Hierarchical TFA Belief Networks

H. Attias
hagai@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
University College London
17 Queen Square
London WCI1N 3AR, U.K.

Abstract

We introduce a new real-valued belief net-
work, which is a multilayer generalization of
independent factor analysis (IFA). At each
level, this network extracts real-valued latent
variables that are non-linear functions of the
input data with a highly adaptive functional
form, resulting in a hierarchical distributed
representation of these data. The network
is based on a probabilistic generative model,
constructed by cascading single-layer IFA
models. Whereas exact maximum-likelihood
learning for this model is intractable, we
present and demonstrate an algorithm that
maximizes a lower bound on the likelihood.
This algorithm is developed by formulating a
variational approach to hierarchical IFA net-
works.

1 INTRODUCTION

This paper introduces a new Bayesian network model
for real-valued data, and presents an algorithm for
learning and inference in this network. The purpose of
this algorithm is to discover, in an unsupervised man-
ner, explanations of data in terms of a small number
of unobserved variables, whose relation to those data
is non-linear, stochastic and may be highly complex.

Many belief networks have been proposed that are
composed of binary units. The hidden units in such
networks represent latent variables that explain differ-
ent features of the data, and whose relation to the
data is highly non-linear. However, for tasks such
as object and speech recognition which produce real-
valued data, the models provided by binary networks
are often inadequate. Independent component analy-
sis (ICA) learns a generative model from real data, and
extracts real-valued latent variables that are mutually
statistically independent. Unfortunately, this model is

restricted to a single layer and the latent variables are
simple linear functions of the data; hence, underlying
degrees of freedom that are non-linear cannot be ex-
tracted by ICA. In addition, the requirement of equal
numbers of hidden and observed variables and the as-
sumption of noiseless data render the ICA model in-
appropriate. Fitting a mixture of independent compo-
nent analyzers to data would, indeed, allow extracting
latent variables that are non-linear functions of the
data. However, since the expected data conditioned
on the latent variables would still be linear, an ICA
mixture model cannot describe situations where the
observed data is a non-linear function of some unob-
served quantity.

Nevertheless, ICA emerges in this paper as a suit-
able starting point for developing multilayer non-linear
probabilistic models for real data. This algorithm was
originally designed to solve a simplified form of the
problem of auditory scene analysis, known in the field
of statistical signal processing as ‘blind source sepa-
ration’ [1,2]. In this problem, one considers L inde-
pendent signal sources (e.g., different speakers in a
room) and L' sensors (e.g., microphones at several lo-
cations). Each sensor receives a linear mixture of the
source signals. In realistic situations, the sensor sig-
nals at time ¢ depend on both present and past source
signals, reflecting reverberation and multipath prop-
agation, and are corrupted by noise. The task is to
recover the unobserved sources from the observed sen-
sor signals, in the absence of any information about
the mixing process or the sources, apart from their
mutual statistical independence. In the simplified ver-
sion addressed by ICA, L = L', the mixing is in-
stantaneous (history-independent), the data are noise-
free, and the sources are described by a temporally-
independent density model. Hence, in this case, the
sources are the explanations of the data and can be dis-
covered by a linear belief network with non-Gaussian
priors.

This paper begins by reviewing the independent factor



analysis (IFA) technique [11], an extension of ICA that
allows different numbers of latent and observed vari-
ables and can handle noisy data. It proceeds to cre-
ate a multilayer network by cascading single-layer IFA
models. The resulting generative model produces a hi-
erarchical distributed representation of the input data,
where the latent variables extracted at each level are
non-linear functions of the data with a highly adaptive
functional form. Whereas exact maximum-likelihood
(ML) learning in this network is intractable due to
the difficulty in computing the posterior density over
the hidden layers, we present an algorithm that maxi-
mizes a lower bound on the likelihood. This algorithm
is based on a general variational approach developed
here for the IFA network.

Notation. Throughout this paper, vectors are de-
noted by bold-faced lower-class letters and matrices
by bold-faced upper-class letters. Vector and matrix
elements are not bold-faced. The inverse of a matrix
A is denoted by A~', and its transposition by AT
(A%, = Aji). The multi-variable Gaussian distribution
for a random vector x with mean p and covariance X
is denoted by G(x — p, X).

2 INDEPENDENT FACTOR
ANALYSIS

2.1 Blind Separation and ICA

Although the concept of ICA originated in the field
of signal processing, it is actually a density estimation
problem. Given an L' x 1 observed data vector y, the
task is to explain it in terms of an L x 1 vector x of
hidden variables, which we henceforth term ‘factors’,
that are mutually statistically independent. The rela-
tion between the two is assumed linear,

y=Hx-+u, (1)

where H is the ‘mixing’ matrix; the noise vector u
is usually assumed zero-mean Gaussian with a covari-
ance matrix A. In the context of blind source separa-
tion [1-7], the factor and noise signals are unobserv-
able; the factor signals x should be recovered from the
mixed noisy signals y with no knowledge of H, A, or
the factor densities p(z;), hence the term ‘blind’. In
the density estimation approach, one regards (1) as a
probabilistic generative model for the observed p(y),
with the mixing matrix, noise covariance, and factor
densities serving as model parameters. In principle,
these parameters should be learned by ML, followed
by inferring the factors via a MAP estimator.

One might expect that, since linear models have been
analyzed and applied extensively for many years, the
solution to the blind separation problem can be found

in some textbook or review article. However, this is
not the case. In the case of Gaussian factors, for exam-
ple, (1) becomes the well known factor analysis (FA)
model [8]. Its parameters can be estimated using an ef-
ficient expectation-maximization (EM) algorithm, and
the optimal estimate of the factors is linear in the
data. However, FA uses only second-order statistics of
the data and cannot perform separation, because the
resulting likelihood function is invariant under factor
rotation (i.e., H is indistinguishable from HP for any
orthogonal P). Hence, capturing the non-Gaussian
nature of the factors is crucial for achieving separa-
tion. Beyond FA, more modern statistical analysis
methods, such as projection pursuit [9] and general-
ized additive models [10], do indeed use non-Gaussian
densities (modeled by non-linear functions of Gaussian
variables), but the resulting models are quite restricted
and are not suitable for solving the separation prob-
lem.

Most of the work on blind separation (e.g., [1-6]), fo-
cused on a simplified case where the number of hidden
factors L equals the number of observed data variables
L' (square mixing), the data are noise-free (u = 0),
and the mixing is instantaneous. Convolutive mix-
ing, where H becomes a matrix of filters operating
on the factors, is discussed in [7]. The factor den-
sities p(z;) are usually fixed using prior knowledge.
Learning H occurs via gradient-ascent maximization
of the likelihood. Factor density parameters can also
be adapted in this way [6,7], but the resulting gradient-
ascent learning is rather slow. This state of affairs pre-
sented a problem to ICA algorithms, since the ability
to learn arbitrary factor densities that are not known
in advance is crucial: using an inaccurate p(z;) often
leads to a bad H estimate and failed separation.

2.2 TFA with Zero Noise

The solution I gave in [11] was based on a factor model
that (i) is capable of approximating arbitrary densities,
and (ii) can be learned efficiently from data by EM. A
simple semi-parametric model satisfying both require-
ments in a mixture of Gaussians (MOG). In that case,

plai) =l Glwi — pi i) (2)

is a weighted sum of n; Gaussian densities labeled by g,
with means !, variances 7}, and mixing proportions
7r2. These Gaussians can be viewed as hidden ‘states’
of the factors. Denoting the state of factor ¢ by g¢;, its
signal z; is generated by selecting a state ¢ with prob-
ability p(¢; = ¢) independently at each time point ¢,
followed by sampling from the corresponding Gaus-
sian; the data are then generated via y; = > ; Hijzj,



where H is square and invertible. This is a probabilis-
tic generative model for the data, defined by

R I S G
plai=q = m, S explal)
prila=q) = Gloi—ph,),
L
p(y) = |detG|][p:), (3

i=1
where the last equation follows from x = Gy with
G = H ! (to within a factor ordering permuta-
tion). The softmax parametrization of 772 using afl in
(3) ensured positivity and normalization of the mix-
ing proportions. A graphical representation of this
model is provided by Fig. 2, if we set n = 1 and
y;-] = b;,q = VJl',q = Azlj =0.

The model density p(y | W) defined by (3) is
parametrized by W = {Gj, i, ~i,at}. An EM al-
gorithm can be derived, following [13], by bounding
the log-likelihood £ = logp(y) from below:

L > log|G|
+ Y Ellogp(gi,z:) —logp'(gi | :)] . (4)

2

The bound makes use of the joint factor and state
density p(q,x) = [[, p(gi, ;) defined by the model
(3), where q = (q1,...,qz)? denotes a hidden state
configuration. The other component of the bound is
a posterior density p'(q | x) = [[;2 (¢ | =;). The
operator E averages over the hidden states q using
the posterior p’. The inequality in (4), obtained from
Jensen’s inequality, holds for an arbitrary p'.

E-Step. In EM, p' is computed at each iteration
from (3) via Bayes’ rule, but using the parameters
W' obtained in the previous iteration. As noted
above, this posterior factorizes into a product of ”2 =
p(¢; = q | z;) over i, which depends on the data via

zi =3 Gijy;-

M-Step. Following the calculation of vé, the lower
bound above is maximized with respect to the new
parameters W. The maximization with respect to G
is performed by gradient ascent using

0G = €G — ed(x)xTG , (5)

where ¢(z;) = Y-, vi(x; — pi)/7i, and € is a properly
chosen learning rate; the overline denotes averaging
over the observed data y. The relative gradient [4,5]
was used to derive (5). For the factor parameters we
obtain the update rules

1 . 1—— .
— i T _ i 2 2
Ke = _z'vémi ) Vg = _z'vtzzmz’ ~ Hiyg - (6)
Tq Tq

IFA ICA

0.2

i
£)4 -2 0 2 4 -2 0 2 -2 0 2
X x1 x1

Figure 1: Left: factor densities. The two factors were
mixed by a random 2 x 2 matrix. Middle: the outputs
of the EM algorithm (5-6) are nearly independent. Right:
the outputs of ICA [3] are correlated.

Scaling. In the blind separation problem, the factors
and mixing matrix can be identified only to within an
order permutation and scaling of the factors; in other
words, the likelihood is invariant under these trans-
formations. The continuous degrees of freedom added
by the scaling invariance may delay convergence and
cause numerical problems (e.g., G; may acquire arbi-
trarily large values). These effects can be minimized
by scaling each factor z; and row j of G at each itera-
tion by a factor o;, which is determined by the factor
variance or by the norm of the corresponding row. It
is easy to show that this scaling leaves the likelihood
function unchanged.

The algorithm (5-6) may be used in several possible
generalized EM schemes. An efficient one is given by
the following two-phase procedure: (i) freeze the factor
parameters and learn the separating matrix G using
(5); (ii) freeze G and learn the factor parameters us-
ing (6), then go back to (i) and repeat. Notice from
the above definition of ¢ that for our factor model (3),
¢(z;) = —0logp(z;)/0x;. Hence, the rule (5) formally
coincides with Bell and Sejnowski’s ICA rule 3], which
was derived for the special case p(x;) o< cosh™(z;).
We also recognize (6) as the EM learning rules for a 1-
dim MOG. Therefore, in phase (i) our algorithm sepa-
rates the factors using a generalized ICA rule, whereas
in phase (ii) it learns a MOG model for each factor.
Figure 1 illustrates its performance on a 2 x 2 mix-
ture. This mixture is inseparable to ICA [3] because
the factor model used by the latter does not fit the
actual factor densities.

2.3 IFA with Non-Zero Noise

We now turn to the general problem, where the num-
ber of factors may differ from the number of sensors
and noise is present. We model the noise density by
a zero-mean Gaussian with covariance matrix A. The
ML estimation problem is now more difficult, as is ev-



ident from examining the likelihood:
oo | W) = [ dx Gy - Bx, M) [[ o). (D)

For non-Gaussian p(x;), one might expect that ap-
proximations (see [12] for fixed Laplacian densities)
or numerical methods must be used to perform the
integration over the factors.

However, MOG factors allow performing all the prob-
abilistic calculations, including the above L-dim inte-
gral, analytically and exactly. An EM algorithm is
derived by first noting that in the noisy case, both the
factor signals x; and states g; are hidden variables.
This is in contrast to the noise-free case where the
x; are deterministically related to the observed data.
We begin, as before, with a lower bound on the log-
likelihood:

L =logp(y) > Elogp(y | x)

L
+> Elogp(qi,z;) — Elogp', (8)
i=1

where E denotes averaging using a posterior density
p' = p'(q,x | y) over the hidden variables which, un-
like in the zero-noise case, does not factorize. Due to
our noise model, p(y | x) = G(y — Hx, A); the factor
density p(q;, z;) is defined by (3).

E-Step. Here we calculate the posterior in terms of
the previous iteration parameters W'. First, given a
state configuration q = (g1, ...,qr)7, the data have a
Gaussian density

p(y | q) = G(y — Hp, HTHT + A) )
where

Rq = (/‘l,qw'"’“L’qL)T ’

]_-'q = diag(’h,ql ) ’YL,QL) (10)

are determined by the mean and variances of the in-
dividual factors. The probability density p(y) for gen-
erating a data vector is therefore a mixture of [], n;
Gaussians, with mixing proportions p(q) = []; 7r,’1
The state posterior vq(y) = p(q | y) is obtained from
(9) via Bayes’ rule.

Next, when both the data vector and state configu-
ration are fixed, it can be shown that the factors are
jointly Gaussian,

p(x|q,y) =G(x—pg;Zq) , (11)
with data-independent covariance matrix

Bq=HATH" +TH)! (12)

and data-dependent mean
Pa(y) = ZqH Ay + T py) - (13)

All the quantities required for the M-step below can
be expressed in terms of vq, pg, and Xgq.

M-Step. Maximization with respect to the model pa-
rameters W produces

H =y (o))

A = yyT —yDHT (14)
for the mixing and noise parameters, and

w! =i

K3

q

1 . 1
Mg = —,<$z)q ’ %Z, = _i<-7312>q - N?,q (15)

Ty q
for the factor parameters. In terms of the E-step quan-
tities, the conditional factor mean is given by

(X) =D vapq s (16)
q
and the conditional factor covariance by
(x?) = 3 va(pgpl + Za) - (17)
q

The state-conditioned averages are given by

<$i)q = ZiUQ(pq)i )

qaq

(22)g = 3 vq(Papl + S » (18)

qa

where - denotes summatipn over {g;zi}, holding
gi = g fixed. Finally, v} = 3" vq.

We point out that in the limit A — 0, this algorithm
does not reduce to the noise-free separation algorithm
from the previous section. In fact, the rule for the
mixing matrix becomes H - C, HH?C,H) 'H'H,
where Cy, = EyyT is the data covariance matrix.
This rule can be shown to perform principal compo-
nent analysis (PCA): after learning, H will contain
the eigenvectors of Cy, that correspond to its largest L
eigenvalues. The resulting EM algorithm for PCA has
been independently discovered by [14] and by [15].

Factor Reconstruction. There are two special cases
where the factors are reconstructed from the data by
a linear estimator: the noise-free case discussed above,
where X = Gy, and the noisy case with Gaussian fac-
tors where & = (HT A~'H+I)"'H” A~'y. In general,
a linear estimator is sub-optimal. Here we consider two



non-linear factor estimators, based on different opti-
mality criteria. The first is the maximum a-posteriori
probability (MAP) estimator *M4¥ obtained by max-
imizing the factor posterior p(x | y) with respect to x.
A gradient-ascent learning rule can be derived and is
given by

0% = eHT A (y — HX) — e¢(%) , (19)

where ¢ is the negative log-derivative of the factor den-
sity as before, and € is a properly chosen learning rate.

Alternatively, one may use the least mean squares
(LMS) estimator, which minimizes the error E(x—x)?2.
The LMS estimator is given by ¢35 = (x), where the
conditional mean (16) is as a sum over state configura-
tions q of the terms p, that are linear in y, weighted
by the terms vq that are non-linear in y.

Many Factors. As the number L factors increases,
the E-step becomes intractable, since the number
[L; ni of factor state configurations q = (g1, -..,qr)
depends exponentially on L. Such cases are treated
in [11] using a variational approximation. Below we
present a variational approach for the hierarchical ver-
sion of IFA, which is intractable even for a small num-
ber of factors.

3 HIERARCHICAL EXTENSION

In the following we develop a multilayer generalization
of IFA, by cascading duplicates of the generative model
reviewed above. Each layern =1, ..., N is composed of
two sublayers: a factor sublayer which consists of the
units =7, ¢ = 1, ..., Ly, and an output sublayer which
consists of y7, j = 1,..., Lj,. The two are linearly re-
lated via y" = H"x" 4+ u" as in (1); u” is a Gaussian
noise vector with covariance A™. The nth-layer factor
x? is described by a MOG density model with param-
eters aj’, pi',, and ;,, in analogy to the IFA factors
above.

The important step is to determine how layer n de-
pends on the previous layers. We choose to intro-
duce a dependence of the ith factor of layer n only
on the ith output of layer n — 1. Notice that matching
L,, = L;,_, is now required. This dependence is imple-
mented by making the means and mixture proportions
of the Gaussians which compose p(z}") dependent on
yi"_l. Specifically, we make the replacements

Pig = Mig + Vinqyzn_l )
ahg = ahg T U - (20)
The resulting joint density for layer n, conditioned on
layer n — 1, is

p(g",x", y" |y, W™)

n
a b
Jq g

n

@) O
n n n
. X A
uj,q ’Yj,q )4

Figure 2: Layer n of the hierarchical IFA generative
model.

Ln

= [Ip@ [v7 ") p? | ¢yt ) py™ | ™), (21)
i=1

where W™ are the parameters of layer n and

n—1

pla =qlyp ) =7, (w7 )
B exp(ay, + b?,qy?_l)
Z exp(a?:q, + bz-”;q/y?_l) ’
ql
p(y" [x") =G(y" —H"x",A"),

p(a} | ¢ =gyl ") =G} — pit, — VP ul ) -

The full model joint density is given by the product of
(21) over the layers,

p(ql...N7 Xl...N7 yl...N | Wl...N)

N
= [[ p(@x"y" [y"", W™,  (22)
n=1

setting y® = 0. A graphical representation of layer n
of the hierarchical IFA network is given in Fig. 2. All
units are hidden except y*v.

To gain some insight into our network, we examine
the relation between the nth-layer factor z? and the
n—1th-layer output yi"_l. This relation is probabilistic
and is determined by the conditional density p(z} |
yi ) = Y@ |y e} | af,yf ). Notice
from (21) that this is a MOG density whose parameters
depend on y?_l. In particular, its mean is given by

2T = fPWET) = Dl WE Ty + i) L (23)
q

and is a non-linear function of yz.”*l due to the softmax
form of ! ,. By adjusting the parameters, the function



fI* can assume a very wide range of forms: suppose
that for state g7, af', and b}, are set so that 77, (v
is significant only in a small, continuous range of yz-"*1
values, with different ranges associated with different
¢’s. In this range, fI* will be dominated by the lin-
ear term pu', + l/{fqy;‘_l. Hence, a desired f' can be
produced by placing oriented line segments at appro-
priate points above the yi”*l—axis, then smoothly join
them together by the 7', . Using the algorithm below,
the optimal form of f* will be learned from the data.
Therefore, our model describes the data y}¥ as a poten-
tially highly complex function of the top layer factors,
produced by repeated application of linear mixing fol-
lowed by a non-linearity, with noise allowed at each

stage:

n __ n_ .n n
Yp = E :Hijxj +uy;

J
o} = [+ & (24)

Notice that, unlike the ‘mixing noise’ u’, whose den-
sity is Gaussian depends only on the model parame-
ters, the ‘non-linearity noise’ £;' has a complex density

which depends on y]’f_l as well.

4 VARIATIONAL LEARNING AND
INFERENCE

The need for summing over an exponentially large
number of factor state configurations (q7, ...,q7), and
integrating over the softmax functions 7', (y~ 1),
makes exact learning intractable in our network. Thus,
approximations must be made. In the following we de-
velop a variational approach to hierarchical IFA. Our
approach is inspired by the work of [18,19,20] on varia-
tional approximations of learning and inference in sev-
eral intractable probabilistic models, and the related
work [16,17] on the Helmholtz machine. However, the
approach presented here is more powerful, in that it
does not rely on complete factorization and can handle
more complex non-linearities (e.g., the softmax func-
tion).

We begin, following [13], by bounding the log-
likelihood of the observed data from below:

£=logp(y™)>> ¢ logg , (25)

LN LN gleN)
) b

where p = p(q x y is the genera-
tive model density defined by (21-22), and p' =
p' (gt N, xt N ylN-1 | yN) is an arbitrary poste-
rior density over the hidden layers. If, for any function
g(q' N, x! N y1N) we denote by Eg the outcome
of averaging over the hidden layers using p’, we have

£ =1logp(y") > > Elogp(y" | x")

+ Y [Elogp(a} | ¢f,y7 ") + Elogp(al | y7~")]

P aqm
n,%,4;

—Elogyp . (26)

In exact EM, p' at each iteration is the true posterior,
parametrized by WV from the previous iteration.
In variational EM, p’ is chosen to have a form which
makes learning tractable, and is parametrized by a sep-
arate set of ‘variational’ parameters V"'V, These are
optimized to bring p’ as close to the true posterior as
possible. The optimization is done by maximizing the
lower bound (25) on the likelihood (as for the genera-
tive parameters W1V) or, equivalently, by minimiz-
ing the Kullback-Leibler divergence between p' and the
true posterior.

E-step. We use a variational posterior that is factor-
ized across layers, but not within layers: within layer
n it has the form

P x"y" | yN, V™) (27)
L,
= Hvin:qi g(zn - pn,zn) ) z" = (xnjyn)T
i=1
for layers n < N, and

p@V,xN | yV, V) =[] o, 6" — pN, =) (28)

for the bottom layer. The variational parameters
vr = (p", 2", {v}',}) depend on the data y". The
full N-layer posterior is simply the product of (27,28)
over n,

o= @, x"|y¥,vh)
N—1
x J[P@xmy" [y, V7). (29)
n=1

Hence, given the data, the nth-layer factors and out-
puts are jointly Gaussian whereas the states ¢ are
independent.

We point out that it is possible to introduce more
structure into (27) by allowing the means and diag-
onal covariances of the Gaussians to depend on the
states ¢i'. The mean simply becomes p™ — pg. It
is more difficult to make the covariance gq-dependent
since simply changing 3" — 37 would render the al-
gorithm intractable due to the need to sum over all
state configurations. Instead, one can use the sub-
stitution X" — ©gX"Og, where O is a diagonal
matrix. In this case, the correlation between factors
i,j in layer n, given the data y’¥ and the states q"
of all layer n factors, would depend only on their own
states g;',q;. This variational approximation would
be more accurate than (27) (but also more complex)
while maintaining tractability.



Even with the variational posterior (27), the term
Elogp(q? | ¥ ") in the lower bound cannot be cal-
culated analytlcally, since it involves integration over
the softmax function. Instead, we calculate yet a lower
bound on this term. Let us define

ct,=ap, + byt (30)
and drop the unit and layer indices i, n, then
logp(q|y) = —log(1+e™% Y e (31)

' #q

Borrowing an idea from [19], we multiply and divide
by e under the logarithm sign and use Jensen’s in-
equality to get

Elogp(q | y) (32)

> —n,Ec, — log E |e "% 4 e (1+n4g)cq Z efd
q'#q

This results in a bound that can be calculated in closed
form:

Elogp(q} =q |y (33)
> —upnpey —vplog | i + ) elo | = 77
q'#q
where
no __ n n n—1
Gy = ag+bypy
ro= —npey + (npbp)*Eet /2
= —(L+n)ey + ¢y
+[(L+ by — bR 1PEr /2, (34)
and the subscript 7 is omitted. We also defined
p" = (o5,py)" (35)

and similarly ¥7,, 37 7 = X7 T are the subblocks
of ™ corresponding to (35). Since (33) holds for ar-
bitrary n;,, the latter are treated as additional varia-
tional parameters which are optimized to tighten this

bound.

An alternative approach to handle Elogp(g? | yI'™")
is to approximate the required integral by, e.g., the
maximum value of the integrand, possibly including
Gaussian corrections. The resulting approximation is
simpler than (33); however, it is no longer guaranteed

to bound the log- hkehhood from below.

To optimize the variational parameters V"N, we
equate the gradient of the lower bound on £ to zero

and obtain
(HTA—IH)n+An
~(A'H)"  (A-

0 B") /[ prt!
- (e ) ()

_(HTA_I)H n
l)n + Bn+1 P

a®
n+1 n 3 (36)
(T )
o=
(HTA—lH)n+An (HTA 1\n -1
_(Ale)n (Afl)n + Bn+1 _ ]:g—',—l )

where we define

n ,qu
Az’j = E: dij 5
’Y’L’q
nogn
[TH 4
n —_ 2,9 " %,q L.
By = E:—n 8ij
q ’szq
n o ,,mn
n o _ Yi,qFiq
a; - n )
q /Yz,q
n n
I@n — Uiy‘l'uiyqyiyq (37)
4 - n
q ’ylaq

F':1 contain the derivatives of F' (33) with respect
to p™t! and X™*!, summed over q. For the state pos-
teriors we have

1 Ve | OFF
vy = ﬁep( +81}”

(38)

1 n _n— n n n—

W[(p /J’q -V py 1) +Ea:a: +(Vq )Zzyy 1])
q

where the unit subscript ¢ is omitted (i.e., X7, =
o) 2% = Z' is set such that 30 o, = 1. A

51mple modlﬁcatlon of these equations is required for

layer n = N.

The optimal V!N are obtained by solving the fixed-
point equations (36-38) iteratively for each data vector
y", keeping the generative parameters W'V fixed.
Notice that these equations couple layer n to layers
n £ 1, hence although the variational posterior is fac-
torized over the layers, its parameters are determined
by the whole network. The additional parameters ny
are adjusted using gradient ascent on F}* - Once learn-
ing is complete, the inference problem is solved since
the MAP estimate of the hidden unit values given the
data is readily available from p* and v, .

M-Step. In terms of the variational parameters ob-
tained in the E-step, the new generative parameters
are given by

H" = (pypp " +37,)(0hp, T +37,)7
A" = pipy T +3p —H (pppp T + 37,)(39)



and

(4)=( 4 oy )
vy A (G R U
PaVy
X _ , 40
(riip ) 4o
1
V= o

x [~ i = oy + 50, + )5 o]

omitting the subscript ¢ as in (38), and are slightly
modified for layer N. The overlines denoting averaging
over the observed data are also omitted; due to the
implied averaging, the vy in (40) do not cancel out.
Finally, the softmax parameters a,, b}, are adapted
by gradient ascent on the bound (33).

5 DISCUSSION

The hierarchical IFA network presented here consti-
tutes a quite general framework for learning and infer-
ence using probabilistic models that are strongly non-
linear but highly adaptive. Our formulation can eas-
ily be generalized beyond the multilayer architecture
to any directed acyclic graph. Notice that this net-
work includes both continuous z7,y? and multinomial
g units, and can thus extract both types of latent
variables. Its single-layer version, the IFA algorithm,
generalizes and unifies ICA, PCA and FA. The recti-
fied Gaussian belief networks [21] and non-linear Gaus-
sian belief networks [22], two recently proposed mul-
tilayer probabilistic models for real-valued data, can
be viewed as special cases of hierarchical IFA, where
z? is a prescribed deterministic function (e.g., recti-
fier) of the previous outputs yJT-”*l, i.e., the non-linear
function f' (24) is fixed and the non-linearity noise £}
vanishes.

The learning algorithm presented here has the tech-
nical advantage of using a variational posterior that
allows correlations among hidden units occupying the
same layer, thus providing a more accurate description
of the true posterior than in the completely factorized
approximation [19,20,22].

We point out that this model can be easily incorpo-
rated into a Bayesian classification algorithm, where
hierarchical IFA would described the class-conditional
densities. Another possible extension includes con-
structing multilayer networks with more than a single
IFA module in each layer, such that different modules
describe different regions of the data, e.g., spatial re-
gions in images or spectro-temporal regions in speech.

References

[1] Jutten, C., and Herault, J. (1991). Blind separation
of sources, Part I: An adaptive algorithm based on

neuromimetic architecture. Signal Processing 24, 1-
10.

[2] Comon, P. (1994). Independent component analy-
sis: a new concept? Signal Processing 36, 287-314.

[3] Bell, A.J. & Sejnowski, T.J. (1995). An
information-maximization approach to blind separa-
tion and blind deconvolution. Neural Computation 7,
1129-1159.

[4] Amari, S., Cichocki, A. & Yang, HH. (1996). A
new learning algorithm for blind signal separation. Ad-

vances in Neural Information Processing Systems 8,
757-763 (Touretzky et al, Eds). MIT Press, Cam-
bridge, MA.

[5] Cardoso, J.-F. and Laheld, B.H. (1996). Equivari-
ant adaptive source separation. IEEE Transactions on
Signal Processing 44, 3017-3030.

[6] Pearlmutter, B.A. & Parra, L.C. (1997). Maximum
likelihood blind source separation: A context-sensitive
generalization of ICA. Advances in Neural Informa-
tion Processing Systems 9, 613-619 (Mozer, M.C. et
al, Eds). MIT Press, Cambridge, MA.

[7] Attias, H. & Schreiner, C.E. (1998). Blind source
separation and deconvolution: the dynamic compo-
nent analysis algorithm. Newral Computation 10,
1373-1424.

[8] Rubin, D. and Thayer, D. (1982). EM algorithms
for ML factor analysis. Psychometrika 47, 69-76.

[9] Friedman, J.H. and Stuetzle, W. (1981). Projection
pursuit regression. Journal of the American Statistical
Association 76, 817-823.

[10] Hastie, T.J., and Tibshirani, R.J. (1990). Gener-
alized Additive Models. Chapman & Hall, London.

[11] Attias, H. (1998). Independent factor analysis.
Neural Computation, in press.

[12] Lewicki, M.S. & Sejnowski, T.J. (1998). Learn-
ing nonlinear overcomplete representations for efficient
coding. Advances in Neural Information Processing
Systems 10, 556-562 (Jordan M.I. et al, Eds). MIT
Press, Cambridge, MA.

[13] Neal, R.M. & Hinton, G.E. (1998). A view of
the EM algorithm that justifies incremental, sparse,
and other variants. In Jordan, M.I. (Ed.), Learning in
Graphical Models. Kluwer Academic Press, in press.

[14] Roweis, S. (1998). EM algorithms for PCA and
SPCA. Advances in Neural Information Processing



Systems 10, 626-632. (Jordan M.IL. et al, Eds). MIT
Press, Cambridge, MA.

[15] Tipping, M.E. and Bishop, C.M. (1997). Proba-
bilistic principal component analysis. Technical report
NCRG/97/010.

[16] Hinton, G.E., Dayan, P., Frey, B.J., & Neal, R.M.
(1995). The “wake-sleep” algorithm for unsupervised
neural networks. Science 268. 1158-1161.

[17] Dayan, P., Hinton, G., Neal, R., & Zemel, R.
(1995). The Helmholtz machine. Neural Computation
7, 889-904.

[18] Saul, L. & Jordan, M.I. (1995). Exploiting
tractable structures in intractable networks. Advances
in Neural Information Processing Systems 8, 486-492
(Touretzky, D.S. et al, Eds). MIT Press, Cambridge,
MA.

[19] Saul, L.K., Jaakkola, T., & Jordan, M.I. (1996).
Mean field theory of sigmoid belief networks. Journal
of Artificial Intelligence Research 4, 61-76.

[20] Ghahramani, Z. & Jordan, M.L. (1997). Factorial
hidden Markov models. Machine learning 29, 245-273.

[21] Ghahramani, Z. & Hinton, G.E. (1998). Hierarchi-
cal non-linear factor analysis and topographic maps.
Advances in Neural Information Processing Systems
10, 486-492 (Jordan M.I. et al, Eds). MIT Press, Cam-
bridge, MA.

[22] Frey, B.J. & Hinton, G.E. (1998). Variational
learning in non-linear Gaussian belief networks. Neu-
ral Computation, in press.



