
"W"WW Cache Layout to Ease Network
Overload

- Analyzing Regularity of Structured Data -

. Kenichi Yoshida
Advanced Research Laboratory, Hitachi : Ltd.

The GBI (graph-based induction) concept learning method is applied to extract
typical access patterns of WWW data. By interpreting extracted patterns as

the cache site layout ~ we can reduce the total network data flow by implement­

ing a distributed cache system which is adapted to the VV\iVW access patterns.

Although the huge V./WW data flow causes the overflow of the conventional hier­
archical cache system, the layout created by the GBI method eases this problem.
The traffic reduction ratio of this distributed cache system is 2.5 times higher

than that of the conventional hierarchical cache system. Our results suggest the
importance of the data analyzing methods which can handle structured data.

By analyzing regularity in graph structures, the GBI method can reduce the net­

work data flow ; The statistical criteria contribute to the analysis of promising
patterns .

1 Introduction

The WWW (world wide web) service

has recently become a widely used network
service which symbolizes the benefits of a

networked society. By using the WWW,

the user can access various types of in­

formation easily and quickly. However, a

rapid growth in demand sometimes causes

a heavy network overload, and the result­

ing slow-response spoils the benefits of the

Kenichi Yoshida e-mail:yoshida@hitachi.co.jp

Advanced Research Laboratory, Hitachi , Ltd.

Hatoyama, Saitama 350-03 Japan

WWW. Statistics [WID95] clearly indicate
the potential overload in the backbone of

the Japanese wide area network. Thus, the

demand for better tuning methods in wide

area networks has been increasing .

To solve this problem, Chankhunthod et

al. [CDN+96] propose the use of the hi­

erarchical cache system, and Gwertzman
and Seltzer [GS94] propose the distributed

cache system. These systems try to use

the redundancy of V•lVvW data. By storing

previously accessed data in the cache, they

try to omit the later data transmission. If

537

the data required by the user is stored in

the cache system, the WWW client can

respond to the user 's request quickly. In

this case, the cache system on the network

forms a kind of dis t ributed file system.

However, tuning a distributed file sys­
tem is a difficult problem. For exam­

ple, Dowdy 9-nd Foster [DF82] report that

most of the proposed methods for the dis­

tributed file system do not work well if the

required conditions are not satisfied. Un­

fortunately, none of the known methods

seem to match the current Vt/'\VW situa­

tion. Although hierarchical cache systems
such as [CDN+96] slightly speed up the

\V\VW client , a decrease in the network

load is not guaranteed. If the huge load
shuts down the network, a cache system
cannot solve the problem. The distributed

cache system [GS94] also needs investiga­
tion. No known method can lay out the
distributed cache storage automatically.

In this paper, we examine a method
for laying out the distributed cache stor­

age on the network using the GBI (graph­

based induction [YM95]) concept learning
method. By analyzing the access patterns

of WWW data, this method can lay out

distributed cache storage which is adapted
to the access patterns. The next section
describes the idea, and section 3 presents

experimental results. Section 4 discusses

some aspects of the GBI method.

2 Distributed Cache Layout

GBI was originally developed as a con­

cept learning method [YM95]. In [YMl94],

we examin~ its various learning functions ,

such as the decision tree learning func­

tion [BFOS84, Qui86] and the explanation-

based learning function [MKKC86 , DM86] .

The key idea of GBI is the extraction of

frequently appearing patterns from graph­

format data, and the use of the extracted

patterns for various purposes .

In this study we extract frequently ap­
pearing data transmissions from the wide

area network data flow. The data trans­

mission log was gathered using a WWW

proxy server, and the log has a graph

format which is suitable for analysis by

the GBI method. By interpreting the ex­

tracted patterns as the suggestions for the
cache positions , we·can lay out distributed

cache storage.
Figure 1 shows the idea. We assume

that many \VW\V clients try to get data
from relatively few well-known servers . In

the actual situation, a number of dupli­

cated data transmissions occur .and cause
the network overload.

Figure 1 (A) shows a situation where
four WW'\V clients (Tlrv4) access one
Vo/WW server (S) through network routers

(Nlrv3) . In Figure 1, single edge stands for

some amount of data transmission. The ar­

row shows the transmission direction. Al­

though Figure 1 (A) shows a simplified sit­

uation, we can represent the actual wide
area network situation using this graph for­
mat .

If the GBI program inputs the data

shown in Figure 1 (A) , it outputs fre­
quently appearing patterns in the input . If

the GBI program admits the hatched por­

tion of Figure 1 (B) as a frequently appear­

ing pattern in the input graph, it contracts

the input graph into the graph shown in

Figure 1 (C). Figure 1 (D) shows the inter­
pretation of the result as the cache layout.

(A) Total Flow (Number of Edges)= 13
s

Edge N1-N2-N3 Appears Frequently.

(IJ)

s

T4

T3

~
Contract EdQe N1-N2-N3.

(CJ

~~
lnterprete as Cache Location.

t

(D) Tl Total Flow = 8
s

T2
T4

T3

Fig. 1: Distributed Cache Layout by GBI

method

In Figure 1 (D), two caches (Cl and C2)
for a W\71/W server S are laid out , and the

estimated network flow is reduced from 13

to 8. In the actual situation, the input

graph for the GBI program involves many

edges each of which corresponds to a data

©©CQ<fJ
\ / \

©© . /

©© i \

©©

Fig. 2: Network Configuration for Simula­

tion

flow from various WWW servers , and. the

above process should be done simultane­

ously. However, the GBI algorithm can ex­

tract important (i.e., frequent) data trans­

mission patterns according to the impor­

tance of the transmission. See section 4.1

for t~e details of the algorithm.

3 Experimental Results

We performed simulation studies to

compare the caching methods. Figure 2

shows the network configuration assumed

in the simulations. The circles with an N
are network routers which can also act as

WWW caching servers. The . circles with
an S are WWW servers and clients. We
collected the names of these WWW servers

from the log (see later) , and the number of
WWW servers is about 32,000. \Ve also ·

assume 16 WWW clients. Each network

router is connected with one WWW client

and multiple WWW servers. The connec­

tions are randomly decided before the sim­

ulation. Each WWW client and router has

539

a 32-Mbyte caching capacity.

To generate input data for simulations,

we use a WWW access log which was
recorded at our www· proxy server. The

log includes 2.3 million data transfers (18 .7

Gbytes in size) over 16 days . In the simu­

lations , WWW clients are assumed to ac­

cess data as is specified in the log. The

log is divided into 16 parts. The log of the

first day is assumed to be the data requests

from the first WW'\V client. The log of the

second day is assumed to be the requests

from the second WWW client . We assume

16 clients in total, and the requests for

the other clients are generated in a similar

manner. All the data transmissions in the

log are treated as the data requests of the
same date with the time of day retained.

Note that we use other log data to lay

out distributed cache storage. The log
which was recorded in the preceding 2 days

was used to lay out cache storage by the

GBI method. By using the log of the suc­
ceeding 16 days for simulations, we ensure

the independence of the test set (i.e. , for

simulation) and the training set (i.e., for

layout) .
Figure 3 shows the simulated traffic on

the network. The solid line shows the traf­
fic with a distributed cache whose layout is

designed by GBI. 0 marks show the traf­

fic without a cache. X axis shows the time

of day (unit : minutes) and Y axis shows

the amount of data transfer per 10 min­

utes (unit : M byte) .

If we consider the difference between the

amount of the data flow in the simulation and that

in the actual situation, 32 Mbytes in the simula­

tion corresponds to 100 Mbytes.....,, 4 Gbytes in the

actual situation. See Appendix A.

350

300

.g
~ 250

" ~
:l:
; 200
0
u:
"' «
0
... 150
c ,_

100

so

200

0

0

0

With Cache -
Without Cache o

0

o~o

0
oo~o

0 0
0 0 :

400 600 800 1000 1200 1400
Time of Day (Minute)

Fig . 3: Decrease of Network Data Flow

Figure 3 shows that the W'\VW traf­
fic starts to increase from around 9 AM

(60 x 9=540 minutes), and reaches its peak

at noon. There is little traffic at midnight .
When we use the cache system, the aver­

age traffic between 10 AM and 8 PM is 186

Mbytes per 10 minutes . Since the average
traffic without a cache is 249 Mbytes, the

decrease rate is 26%. The most important

point here is the traffic reduction at the

peak time, and our cache system was able

to achieve a 100-Mbyte data reduction at

the peak time (see noon time in Figure 3).

Figure 4 compares the distributed cache

system using GBI (solid line) and the con­

ventional hierarchical cache system (dot­

ted line) . Both methods use local cache

systems with the same storage size (32

Mbytes) simultaneously. Additional traf­

fic reductions are shown. The distributed

cache system using GBI was able to reduce

35

30

~ 15

"' "iC
0

10

5

Distributed C ache -
Hierarchic Cache -··-

200 400 600 800 1 000 1200 1400
Time of Day (Minute)

Fig. 4: Comparison of Cache Systems

traffic by 21.7 Mbytes/10 minutes (aver­

age between 10 AM and 8 PM). Since the
hierarchical cache system was able to re­

duce traffic by 8.8 Mbytes/10 minutes, the
distributed cache system with GBI is 2.5

times more efficient than the hierarchical

cache system.
The advantage of the distributed cache

system with GBI comes from the fact that

the huge data flow causes the overflow of
the hierarchical cache system. Although

the hierarchical cache system tries to mem­
orize the data, the huge data flow prevents

the system from keeping the data until the
data is used again. The distributed cache

system with GBI avoids this problem by

sharing the role.

To confirm the above ideas , we exam­

ined several data. Figure 5 shows the cache

hit rate of each caching method. Here, the

cache hit rate is calculated as follows :

541

45

40

35 0

30

0

25

20
0

15 0

0

0
0

0 0
0 0

0 0

Distribu1ed Cache Hit -
Hierarchical Cache H

Local Cache o

~o \
0

ooo • 0 0
0 ~00 of'

0-0

.... 00

0 ..

200 400 600 800 1000 1200 1400
Time of Day (Minute)

Fig. 5: Comparison of Cache Hit Rate

Hit Rate = 100 x
Number of Files Reused

Number of Files Stored in the Cache
The hit rate of the local cache system is

30.9 (Figure 5, 0) and that of the dis­
tributed cache system with GBI is 35.9

(solid line). However, it is 2.8 for the hier­
archical cache system (dotted line).

Figure 6 shows the total data size in each

cache system. The hierarchical cache sys­

tem (dotted line) stores more data than the

local cache system (0) and the distributed

cache system with GBI (solid line). We in­
terpret these results as meaning that the

hierarchical cache system stores too much

data and reduces its efficiency (hit rate) .

4 Discussion

The key idea of GBI is the extraction of

frequently appearing patterns from graph

format data, and the use of the extracted

550 ~-.....--~-~-~--~-~-~

500

450

50

Distributed Cache -
Hierarchical Cache -­

Local Cache o

0'----"---'--~-~-~~--"--~

0 200 400 600 800 1000 1200 1400
Time of Day (Minute)

Fig. 6: Stored Data In Cache

patterns for various purposes . In [YM96L
we describe the use of the statistical cri­

teria to extract patterns .. In this section,

we first describe the GBI algorithm to­

gether with the correspondence between

the graph pattern extraction and the deci­
sion tree learning. By understanding this

correspondence, we can use various statis­

tical techniques (e.g., gini index, cross val­
idation [BFOS84]) to find important pat­

terns in the graph. Later, we examine the

various learning functions of GEL

4.1 G BI algorithm

Figure 7 displays the graph extraction

algorithm of GEL Suppose that GBI al­

ready extracted two patterns (i.e. , A and

B) . This algorithm proceeds as follows:

1. First it replaces each occurrence of the

extracted patterns in the input graph

Extracted Patterns

A: ©@

B: 0
'@

Step3. Select One
Pattern

c:0
'00

Input Graph

Step1. Replace Patterns in Input

Step2. Enumerate 2-Node Pairs

@ ®-© @ ~(.;\
'® ©--0 '© ~ (;;\

~

Fig. 7: GBI as Pattern Extraction Algo­

rithm

with a single node. In Figure 7, two

occurrences of pattern A (4+-2) are re­
placed with a single node (A) , and one
9ccurrence of pattern B (H-3) is also

replaced.

2. Next, it enumerates all two-node pairs

in the graph.

3. Then it selects one pair. If one or both

of the nodes in the selected pair is re­

placed in step 1, restore the node to
its original pattern. In Figure 7, pat­

tern B+-7 is selected and its original

pattern 1+-3+-7 is stored as a newly

extracted pattern.

By repeating these steps , the GBI al­

gorithm extracts patterns from the input

graph. Here the criteria to select a pair in

step 3 is important. To explain this crite­

ria, Figure 8 shows the decision tree learn­

ing aspect of the same GBI algorithm. As a

Decision Tree

G) 'lfA©<iJ

t_~ ... -.. ~
··.~ Leaf A • Leaf B

Step3. Select Test
:r: Condition

b_y,
N : '. Y •' ...

Leaf c Leaf D

Case Data

Step1 . Classify Case Data using Tree

liilliie
._ Step2. Make Attribute-Value Table at Leaf (e.g., Leaf BJ

Cl~~~~

Fig. 8: GBI as Decision Tree Learning Al­

gorithm

decision tree learning algorithm, GBI pro­
ceeds as follows:

L First, it classifies input data usmg
the decision tree under construction.

Here, we use extracted patterns as
a decision tree whose test conditions

correspond to extracted patterns . We

also interpret the input graph so that

each subgraph corresponds to case

data. The class information is stored

as the root node color (i.e., the label

of the root no de) of the subgraph, and
the attribute value is stored as the leaf

node color.

2. Then it generates standard attribute­

value tables at each leaf node of the

decision tree. To do this, use the root

node color of the subgraph as the class

information (i.e. , the row of the table) ,

and use the leaf node position as the

attribute name (i.e., the column of the

543

table) .

Here, GBI only considers the leaf

nodes having a direct connection with

root nodes. If the node in the pair

is the replaced node in step 1 (see
step 1 of Figure 7), the generated ta­
ble will have extended attributes (i.e. ,

new columns).

For example, the right-most column of

the table in Figure 8 is the attribute

which is extended by replacing each

occurrence of pattern B with a single

node. This attribute (i.e., the right­
most column) is included in the ta­

ble because the replacement in step
1 directly connects the corresponding

node with a root node.

3. Next it selects a new test condition

from the tables using statistical crite­
ria, such as the gini index [BFOS84],

information gain [Qui86], and adds it
to the decision tree.

The above process essentially follows the

standard decision tree learning framework
except that GBI dynamically changes the

attribute-value table which is fixed in the
conventional decision tree learning process .

Thus we can admit the pattern extraction

process as an extension of the decision tree
learning process.

Note that the root node color is used in

Figure 7 and is ignored in Figure 8. This

difference affects the learning function of

GBI. See Section 4.3 for a discussion about

this.

AlO'orithm Induction b

Variable GfuCase Data

Begin
T~ 0

T : Decision Tree

graphs as its data representation language.

Its level of expressiveness lies between that

of tables and first-order logic. Thus its

learning potential is weaker than that of

ILP, but stronger than that of the conven-

tional methods. Reye~ _
Classify All Case Data Gin Using T Using a least-expressive data r~prese~ta-
Make Attribute Table by Proc. 1, 2, 3 tion language for learning sometimes gives
Select New Test Condition, and Add it to 1better learning performance by making the

End potential search space smaller. In [YM96],
Proc. 1 Conventional Method: we examined one such domain; that is ,

Always Use Same Attribute Set. we tried to model relationships between

Proc. 2 GB! Method: user tasks. The enhanced expressiveness
Select New Attributes from Graph. of graphs enables the analysis of the rela-

Proc. 3 !LP Method: • . tionship between user tasks . See [YM96]
Select New Attributes from First-Order Logic. _

Fig . 9: Comparison of Induction Algo­

rithms

4.2 GBI as Induction Algo­

rithm

The decision tree learning method is one

of the well-known inductive learning meth­

ods. According to the previous section,

GBI can be seen as an extension of the

standard induction method. The statis­

tical methods , such as linear discrimina­

tion and k-nearest-neighbor [Jam84], and

conventional inductive learning methods ,

such as [BFOS84, Qui86], use attribute­

value tables as the data representation lan­

guage. Inductive logic programming (ILP

[Sha83, Qui90, PK92 , MF92]) is also an ex­

tension of the conventional inductive learn­

ing method. ILP uses first-order logic.

Figure 9 compares these methods. Al­

though they aJ1 share some common as­

pects , the data representation language

used is different . The GBI method uses

for details.

4.3 Various Learning Func­

tions of GBI

Another important point is the various

functions of the GBI method. In [YMI94],

we examine 1) its macro rule learning func­

tion, and 2) its concept finding function to­

gether with the decision tree learning func­

tion. By considering the correspondence

shown in Figures 7 and 8, we can apply

the various methods developed in the deci­

sion tree learning studies to the macro rule

learning and to the concept finding . The

unified view of various learning functions

may accelerate research in these fields .

Note that the root node color is used

in Figure 7 and is ignored in Figure 8.

In [YMI94], we use root node color in the

process of macro rule learning and con­

cept finding, but ignore it in the process

of decision tree learning. In the frame­

work of GBI, its learning function is real­

ized by finding typical data patterns. Since

the root node color of the new case data

(i.e. , class information) is not known, GBI

can not use this information for a match­

ing process. However, the essence of the

decision tree learning function of GBI is

the finding of typical class and attribute
pairs . The essence of the macro rule learn­

ing function of GBI is the finding of typ­

ical rule combinations , and the essence
of the concept :finding is typical data co­

occurrences .

5 Conclusion

By extracting typical access patterns of

WWW data, we can reduce the total net­

work data fl.ow by implementing a dis­

tributed cache system which is adapted

to the V•lWW access patterns. Although
the huge WWW data fl.ow causes the over­

flow of the conventional hierarchical cache

system, the layout created by our method
eases this problem.

The results suggest the importance of

the data analyzing methods which can
handle structured · data. By extracting

regularity in graph structures, the GBI

method can reduce the network data fl.ow.

The statistical criteria contribute to the ex­
traction of promising patterns . We also

propose a unified view of various learn­
ing functions. This unified view may ac- .

celerate research in related fields by en­

abling the sharing of findings among these

fields .

References

[BFOS84] L. Breiman, J . H. Friedman, R . A.
Olshen, and C. J . Stone. Clas­
sification and Regression Trees.
Wadsworth & Brooks/Cole Ad­
vanced Books & Software , 1984.

545

[DF82]

[DM86]

(GS94]

[Jam84]

[MF9~]

[MKKC86]

[PK92]

[Qui86]

[Qui90]

A . Chankhunthod, P. B. Danzig,
C. Neerdaels, M. F. Schwartz,
and K. J . Worrll. A hierarchi­
cal internet object cache. In
USENIX96, p. 153rvl63 , 1996.

L.. W. Dowdy and D. V. Foster.
Comparative models of the file as­

signment problem. A CM comput­
ing surveys, Vol. 14, No. 2, p.
287,314, 1982.

G . DeJong and R. Mooney. Explanation­
Based Learning: An Alternative
View. Machine Learning, pp.
145-176, 1986.

J. Gwertzman and M. Seltzer.
The case ·for geographical push­
caching. In HotOS Conference,
pp. ftp: / / das-ftp.harvard.edu
/techreports /tr-34-94.ps.gz, 1994.

M. James. Classification Al­
gorithms. A Wiely-Interscience
Publication, 1984.

S. Muggleton and C. Feng. Ef­
ficient Induction of Logic Pro­
grams. In S. Muggleton, editor,
Inductive Logic Programming, pp.
281-298. Academic Press, 1992.

T. M . Mitchell, R . .M. Keller, and
S. T. Kedar-Cabelli. Explanation­
Based Generalization: A Unify­
ing View. Machine Learning, pp.
47-80, 1986.

M. Pazzani and D. Kibler. The
utility of knowledge in induc­
tive learning. Machine Learning,
Vol. 9, pp. 57-94, 1992.

J. R. Quinlan. Induction of De­
cision Trees . Machine Learning,
Vol. 1, pp. 81-106, 1986.

J. R . Quinlan. Learning logical
definitions from relations. Ma­
chine Learning, Vol. 5, pp. 239-
266, 1990.

(Sha83) E.Y. Shapiro. Algo1ithmic Pro-
gram Debugging. MIT Press,
1983.

[WID95) 1994 research report of WIDE
project (in Japanese), 1995.

[YM95) K. Yoshida and H. Motoda.
CLIP: concept learning from in­
ference patterns. Artificial Intel­
ligence, Vol. 75, pp. 63-92, 1995 ..

[YM96) K . Yoshida and H. Motoda. Au­
tomated User Modeling for In­
telligent Interface. International
Journal of Human Computer In­
teraction, Vol. 8, No. 3, pp. 237-
258, 1996.

[YMI94) K. Yoshida, H. Motoda, and
N. Indurkhya. Graph-based In­
duction as a Unified Learning
Framework. Applied Intelligence,
Vol. 4, pp. 297-328, 1994.

APPENDIX A

To make the proposed method practical,
we should confirm the adequacy of the as-

. .

sumptions used in the simulation. In Ap-
pendix A, we examine some parameters

which are used based on the assumptions .

The most important parameter used in

the simulation is the cache storage size

(i.e., 32 Mbytes) . This number would have
been too small if we had used it in the ac­

tual environment. However , if we consider
the difference between the amount of the

data flow in the simulation and that in the

actual situation, 32 Mbytes in the simula­
tion corresponds to 100 Mbytes ,..., 4 Gbytes

in the actual situation. In the simulation,

the data flow in the virtual network line

was 26 Kbytes / sec. The data flow capac­

ity of the T3 line which is used in the

wide area network is about 5.5 1vlbytes / sec.

We assume 60% of the capacity is used

for WWW data. If the cache size is m

proportion to the data flow, 32 Mbytes
in the simulation corresponds to 4 Gbytes

(= 321\.fbytes X s .si'\.fbyte$ x O.G) · th t 1
26Kbyte$ in e ac ua

situation. We believe that the use of the

T3 line and the 60% WWW load is a:n ad­

equate assumption based on [WID95] .

Another important assumption is the

number of network routers (i .e ., 16). In

the actual network, an enormous number

of routers is used. However, we believe

the analysis of domain level routers , i.e .,
the main routers of large organization,· is

enough for our purposes . We also believe

that a single analysis per month is enough

to obtain the network flow tendency. The
layout by the GBI method took 5 minutes

on a personal computer for a network with

16 routers . Even if we assume a network
with 1000 routers , the estimated CPU re­

quire?ient is about 5 hr/month. Thus we
believe that the required computing re­
source for the GB! layout is feasible.

APPENDIX B

In Appendix B , we show some additional

results of simulation studies. Figures 10

and 11 show the cache hit rate of the hier­
archical cache system and the distributed

cache system with GBI. Both figures show
the average hit rate of 1) the local caches,

2) the four center caches , and 3) the other

surrounding 12 caches .
In the hierarchical cache system, only

the local cache systems work. In the dis­

tributed cache system, the hit rate of the

four center caches is higher than that of the

local caches . The decrease of the hit rate

f~r the 12 surrounding caches is caused by

80

60

40

20

200 400 600 800 1000
Time of Day (Minute)

Local -
Center o

Surrounding +

1200 1400

Fig. 10: Hit Rate of Hierarchical Cache

100

Local -

0
Center 0

0 0 S9n'ounding :
0

0

0
0 •• 0

·~ "'too
80

0 0 0 oO 0

<C 0
0 0 0

0 0 0 0 0
0 0 0 000 0 ~ 00 0 0

0 0 0

"' 0 0 0 ... O oOO 0 •o 0 ~ 0 0
0 0 0 0

ooo
60 00 0 0

0 0 0
\oooo

0
•o 0- 0

0 0 0 0

0 0

0 0

40

20

+

o-..·-..~~·~·--~·~~~v--'--~----'---'---'-'
0 200 400 600 800 1000 1200 1400

Time of Day (Minute)

Fig. 11: Hit Rate of Distributed Cache

with GBI

3e+07

2.Se+07

:!l
en 2e+07
!!l
u
" (.)

g
<l .Se+07

1c+07

Se+06

Local -
Center o

Surrounding +

O '----'--~--~-~-~~--'---'-'

0 200 400 GOO 800 1000 1200 1400
Time of Day (Minute)

Fig. 12: Stored Data in Hierarchical Cache

the local caches. Since the duplication in

the data is removed by the local cache, the

use of these surrounding cach~s is difficult

even in our methods. However, its hit rate
is close to that of the local cache .

Figures 12 and 13 show the size of stored
data in the cache systems. The hierarchical
cache system (Figure 12) stores the data

very quickly, and reaches its maximum ca­

pacity within 30 minutes from the start­

ing point of the simulation. Note that the
first 30-minute period is a relatively low­

load period. This seems to imply the inef­

ficiency of the hierarchical cache system.

The distributed cache system with GBI

(Figure 13) shows a different trend. This

system reaches its . maximum capacity at

noon, i.e, the maximum load period. After

the heavy peak load at noon time, a little

space is left over. Note that the hit rate

of the local cache system keeps decreasing

547

3e+07

2.5e+07

'l
Cii 2e+07
S!
u
~

(.)

g
<1 .Se+07

Se+06

Local -
Center o

Surrounding +

200 400 600 800 1000 1200 1400
Time of Day (Minute)

Fig. 13: Stored Data in Distributed Cache

during the simulation (See Figure 5). How­
ever, the distributed cache system does not

show this tendency (see the same Figure) .

A little space left over in the distributed

cache system contributes to this difference.

By reducing the data stored in the cache,
the distributed cache system achieves high

durability against the cache overflow.

Note that the trend of data size in the

center of the distributed cache (Figure 13,
0) and that in the surrounding area of the

hierarchical cache (Figure 12 , +) are simi­

lar. However, they are different in the hit

rate (Figure 110, Figure 10+) . This also
shows the effect of the local cache which

decreases the duplication in the data. If
we do not consider the mutual effects of

cache systems , the mutual effects of the
cache systems decrease their overall per­

formance.

These results reveal the limitation of

the conventional approach with the hier­

archical cache system. The cache storages

which construct the hierarchy tend to af­

fect each other, and the resulting redun­

dancy decreases their overall performance.

The distributed cache system can avoid
this problem with the help of the layout

created by the GBI method.

Author Index

Ada, Niall 243 Kunisch, G 521
Aha, David W 67 Lacruz, Beatrix 319
Almond, Russell G 1,11 Lasala, Pilar 319
Banks, David 457 Lekuona, Alberto 319
Baxter, Rohan A 23 Lewis, David D 303
Bell, David A 83 Li, Cen 327
Bielza, Concha 31,39 Liu, Weiru 83
Biswas, Gautam 327 Madigan, David 303
Bouchaffra, Djamel 47 Malerba, Donato 173
Boyan. Justin A 55 McCulloch, Robert E 91
Breslow, Leonard A 67 McGeoch, C.C 347
Burke, Harry B 429 Meek, Christopher481
Caggese, Sergio 173 Meila, Marina 355
Charnes, John M 75 Merz, Christopher J 363
Cheng, Jie 83 Mislevy, Robert J. 11
Chickering, David Maxwell 275 Moore, Andrew W 55
Chipman, Hugh 91 Muller, Peter 31
Clyde, Merlise 103 Myllymaki, Petri 311
Cohen, Paul R. 115,231,347,371,501 Nakhaeizadeh, G 521
Cox, Louis Anthony 123 Oates, Tim 371,379
Cunningham, Sally Jo 139 Oliver, Jonathan J 23
Decatur, Scott E 147 Pazzani, Michael J 363
Domingos, Pedro 157 Portinale, Luigi 391
Dowe, David L 529 Ramoni, Marco 399
Dubrawski, Artur 165 Richardson, Thomas407,421,481,489
Esposito, Floriana 173 Rosen, David B429
Ezawa, Kazuo J. 183 Saul, Lawrence K437
Fisher, Doug 191 Scheines, Richard 445
Forbes, James LG 203 Schmill, Matthew D 371
Frey, Brendan J 211 Schneider, Jeff 165
Fyfe, Colin 223 Sebastiani, Paola 399
George, Edward I ... 91 Semeraro, Giovanni 173
Girolami, Mark 223 Shannon, William D457
Glymour, Clark421 Shenoy, Prakash P 39,75
Gregory, Dawn E 231 Silander, Tomi 311
Grunwald, Peter ... 311 Smid, Jan 465
Gupta, Narendra K 183 Smyth, Padhraic 473
Gyllenberg, Mats 239 Spirtes, Peter421,481,489
Hand, David J 243 Srihari, Rohini K47
Heckerman, David 275 Srihari, Sargur N 47
lntrator, Nathan 255 St. Amant, Robert 501
lntrator, Oma 255 Suzuki, Joe 513
lnsua, David Rios 31,263 Talbert, Doug 191
Jaakkola, Tommi S 283 Taylor, C.C 521
Jensen, David 115,295,371,379 Tirri, Henry 311
Jordan, Michael I. 283,355,437 Vidakovic, Brani 263
Keim, Michelle 303 Volf, Petr 465
Kontkanen, Petri 311 Wallace, Chris S 529
Koontz, Eugene 47 Yoshida, Kenichi 537
Koski, Timo 239 Yu, Kerning 243
Krpasundar, V 47

