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The GBI (graph-based induction) concept learning method is applied to extract 
typical access patterns of WWW data. By interpreting extracted patterns as 

the cache site layout ~ we can reduce the total network data flow by implement­

ing a distributed cache system which is adapted to the VV\iVW access patterns. 

Although the huge V./WW data flow causes the overflow of the conventional hier­
archical cache system, the layout created by the GBI method eases this problem. 
The traffic reduction ratio of this distributed cache system is 2.5 times higher 

than that of the conventional hierarchical cache system. Our results suggest the 
importance of the data analyzing methods which can handle structured data. 

By analyzing regularity in graph structures, the GBI method can reduce the net­

work data flow ; The statistical criteria contribute to the analysis of promising 
patterns . 

1 Introduction 

The WWW (world wide web) service 

has recently become a widely used network 
service which symbolizes the benefits of a 

networked society. By using the WWW, 

the user can access various types of in­

formation easily and quickly. However, a 

rapid growth in demand sometimes causes 

a heavy network overload, and the result­

ing slow-response spoils the benefits of the 
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WWW. Statistics [WID95] clearly indicate 
the potential overload in the backbone of 

the Japanese wide area network. Thus, the 

demand for better tuning methods in wide 

area networks has been increasing . 

To solve this problem, Chankhunthod et 

al. [CDN+96] propose the use of the hi­

erarchical cache system, and Gwertzman 
and Seltzer [GS94] propose the distributed 

cache system. These systems try to use 

the redundancy of V•lVvW data. By storing 

previously accessed data in the cache, they 

try to omit the later data transmission. If 
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the data required by the user is stored in 

the cache system, the WWW client can 

respond to the user 's request quickly. In 

this case, the cache system on the network 

forms a kind of dis t ributed file system. 

However, tuning a distributed file sys­
tem is a difficult problem. For exam­

ple, Dowdy 9-nd Foster [DF82] report that 

most of the proposed methods for the dis­

tributed file system do not work well if the 

required conditions are not satisfied. Un­

fortunately, none of the known methods 

seem to match the current Vt/'\VW situa­

tion. Although hierarchical cache systems 
such as [CDN+96] slightly speed up the 

\V\VW client , a decrease in the network 

load is not guaranteed. If the huge load 
shuts down the network, a cache system 
cannot solve the problem. The distributed 

cache system [GS94] also needs investiga­
tion. No known method can lay out the 
distributed cache storage automatically. 

In this paper, we examine a method 
for laying out the distributed cache stor­

age on the network using the GBI (graph­

based induction [YM95]) concept learning 
method. By analyzing the access patterns 

of WWW data, this method can lay out 

distributed cache storage which is adapted 
to the access patterns. The next section 
describes the idea, and section 3 presents 

experimental results. Section 4 discusses 

some aspects of the GBI method. 

2 Distributed Cache Layout 

GBI was originally developed as a con­

cept learning method [YM95]. In [YMl94], 

we examin~ its various learning functions , 

such as the decision tree learning func­

tion [BFOS84, Qui86] and the explanation-

based learning function [MKKC86 , DM86] . 

The key idea of GBI is the extraction of 

frequently appearing patterns from graph­

format data, and the use of the extracted 

patterns for various purposes . 

In this study we extract frequently ap­
pearing data transmissions from the wide 

area network data flow. The data trans­

mission log was gathered using a WWW 

proxy server, and the log has a graph 

format which is suitable for analysis by 

the GBI method. By interpreting the ex­

tracted patterns as the suggestions for the 
cache positions , we·can lay out distributed 

cache storage. 
Figure 1 shows the idea. We assume 

that many \VW\V clients try to get data 
from relatively few well-known servers . In 

the actual situation, a number of dupli­

cated data transmissions occur .and cause 
the network overload. 

Figure 1 (A) shows a situation where 
four WW'\V clients (Tlrv4) access one 
Vo/WW server (S) through network routers 

(Nlrv3) . In Figure 1, single edge stands for 

some amount of data transmission. The ar­

row shows the transmission direction. Al­

though Figure 1 (A) shows a simplified sit­

uation, we can represent the actual wide 
area network situation using this graph for­
mat . 

If the GBI program inputs the data 

shown in Figure 1 (A) , it outputs fre­
quently appearing patterns in the input . If 

the GBI program admits the hatched por­

tion of Figure 1 (B) as a frequently appear­

ing pattern in the input graph, it contracts 

the input graph into the graph shown in 

Figure 1 ( C). Figure 1 (D) shows the inter­
pretation of the result as the cache layout. 
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In Figure 1 (D), two caches (Cl and C2) 
for a W\71/W server S are laid out , and the 

estimated network flow is reduced from 13 

to 8. In the actual situation, the input 

graph for the GBI program involves many 

edges each of which corresponds to a data 
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Fig. 2: Network Configuration for Simula­

tion 

flow from various WWW servers , and. the 

above process should be done simultane­

ously. However, the GBI algorithm can ex­

tract important (i.e., frequent) data trans­

mission patterns according to the impor­

tance of the transmission. See section 4.1 

for t~e details of the algorithm. 

3 Experimental Results 

We performed simulation studies to 

compare the caching methods. Figure 2 

shows the network configuration assumed 

in the simulations. The circles with an N 
are network routers which can also act as 

WWW caching servers. The . circles with 
an S are WWW servers and clients. We 
collected the names of these WWW servers 

from the log (see later) , and the number of 
WWW servers is about 32,000. \Ve also · 

assume 16 WWW clients. Each network 

router is connected with one WWW client 

and multiple WWW servers. The connec­

tions are randomly decided before the sim­

ulation. Each WWW client and router has 
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a 32-Mbyte caching capacity. 

To generate input data for simulations, 

we use a WWW access log which was 
recorded at our www· proxy server. The 

log includes 2.3 million data transfers (18 .7 

Gbytes in size) over 16 days . In the simu­

lations , WWW clients are assumed to ac­

cess data as is specified in the log. The 

log is divided into 16 parts. The log of the 

first day is assumed to be the data requests 

from the first WW'\V client. The log of the 

second day is assumed to be the requests 

from the second WWW client . We assume 

16 clients in total, and the requests for 

the other clients are generated in a similar 

manner. All the data transmissions in the 

log are treated as the data requests of the 
same date with the time of day retained. 

Note that we use other log data to lay 

out distributed cache storage. The log 
which was recorded in the preceding 2 days 

was used to lay out cache storage by the 

GBI method. By using the log of the suc­
ceeding 16 days for simulations, we ensure 

the independence of the test set (i.e. , for 

simulation) and the training set (i.e., for 

layout) . 
Figure 3 shows the simulated traffic on 

the network. The solid line shows the traf­
fic with a distributed cache whose layout is 

designed by GBI. 0 marks show the traf­

fic without a cache. X axis shows the time 

of day (unit : minutes) and Y axis shows 

the amount of data transfer per 10 min­

utes (unit : M byte) . 

If we consider the difference between the 

amount of the data flow in the simulation and that 

in the actual situation, 32 Mbytes in the simula­

tion corresponds to 100 Mbytes.....,, 4 Gbytes in the 

actual situation. See Appendix A. 
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Fig . 3: Decrease of Network Data Flow 

Figure 3 shows that the W'\VW traf­
fic starts to increase from around 9 AM 

(60 x 9=540 minutes), and reaches its peak 

at noon. There is little traffic at midnight . 
When we use the cache system, the aver­

age traffic between 10 AM and 8 PM is 186 

Mbytes per 10 minutes . Since the average 
traffic without a cache is 249 Mbytes, the 

decrease rate is 26%. The most important 

point here is the traffic reduction at the 

peak time, and our cache system was able 

to achieve a 100-Mbyte data reduction at 

the peak time (see noon time in Figure 3). 

Figure 4 compares the distributed cache 

system using GBI (solid line) and the con­

ventional hierarchical cache system (dot­

ted line) . Both methods use local cache 

systems with the same storage size (32 

Mbytes) simultaneously. Additional traf­

fic reductions are shown. The distributed 

cache system using GBI was able to reduce 
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Fig. 4: Comparison of Cache Systems 

traffic by 21.7 Mbytes/10 minutes (aver­

age between 10 AM and 8 PM). Since the 
hierarchical cache system was able to re­

duce traffic by 8.8 Mbytes/10 minutes, the 
distributed cache system with GBI is 2.5 

times more efficient than the hierarchical 

cache system. 
The advantage of the distributed cache 

system with GBI comes from the fact that 

the huge data flow causes the overflow of 
the hierarchical cache system. Although 

the hierarchical cache system tries to mem­
orize the data, the huge data flow prevents 

the system from keeping the data until the 
data is used again. The distributed cache 

system with GBI avoids this problem by 

sharing the role. 

To confirm the above ideas , we exam­

ined several data. Figure 5 shows the cache 

hit rate of each caching method. Here, the 

cache hit rate is calculated as follows : 
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Fig. 5: Comparison of Cache Hit Rate 

Hit Rate = 100 x 
Number of Files Reused 

Number of Files Stored in the Cache 
The hit rate of the local cache system is 

30.9 (Figure 5, 0) and that of the dis­
tributed cache system with GBI is 35.9 

(solid line). However, it is 2.8 for the hier­
archical cache system (dotted line). 

Figure 6 shows the total data size in each 

cache system. The hierarchical cache sys­

tem (dotted line) stores more data than the 

local cache system (0) and the distributed 

cache system with GBI (solid line). We in­
terpret these results as meaning that the 

hierarchical cache system stores too much 

data and reduces its efficiency (hit rate) . 

4 Discussion 

The key idea of GBI is the extraction of 

frequently appearing patterns from graph 

format data, and the use of the extracted 
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patterns for various purposes . In [YM96L 
we describe the use of the statistical cri­

teria to extract patterns .. In this section, 

we first describe the GBI algorithm to­

gether with the correspondence between 

the graph pattern extraction and the deci­
sion tree learning. By understanding this 

correspondence, we can use various statis­

tical techniques (e.g., gini index, cross val­
idation [BFOS84]) to find important pat­

terns in the graph. Later, we examine the 

various learning functions of GEL 

4.1 G BI algorithm 

Figure 7 displays the graph extraction 

algorithm of GEL Suppose that GBI al­

ready extracted two patterns (i.e. , A and 

B) . This algorithm proceeds as follows: 

1. First it replaces each occurrence of the 

extracted patterns in the input graph 

Extracted Patterns 

A: ©@ 

B: 0 
'@ 

Step3. Select One 
Pattern 
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Input Graph 

Step1. Replace Patterns in Input 

Step2. Enumerate 2-Node Pairs 
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~ 

Fig. 7: GBI as Pattern Extraction Algo­

rithm 

with a single node. In Figure 7, two 

occurrences of pattern A ( 4+-2) are re­
placed with a single node (A) , and one 
9ccurrence of pattern B (H-3) is also 

replaced. 

2. Next, it enumerates all two-node pairs 

in the graph. 

3. Then it selects one pair. If one or both 

of the nodes in the selected pair is re­

placed in step 1, restore the node to 
its original pattern. In Figure 7, pat­

tern B+-7 is selected and its original 

pattern 1+-3+-7 is stored as a newly 

extracted pattern. 

By repeating these steps , the GBI al­

gorithm extracts patterns from the input 

graph. Here the criteria to select a pair in 

step 3 is important. To explain this crite­

ria, Figure 8 shows the decision tree learn­

ing aspect of the same GBI algorithm. As a 
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decision tree learning algorithm, GBI pro­
ceeds as follows: 

L First, it classifies input data usmg 
the decision tree under construction. 

Here, we use extracted patterns as 
a decision tree whose test conditions 

correspond to extracted patterns . We 

also interpret the input graph so that 

each subgraph corresponds to case 

data. The class information is stored 

as the root node color (i.e., the label 

of the root no de) of the subgraph, and 
the attribute value is stored as the leaf 

node color. 

2. Then it generates standard attribute­

value tables at each leaf node of the 

decision tree. To do this, use the root 

node color of the subgraph as the class 

information (i.e. , the row of the table) , 

and use the leaf node position as the 

attribute name (i.e., the column of the 
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table) . 

Here, GBI only considers the leaf 

nodes having a direct connection with 

root nodes. If the node in the pair 

is the replaced node in step 1 (see 
step 1 of Figure 7), the generated ta­
ble will have extended attributes (i.e. , 

new columns). 

For example, the right-most column of 

the table in Figure 8 is the attribute 

which is extended by replacing each 

occurrence of pattern B with a single 

node. This attribute (i.e., the right­
most column) is included in the ta­

ble because the replacement in step 
1 directly connects the corresponding 

node with a root node. 

3. Next it selects a new test condition 

from the tables using statistical crite­
ria, such as the gini index [BFOS84], 

information gain [Qui86], and adds it 
to the decision tree. 

The above process essentially follows the 

standard decision tree learning framework 
except that GBI dynamically changes the 

attribute-value table which is fixed in the 
conventional decision tree learning process . 

Thus we can admit the pattern extraction 

process as an extension of the decision tree 
learning process. 

Note that the root node color is used in 

Figure 7 and is ignored in Figure 8. This 

difference affects the learning function of 

GBI. See Section 4.3 for a discussion about 

this. 
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4.2 GBI as Induction Algo­

rithm 

The decision tree learning method is one 

of the well-known inductive learning meth­

ods. According to the previous section, 

GBI can be seen as an extension of the 

standard induction method. The statis­

tical methods , such as linear discrimina­

tion and k-nearest-neighbor [Jam84], and 

conventional inductive learning methods , 

such as [BFOS84, Qui86], use attribute­

value tables as the data representation lan­

guage. Inductive logic programming (ILP 

[Sha83, Qui90, PK92 , MF92]) is also an ex­

tension of the conventional inductive learn­

ing method. ILP uses first-order logic. 

Figure 9 compares these methods. Al­

though they aJ1 share some common as­

pects , the data representation language 

used is different . The GBI method uses 

for details. 

4.3 Various Learning Func­

tions of GBI 

Another important point is the various 

functions of the GBI method. In [YMI94], 

we examine 1) its macro rule learning func­

tion, and 2) its concept finding function to­

gether with the decision tree learning func­

tion. By considering the correspondence 

shown in Figures 7 and 8, we can apply 

the various methods developed in the deci­

sion tree learning studies to the macro rule 

learning and to the concept finding . The 

unified view of various learning functions 

may accelerate research in these fields . 

Note that the root node color is used 

in Figure 7 and is ignored in Figure 8. 

In [YMI94], we use root node color in the 

process of macro rule learning and con­

cept finding, but ignore it in the process 

of decision tree learning. In the frame­

work of GBI, its learning function is real­

ized by finding typical data patterns. Since 

the root node color of the new case data 



(i.e. , class information ) is not known, GBI 

can not use this information for a match­

ing process. However, the essence of the 

decision tree learning function of GBI is 

the finding of typical class and attribute 
pairs . The essence of the macro rule learn­

ing function of GBI is the finding of typ­

ical rule combinations , and the essence 
of the concept :finding is typical data co­

occurrences . 

5 Conclusion 

By extracting typical access patterns of 

WWW data, we can reduce the total net­

work data fl.ow by implementing a dis­

tributed cache system which is adapted 

to the V•lWW access patterns. Although 
the huge WWW data fl.ow causes the over­

flow of the conventional hierarchical cache 

system, the layout created by our method 
eases this problem. 

The results suggest the importance of 

the data analyzing methods which can 
handle structured · data. By extracting 

regularity in graph structures, the GBI 

method can reduce the network data fl.ow. 

The statistical criteria contribute to the ex­
traction of promising patterns . We also 

propose a unified view of various learn­
ing functions. This unified view may ac- . 

celerate research in related fields by en­

abling the sharing of findings among these 

fields . 
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APPENDIX A 

To make the proposed method practical, 
we should confirm the adequacy of the as-

. . 

sumptions used in the simulation. In Ap-
pendix A, we examine some parameters 

which are used based on the assumptions . 

The most important parameter used in 

the simulation is the cache storage size 

(i.e., 32 Mbytes) . This number would have 
been too small if we had used it in the ac­

tual environment. However , if we consider 
the difference between the amount of the 

data flow in the simulation and that in the 

actual situation, 32 Mbytes in the simula­
tion corresponds to 100 Mbytes ,..., 4 Gbytes 

in the actual situation. In the simulation, 

the data flow in the virtual network line 

was 26 Kbytes / sec. The data flow capac­

ity of the T3 line which is used in the 

wide area network is about 5.5 1vlbytes / sec. 

We assume 60% of the capacity is used 

for WWW data. If the cache size is m 

proportion to the data flow, 32 Mbytes 
in the simulation corresponds to 4 Gbytes 

(= 321\.fbytes X s .si'\.fbyte$ x O.G) · th t 1 
26Kbyte$ in e ac ua 

situation. We believe that the use of the 

T3 line and the 60% WWW load is a:n ad­

equate assumption based on [WID95] . 

Another important assumption is the 

number of network routers (i .e ., 16). In 

the actual network, an enormous number 

of routers is used. However, we believe 

the analysis of domain level routers , i.e ., 
the main routers of large organization,· is 

enough for our purposes . We also believe 

that a single analysis per month is enough 

to obtain the network flow tendency. The 
layout by the GBI method took 5 minutes 

on a personal computer for a network with 

16 routers . Even if we assume a network 
with 1000 routers , the estimated CPU re­

quire?ient is about 5 hr/month. Thus we 
believe that the required computing re­
source for the GB! layout is feasible. 

APPENDIX B 

In Appendix B , we show some additional 

results of simulation studies. Figures 10 

and 11 show the cache hit rate of the hier­
archical cache system and the distributed 

cache system with GBI. Both figures show 
the average hit rate of 1) the local caches, 

2) the four center caches , and 3) the other 

surrounding 12 caches . 
In the hierarchical cache system, only 

the local cache systems work. In the dis­

tributed cache system, the hit rate of the 

four center caches is higher than that of the 

local caches . The decrease of the hit rate 

f~r the 12 surrounding caches is caused by 
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Fig. 12: Stored Data in Hierarchical Cache 

the local caches. Since the duplication in 

the data is removed by the local cache, the 

use of these surrounding cach~s is difficult 

even in our methods. However, its hit rate 
is close to that of the local cache . 

Figures 12 and 13 show the size of stored 
data in the cache systems. The hierarchical 
cache system (Figure 12) stores the data 

very quickly, and reaches its maximum ca­

pacity within 30 minutes from the start­

ing point of the simulation. Note that the 
first 30-minute period is a relatively low­

load period. This seems to imply the inef­

ficiency of the hierarchical cache system. 

The distributed cache system with GBI 

(Figure 13) shows a different trend. This 

system reaches its . maximum capacity at 

noon, i.e, the maximum load period. After 

the heavy peak load at noon time, a little 

space is left over. Note that the hit rate 

of the local cache system keeps decreasing 
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Fig. 13: Stored Data in Distributed Cache 

during the simulation (See Figure 5). How­
ever, the distributed cache system does not 

show this tendency (see the same Figure) . 

A little space left over in the distributed 

cache system contributes to this difference. 

By reducing the data stored in the cache, 
the distributed cache system achieves high 

durability against the cache overflow. 

Note that the trend of data size in the 

center of the distributed cache (Figure 13, 
0) and that in the surrounding area of the 

hierarchical cache (Figure 12 , +) are simi­

lar. However, they are different in the hit 

rate (Figure 110, Figure 10+) . This also 
shows the effect of the local cache which 

decreases the duplication in the data. If 
we do not consider the mutual effects of 

cache systems , the mutual effects of the 
cache systems decrease their overall per­

formance. 

These results reveal the limitation of 

the conventional approach with the hier­

archical cache system. The cache storages 

which construct the hierarchy tend to af­

fect each other, and the resulting redun­

dancy decreases their overall performance. 

The distributed cache system can avoid 
this problem with the help of the layout 

created by the GBI method. 
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