AutoClass II is not based 
on a message length criterion, but instead makes a more 
direct inference of the number of classes, J . 

Let V be the vector of abundance and distribution 
parameters needed to specify a model with J compo­
nents. Let P(J) be the prior probability of having J 
components, and let h(V) be the prior probability of the 
parameters, V. Let X denote the data, i.e. the set of 
attribute values for all things, and let P(X!V) be the 
probability of obtaining data X given the ]-component 
model specified by V. The joint probability P(J, X) of 
J and X is then 

P(J, X) = J h(V)P(XjV)dV (9) 

and the posterior probability, P(JIX), of J given the 
data, X , is 

P(JIX) = P(J, X)/C£ P(j, X)) (10) 
j 

5 by the current authors, and R. Baxter and J . Oliver 
6 This sub-section is very much a re-writing of (34, pp78-80]. 



The calculation of the posterior, P(JIX), requires 
t.he calculation of an integral for each possible num­
ber of classes, .] , in order to obtain the joint proba­
bility, P(.J, X). The integrand is proportional to the 
posterior density of the parameters of a .I-class model , 
h.(V) x P(XjV). 

Au toClass II approximates the integral by making the 
assumption that most of the contribution to the integral 
will come from the neighbourhood of the highest peak 
value of the integrand . It effectively fits a Gaussian func­
tion to the integrand at this peak and uses the integral 
of the Gaussian as its estimate of the true integral. Let­
ting F be the Fisher information (from Section 2), the 
estimate is very similar, both analytically and numeri­
cally, to the quantity h(V) x P(XjV)/VF, which is what 
MML (in general) and Snob (in particular) endeavour to 
maximise. Thus, although AutoClass II is differently 
motivated from Snob , in practice it gives almost identi­
cal results . 

6.2 Comparison with other methods 

Oliver et al.[25) re-wrote the Gaussian mixture modelling 
part of Snob[41 , 42) by modifying the Bayesian priors 
and introducing lattice constants[43, 39] (see Section 2.5) 
and then empirically showed a successful performance 
of (this slightly modified) Snob against AIC (Akaike's 
Information Criterion), BIC [28) and other methods. 

The literature does not yet seem to contain any al­
ternative algorithms for mixture modelling of von Mises 
circular and Poisson distributions. 

In general, with problems such as mixture modelling or 
multiple factor analysis where the number of parameters 
to be estimated increases with (and is potentially pro­
portional to) the amount of data, one must beware Max­
imum Likelihood and MAP methods, which are both 
liable[24, 16] to give inconsistent results. 

7 Snob (and MML) Applications 

Earlier applications of Snob include several to medi­
cal, psychological, biological and exploratory geological 
data, with a survey in (41] . The Poisson module seems 
to be accurately able to discriminate between pseudo­
randomly generated classes from different Poisson dis­
tributions. It has also been used to analyse word-counts 
from a data-set of 17th Century texts. On this data­
set, a shorter message length was obtained by using a 
Normal model than a Poisson model, and hence MML 
advocated the Normal model. The von Mises module 
has found clusters in data of several thousand sets of 

protein dihedral angles[12] . The Poisson module is cur­
rently being used to model run lengths of helices and 
other protein conformations as being a mixture of Pois­
son distributions. This work should indirectly lead to a 
better way of predicting protein conformations. 

Extensive surveys of Snob applications are given in 
Patrick(27] and Wallace and Dowe[41] , with a recent ap­
plication of Gaussian mixture modelling to data on mem­
bers of grieving families is given in Kissane et al.[20). 

In applying Snob, a difference of more than 5 to 
6 bits[43 , p25 l] or of more than 10 bits[33] might be 
deemed to be statistically significant under certain mod­
elling conditions. 

As well as having been applied to mixture models (dis­
cussed here), MML has also been successfully applied to 
a variety of problems of parameter estimation[37, 38, 43, 
36, 39, 40 , 14, 16], hypothesis testing(43, 39], Hidden 
Markov Models[19] and other multi-variate models[43, 
36, 44 , 35, 16] . Further references are given in [13]. 

8 Notes on further work and 
Snob program extensions 

The Snob program currently implicitly assumes that 
variables are independent and uncorrelated. This could 
be modified to permit single linear (Gaussian) fac­
tor analysis[44) or multiple linear (Gaussian) factor 
analysis[35], or to model correlations via an inverse 
Wishart or some other such prior. 

It would not be too difficult[41) to permit the user to 
modify the colourless priors (see Section 2) used by Snob 
to better represent the user's prior beliefs (or knowled·ge, 
or bias). 

MML estimators have been obtained for the spheri­
cal Fisher distribution[15] and work is currently under­
way[26) to deal with the mixture modelling of these. 

When there are two or more overlapping components, 
a slight inefficiency will arise in the message length cal­
culations since parameters will be stated to a slightly 
higher than necessary degree of precision. The correc­
tion for this can be computationally very slow and has 
been inspected in the Gaussian case by Baxter[2] . 

9 Availability of the Snob pro­
gram 

The current version of the Snob program (written 
in Fortran 77) is freely available for not-for-profit, 
academic research, and not for re-distribution, from 
ftp ://ftp.cs.monash.edu.au/pub/snob/Snob.README 



(or from c; _ S. Wallace)_ Published or otherwise recorded 
work using Snob should cite the current paper . User 
guidelines are given in[41] and in the documentation file, 
snob.doc . 
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