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Abstract

Classification  trees,  usually  used  as  a  nonlinear, 
nonparametric classification method, can also provide a 
powerful  framework  for  comparing,  assessing,  and 
combining information from different  expert  systems, 
by  treating  their  predictions  as  the  independent 
variables in a classification tree analysis.   This paper 
discusses the applied problem of classifying chemicals 
as  human  carcinogens.   It  shows  how  classification 
trees can be used to compare the information provided 
by  ten  different  carcinogen  classification  expert 
systems, construct an improved "hybrid" classification 
system  from  them,  and  identify  cost-effective 
combinations  of  assays  (the  inputs  to  the  expert 
systems) to use in classifying chemicals in future. 

1 INTRODUCTION

One  of  the  most  difficult  applications  challenges  for 
statistical and AI classification technology has turned out to 
be predicting which chemicals are likely to cause cancer in 
humans, without performing costly experiments in mice and 
rats to find out.  Part of the difficulty stems from the fact that 
the term "carcinogen" applies to chemicals  that  operate by 
radically  different  causal  mechanisms  to  produce  very 
different  biological  responses  involving  uncontrolled  cell 
proliferation,  all  of  which  are  referred  to  as 
"cancer"  (Williams  1996).   Learning  the  concept 
"carcinogen" from training data therefore requires learning a 
disjunction of concepts that are heterogeneous in terms of the 
physical  reality  being  described  --  the  relevant  chemical 
structures  and  physiochemical  properties,  the  biological 
systems affected,  and the spectrum of biological  responses 
produced  in  test  systems.   The  extension  of  the  term 
"carcinogen"  involves  an  intrinsically  complex  and 
heterogeneous ontology that cannot easily be represented by 
few  or  simple  relations  among  attributes  in  a  training 
database.

Despite  this  complexity,  carcinogenicity  in  mice  and  rats 
often predicts carcinogenicity in humans (Ashby and Paton, 
1993).  More specifically, chemical carcinogens can usefully 
be  subdivided  into  genotoxic carcinogens,  which  cause 
cancer  by  reacting  with  DNA,  and  non-genotoxic 
carcinogens, which involve other causal mechanisms leading 
to  stimulated  proliferation  of  Williams  1996,  Chevalier 

1998).  Strongly genotoxic carcinogens often cause cancer 
in  multiple  species,  sexes,  strains,  and  organs  by  a 
common  DNA-damaging  mechanism  (Gold  1991). 
Therefore,  potent  mouse-  and  rat-carcinogens  are  often 
considered to be potential human carcinogens.  Inferring 
likely  human  carcinogenicity  for  non-genotoxic 
chemicals, however, is a largely unsolved problem (Ashby 
1993).   An example  of  a  non-genotoxic  mechanism is 
found in experiments with diesel exhaust (DE), which can 
cause lung cancer in rats at high, prolonged exposures by 
forming soot deposits that repeatedly abrade and irritate 
the lung tissue, eventually depleting protective enzymes 
and inducing compensating proliferation of  cells.   This 
increased proliferation, in turn, raises the probability that 
at least one cancerous cell will arise.  Such non-genotoxic 
mechanisms  tend  to  be  highly  species-specific  (Ashby 
1993, Chevalier 1998).  For example, DE does not appear 
to  cause  lung  cancer  or  deplete  protective  enzymes  in 
other species (Cox, 1997).

Genotoxic  chemical  carcinogens often have structural 
similarities  (such  as  a  "bay  region"  in  a  multi-ring 
organic  molecule)  that  once  seemed  promising  for 
predicting  carcinogenicity.   Yet,  non-genotoxic 
carcinogens constitute a miscellany of chemicals, from 
simple  organics  like  chloroform  (Templin  1998,)  to 
complex ones like DE, that  increase cell  proliferation 
by various idiosyncratic  mechanisms (Williams 1996  ,   
Yoshikawa 1996).  This creates an inherently deceptive 
setting  for  many  machine-learning  and  automated 
inference or concept-learning programs.  Patterns that 
might  prove  predictively  useful  if  only  genotoxic 
chemicals  were  considered  become  diluted  and 
confounded by non-genotoxic chemicals.  The result is 
that  even  relatively  sophisticated  predictive  systems 
often  perform  poorly  when  tested  on  chemicals  for 
which  the  correct  classification  is  initially  unknown 
(Benigni 97).

This  paper  introduces  a  new  approach  to  predicting 
chemical carcinogens.  It is motivated by the observation 
that  different  current  predictive  systems  incorporate 
some  complementary  and  some  redundant  information 
about relevant aspects of chemical structures, properties, 
and  effects  in  various  assays  and  biological  systems. 
Analyzing  the  empirical  performance  (i.e.,  prediction 
accuracy  and  failure  patterns)  of  these  different 



algorithms  leads  to  a  relatively  rich  model  of  how  their 
errors  are  interrelated.   This,  in  turn,  reveals  how  their 
predictions can best be combined to obtain a hybrid model 
that  out-performs  any  of  the  individual  models  that 
contribute to it.  

2 AN ILLUSTRATIVE EXAMPLE

Figure 1 illustrates one such hybrid predictive model, based 
on the performance data from the ten individual predictive 
systems summarized in Table 1.  

Figure 1:  Tree Hybridizing Carcinogen Predictions
This tree was created by applying the ID3 algorithm in 
KnowledgeSeeker™  (Biggs  1991)  to  dichotomized 
outcome data in which each of 44 chemicals was classified 
as either a rodent carcinogen or as not clearly carcinogenic, 
based on the outcomes of  long-term cancer  bioassays in 
mice and rats.  For clarity of exposition, we dichotomized 
the  ternary  outcomes  used by  many prediction  systems, 
which classify chemicals as carcinogens, non-carcinogens, 
or equivocal/uncertain carcinogens in rodents,  e.g., based 
on whether cancer is predicted to occur in both, neither, or 
just one of mice and rats.  In Figure 1 and subsequent trees, 

"Class  1"  represents  a  rodent  carcinogen  in  these 
bioassays, while "Class 0" represents a non-carcinogen 
or  equivocal  carcinogen,  using  Bristol's (1996) 
summary of bioassay results.

The  independent  variables  entering  the  classification 
tree analysis were predictions of carcinogenicity from 
each of  ten individual predictive expert  systems (i.e., 
Tennant, Weisburger, etc.) summarized in Table 1.  The 
predictions  are  dichotomous  or  ordered-polytomous. 
We  have  represented  all  predictions  by  numerical 
scores, e.g., using the ordinal scale -1 = predicted non-
carcinogen, 0.25 = predicted possible carcinogen, 0.5 = 
predicted  probable  carcinogen,  1  =  predicted 
carcinogen, and ??? = no prediction (e.g., because data 
required to make a prediction were missing.)

In  Figure  1,  the  single  system that  best  predicts  rodent 
carcinogenicity of the 44 test chemicals is that of Tennant, 
as also noted by Benigni (1995).  If this system classifies a 
chemical  as  a  rodent  carcinogen,  then there  is  a  71.4% 
chance (in this sample of 44 chemicals) that the long-term 
cancer  bioassays  will  indeed  show  it  to  be  a  rodent 
carcinogen.  Conversely, a chemical  classified as  a non-
carcinogen has an 81.2% chance of not being a clear rodent 
carcinogen  when  the  long-term  bioassay  is  conducted. 
Thus, the total  "resubstitution" error rate for the Tennant 
predictions  alone  is  25%  =  (28/44)(28.6%)  +  (16/44)
(18.8%).   Since these predictions are based on structural 
alerts learned from a training set of chemicals that did not 
include the 44 test chemicals considered in Figure 1, these 
estimates  of  performance  are  probably  realistic. 
Resubstitution  misclassification  error  rates  for  other 
individual predictive systems are as follows:
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Table 1:  Predictions and Results of Rodent Carcinogenicity Tests
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1 NE NE NE NE NEG -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1

2 NT NT NE SE POS -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1

3 EE NE NE NE EQV -1 -1 -1 -1 -1 -1 1 0

4 NE NE NE NE NEG -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1

5 NE NE NE NE NEG -1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -0

6 NE NE EE NE EQV -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1

7 NE NE EE EE EQV -1 -1 -1 -1 -1 -1 -1 1

8 NE NE NE NE NEG -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1

9 NT NT NE NE NEG -1 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1

10 NE NE NE NE NEG -1 1 -1 -1 1 1 -1 1 1 1 -1 -1

11 NE EE SE NE POS 1 1 0 -1 1 -1 -1 -1 -1 -1 -1 -1 1

12 CE CE CE CE POS 1 1 0 0 1 -1 1 -1 1 -1 1 -1

13 SE NE EE SE POS 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -0

14 SE NE NE SE POS 1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 0

15 NT NT NE NE NEG 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1

16 SE EE EE NE POS 1 1 -1 -1 1 -1 0

17 NE NE SE SE POS 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1

18 NE NE NE NE NEG 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 1

19 NE NE NE NE NEG 1 1 -1 -1 -1 -1 1 -1 0 -1 1 -1 -1

20 EE NE SE SE POS 1 1 -1 -1 -1 1 -1 1 1 1 1 -1

21 EE NE NE CE POS 1 1 0 0 -1 -1 -1 -1 1 -1 -1 1

22 SE EE SE NE POS 1 1 0 -1 1 -1 1 -1 1 1 1 1 -1

23 NE EE NE NE EQV -1 -1 0 -1 1 -1 1 -1 -1

24 NE NE NE NE NEG -1 -1 0 -1 1 -1 -1 1 -1 1 1

25 NE NE NE NE NEG -1 1 0 0 1 1 1 -1 1 1 1

26 NT NT NE NE POS -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1

27 NE NE NT NT NEG -1 1 -1 1 -1 -1 -1 1 -1

28 CE CE EE EE POS -1 1 0 1 1 1 1 1 -1 1 1 1 -1

29 SE NE CE CE POS 1 1 0 -1 1 1 1 -1 1 1 -1

30 SE SE SE NE POS 1 1 1 -1 1 1 1 1 1 1 1 1

31 EE NE NE NE EQV 1 1 1 -1 1 1 1 1 1 1 1

32 NE NE SE NE POS 1 1 0 -1 -1 1 1 -1 1 1 1 -1 1

33 NE EE NE NE EQV 1 1 0 -1 -1 -1 1 -1 1 -1 -1 1 -0

34 SE SE CE CE POS 1 -1 1 1 -1 1 1 1 -1 1

35 EE EE NT NT EQV 1 1 1 1 -1 -1 -1 -1

36 CE CE NT NT POS 1 1 1 1 1 1 -1 -1 1

37 CE CE NT NT POS 1 1 0 1 1 1 -1 -1

38 SE EE SE CE POS 1 1 0 1 1 -1 1 -1 -1 -1 1

39 CE CE CE CE POS 1 1 1 1 1 1 1 -1 1 1 1 1

40 CE CE NT NT POS 1 1 0 1 -1 1 1 -1 1 1 1 1 1

41 EE NE NE NE EQV 1 1 0 -1 -1 1 1 1 1 1 1

42 NT NT EE NE EQV 1 1 1 -1 1 1 1 -1 1 1 1 1 0

43 CE CE CE SE POS 1 1 1 1 1 -1 1 -1 1 -1 1 1 0

44 CE CE CE CE POS 1 1 1 1 1 1 1 1 -1 1 1 1 0

Source:  Bristol 1996



Clearly, no single test has a very low classification error rate, 
although 25% for the Tennant system is significantly lower 
than the error rate for other systems.

The classification tree in Figure 1 combines predictions from 
five  different  systems.   For  example,  if  both  Tennant  and 
Weisburger predict  that  a chemical  is a rodent  carcinogen, 
then so does the tree that hybridizes them  (since 6 out of 6 
cases predicted to be carcinogenic by Tennant and classified 
as carcinogenic or probably carcinogenic by Weisburger were 
in fact observed to be carcinogenic in the rodent bioassays). 
When Tennant predicts that a chemical is a rodent carcinogen 
and  Weisburger  does  not,  however,  there  is  about  a  64% 
chance that the chemical is carcinogenic.  Introducing results 
of other tests, such as Bakala, Tript 2, and Lijinsky can help 
to further resolve this disagreement.  Although not shown in 
Figure 1, among 14 chemicals classified as non-carcinogenic 
by  both  Tennant  and  Weisburger,  two  proved  to  be 
carcinogenic in the rodent bioassays.

Overall,  hybridizing  multiple  predictions  via  the  tree  in 
Figure 1 leads to a slightly smaller average error rate (22.7% 
resubstitution error) than the best individual (Tennant) system 
alone  has.   Although  tree  model  cross-validation  with 
generalized degrees of freedom (Ye 1998), could yield better 
estimates of the true error rate for the tree by better correcting 
for  bias  due to  over-fitting,  the simple resubstitution error 
estimates suffice to illustrate the following key points:

e Nonmonotonicity:  The  best  combination  of  expert 

system  predictions  need  not  be  monotonic,  i.e.,  the 
probability that a chemical is a rodent carcinogen may be 
decreased by learning that a system classifies it as such. 
For example, the Lijinsky node at the bottom of the tree 
shows a significant  inverse  relation between predicted 
and true classes, with the conditional probability that a 
chemical  is a rodent carcinogen falling from 63.6% to 
50%, given the results of the preceding tests in the tree, 
when the Lijinsky system predicts that it is a carcinogen. 
Although  the  sample  sizes  are  small,  the  same 
phenomenon can occur in trees with more cases.   The 
reason is that  prediction errors  made by different tests 
can interact in strong, potentially counter-intuitive ways. 
Exploiting  such  interactions  enables  classification  tree 
hybrids to make improved predictions.  This is a novel 
way  to  combine  predictions  from  different  sources, 
however, and it can violate many of the principles (such 
as  unanimity  and  monotonicity)  often  proposed  as 
normative axioms in previous approaches to combining 
predictions from different expert sources (Clemen 1989.) 

 High-order  interactions  among  tests.  The  best 

predictions that can be achieved from a set of tests such as 
those  in  Table  1  may depend  on  interactions  of  many 
individual  tests  (e.g.,  five  in  Figure  1).   Thus,  the 
information  contained  in  the  one  or  two  individually 
"best" tests does not subsume the useful information in the 
other tests.

o Information value synergies:  The information value 

of a particular test can depend strongly on what other 
tests have been performed.  For example, even though 
the predictive value of the Lijinsky test is only slightly 
better than random guessing when it is considered in 
isolation  (i.e.,  its  misclassification  rate  is  close  to 
50%),  it  can  help  to  identify  high-probability 
carcinogens when used in the context of other tests in 
Figure 1.

F No dominance:  It  may be natural  to think of some 

predictive  systems as  being strictly  "better  than"  or 
"more  informative  than"  others,  so  that  when 
predictions  from the  best  systems  are  known,  those 
from less good systems should be ignored.  Figure 1 
suggests that relations among predictions can be more 
complicated,  with  even  relatively  weak  predictive 
systems being able to add value for some combinations 
of predictions by the better systems.  A formal basis 
for comparing predictive systems using classification 
trees is introduced in the next section.  

That a combination of predictions from diverse sources can 
out-perform any of the individual sources is perhaps to be 
expected,  based  on  much  previous  management  science 
research  on  optimally  combining  or  aggregating  expert 
predictions (Clemen 1989).   However, a novel feature of 
our approach is the use of classification trees, rather than 
analytic aggregation or averaging formulas, to combine the 
predictions  from  different  AI  and  statistical  prediction 
systems.  This allows higher-order interactions among the 
prediction errors from different systems to be exploited in 
constructing  combined  predictions.   As  suggested  by 
Figure  1,  such  interactions  are  potentially  valuable: 
common combination methods based only on the variances 
and covariances of predictions from different sources may 
leave  potentially valuable  information unused.   The  tree 
approach  also  brings  within  a  natural  probabilistic 
framework  systems  that  do  not  by  themselves  yield 
probabilistic  predictions.   This  is  done  by treating  their 
deterministic  predictions  (typically  "carcinogen",  "non-
carcinogen" or "unable to make a determination") as values 
on  which  the  combined,  probabilistic  prediction  is 
conditioned.  



3 METHODS AND DATA

Over  the  past  three  decades,  a  variety  of  increasingly 
sophisticated  artificial  intelligence  and  statistics  methods 
have  been  brought  to  bear  on  the  problem  of  predicting 
chemical  carcinogens.   Several  well-developed  approaches 
were recently evaluated in blind tests (Benigni 1996, Bristol 
1996),  i.e.,  they  were  used  to  predict  whether  various 
chemicals  would  be  found  to  be  rodent  carcinogens  in 
ongoing (typically, two-year) bioassay experiments in mice 
and rats.  The predictions were published before the results of 
the experiments were known.  

Key approaches  tested  for  predictive  accuracy  include  the 
following:

Structure-activity  relation (SAR) programs. These consider 
physical  and  electronic  properties,  three-dimensional 
molecular  structure,  and  molecular  topological  indices, 
indicating key invariants  such as  graph-theoretic  structures 
(Perrotta 96) associated with DNA reactivity.  The SAR and 
quantitative SAR (QSAR) approaches taken to date include:

q Benigni's  method  combines  the  structural  alerts  of 

Tennant and Ashby (below) with Bakale's coefficient 
of  electrophilic  reactivity,  denoted  Ke,  (below)  to 
obtain a QSAR score.

o CASE  /  MULTICASE  (Cunningham  1998)  is  a 

Bayesian  QSAR  statistical  expert  system  that  uses 
statistically  selected  relations  among  attributes  of 
chemical structures to identify substructures useful for 
predicting  probable  carcinogenicity.   It  differs  from 
earlier QSAR expert systems in that it fully automates 
the  selection  of  chemical  substructures  to  be 
considered,  rather  than  requiring  a  human  user  to 
select them from a library. 

s COMPACT  (Lewis  1998)  is  a  QSAR  system  that 

calculates  approximate  molecular  dimensions  and 
molecular  and  electronic  structures  via  "Computer-
optimized molecular  parametric  analysis for  chemical 
toxicity"  to  predict  whether  a  chemical  will  be 
metabolically activated to a carcinogenic chemical by 
specific enzymes.

s DEREK (Marchant 1996) is a rule-based expert SAR 

system based on "deductive  estimation of  risk from 
existing knowledge" obtained from expert chemists.

n TOPKAT (Enslein 1990) applies statistical regression 

and  discriminant  analysis  to  chemical  structural 
attributes to obtain SAR rules.

a Bakale Ke (Bakale 1992).  This uses a single measured 

parameter,  Ke  = chemical  electrophilic  reactivity,  to 
predict carcinogenic potential.

p Weisburger   (an  unpublished  SAR  system 

encoding expert intuition)

Activity-activity relation (AAR) programs. These use the 
spectrum  of  biological  responses  in  relatively 
inexpensive assays (e.g., bacteria mutation tests or short-
term toxicity and tests) to predict biological activities in 
more  expensive  and  relevant  systems  (e.g.,  two-year 
rodent cancer bioassays).  Some AAR systems, including 
that of  Tennant and  Ashby, also use any available data 
from previous cancer bioassays.

AAR systems evaluated for predictive validity (Benigni 
1996, Bristol 1996) include:

) Tennant and Ashby's AAR system (Tennant 1990). 

This uses correlations among attributes of chemical 
structures, short-term mutagenicity test results (e.g., 
in  Salmonella),  rodent  subchronic  toxicity 
outcomes,  and  carcinogenicity  test  results  if 
available.  It identifies "structural alerts" indicating 
possible carcinogenicity.  This system has been fine-
tuned  by  its  expert  authors  based  on  reviews  of 
biological response profiles and chemical structures 
for  over  300 chemicals.   It  incorporates  much of 
their intuition.  The system requires a human expert, 
i.e., it is not fully automatic.

i RASH  (Jones  1996).   The  "rapid  screening  of 

hazards"  method  predicts  carcinogenic  potential 
based on the observed relative potencies of  tested 
chemicals in different short-term bioassays.  It is not 
fully automatic, but instead requires a human expert 
to select relevant comparisons.

t TRIPT  (Bahler  1993)  performs  "tree  and  rule 

induction for predictive toxicology" via the machine 
learning  algorithm  C4.5,  applied  to  the  factors 
considered in the Tennant system.  

c PROGOL  (King  1996)  applies  inductive  logic 

programming  (ILP)  to  relational  descriptions  of 
chemical  structures to induce simple,  interpretable 
rules for SAR structural alerts.

Other  methods  for  which  predictions  have  been 
recorded  include  Fuzzy  Adaptive  Least  Squares 
(Moriguchi  1996)  and  the  unpublished  predictive 
systems of Lijinsky and Weisburger.

Table  1 summarizes  data  on  the  outcomes  of  the 
different prediction methods (Bristol 1996) so that other 
AI and statistics researchers can try their own programs 
on  the  chemical  carcinogenicity  prediction  task.   It 
consists of the predictions for 44 chemicals made by 
different prediction systems using the above methods, 
ranging from statistical  (e.g.,  TOPKAT) to rule-based 
expert  systems  to  machine-learning  (e.g.,  TRIPT) 



approaches.   Table  1 also  presents  the  actual 
carcinogenicity  outcomes  observed  for  each  chemical  in 
both sexes of  both mice and rats,  based on experiments 
completed after the predictions were made.  The codes for 
bioassay outcomes in individual species (M = mouse, R = 
rat) and sexes (M = male, F = female) are:  CE = clear 
evidence of carcinogenicity;  SE = some evidence;  EE = 
equivocal evidence;  NE = negative evidence   

We analyzed these data, using the main classification tree 
algorithms  implemented  in  KnowledgeSeeker™  with 
automatic  Bonferroni  adjustments  to  protect  against 
multiple  testing  bias  (Biggs  1991),  to  construct  several 
trees that yield improved predictions.  First, at the risk of 
over-training on the sample data, we conducted exploratory 
analyses of the whole data set (using KnowledgeSeeker's 
"Exhaustive" tree-growing algorithm) to detect patterns in 
errors across  the different prediction methods.   Then we 
used various random partitions  of  the  44 chemicals  into 
training and test sets to assess the performance of the tree 
hybridization approach. (Typically, we used 29 chemicals 
to  train  and  15 to  test.)   A best-informed  (S*)  tree,  as 
defined  in  the  following  section,  was  used  to  generate 
"hybridized" predictions from predictions already made by 
the different methods, along with statistics on their errors 
in the test set.  

4 RESULTS AND DISCUSSION

Two major practical goals of new efforts in this field are to 
reduce the costs  and increase the accuracy of  predictive 
classification of chemicals.  The costs are driven largely by 
in vivo testing implying that SAR and QSAR methods tend 
to be much less expensive than AAR methods, especially 
when the latter involve results of lengthy  in vivo  toxicity 
tests.  By assembling batteries of tests that place relatively 
inexpensive  tests  first,  the  expected  costs  of  reaching  a 
classification decision with a specified level of confidence 
can  sometimes  be  dramatically  reduced.   Indeed,  this 
principle has been used in recent algorithms and heuristics 
for minimizing average costs of testing (Cox 1994).  On the 
other hand, incorporating a few very expensive tests, such 
as a long-term cancer bioassay for a single rodent species 
and sex, can lead to dramatic improvements in accuracy if 
the predictive tests are used to select the test species and 
sex  and  to  help  interpret  the  results.   The  following 
paragraphs present our main findings on how classification 
trees can be used to improve cost-accuracy trade-offs and 
to compare different prediction systems.

4.1  REDUCING CLASSIFICATION COSTS

Figure 2 shows a tree with a resubstitution error  rate  of 
only 4.5%, far less than the 22.5% achievable if no long-
term animal cancer bioassays are used (see  Figure 1).  It 
illustrates  the  value  of  combining  the  predictions  from 
several  systems  with  the  results  of  a  single  long-term 
bioassay (either MM = male mice or  FR = female rats), 

where the Tennant system's prediction is used to select 
which animal bioassay to perform.   After performing 
the tests indicated in this tree, additional bioassays in 
other  sexes  or  species  do  not  improve  predictive 
accuracy further.    

Figure 2: Predictions Help to Economize on Bioassays

Thus,  classification  tree  analysis  reveals  that  a 
chemical's  carcinogenicity  class  is  conditionally  
independent of the remaining information (predictions 
from other systems and bioassay experiment outcomes), 
at  least  as  far  as  the  tree-growing  algorithm  can 
discover, once one of the seven leaf nodes in Figure 2 
has been reached. 

It is noteworthy that the resubstitution error rate from 
the  male  mouse (MM) bioassay  alone  is  20%, while 
from the female rate (FR) test alone it is 30%.  From the 
two together,  it  is  14%.  Yet,  hybridizing these tests 
with  the  other  imperfect  predictions  in  Figure  2 
(Tennant,  Bakala,  and  Tript2),  which  taken  together 
have  a  joint  error  rate  of  25%,  produces  a  hybrid 
classification scheme with an error rate of less than 5%. 
Interpretively, this suggests that the MM and FR tests 
provide information that is approximately orthogonal to 
(complementary to) the information provided by the set 
of tests {Tennant, Bakala, Tript2}.  This interpretation 
is strengthened by observing that, after constructing a 
tree using these three variables, the MM and FR tests 
will still enter at the bottom of that tree if allowed to, 
implying  that  a  chemical's  class  is  not conditionally 
independent of MM and FR, given  the predictions from 
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{Tennant,  Bakala,  Tript2}.   Once  MM  and  FR  have 
entered,  however,  no  other  variables  in  Table  1will, 
showing that the set {Tennant, Bakala, Tript2, MM, FR} is 
sufficient for the full set of variables.  Searching the set of 
possible trees shows that  this is a  minimal  sufficient  set 
(i.e., none of its subsets has the sufficiency property) and 
that no other set achieves both a smaller error rate and a 
smaller  cost  (assuming that  animal  bioassays  cost  more 
than AAR methods and that AAR methods cost more than 
SAR  or  QSAR  methods.)   See  (Cox  1994)  for  search 
algorithms and heuristics for finding cost-effective trees. 

4.2  COMPARING PREDICTIVE SYSTEMS

The classification tree framework for combining predictions 
contributes  a  new  technique  for  comparing  information 
sources.  Roughly speaking, one source of predictions may 
be  considered  "better-informed"  or  "more  valuable"  than 
another  if  every rational  decision-maker  would  prefer  to 
obtain an observation from the first  instead of the second 
before making a decision.  (This assumes that the payoff or 
utility  from the  decision  depends  on  the  true  state,  e.g., 
carcinogenic or not, for the chemical being classified.)  This 
comparative  binary  relation  generally  yields  a  partial 
ordering of information sources when the characteristics of 
the  sources  (i.e.,  probabilities  of  outputs  given  the  true 
states)  are  known.   While  several  equivalent 
characterizations have been given for determining when one 
information  source  is  more  valuable  than  another,  the 
classification  tree  framework  provides  a  simple  test  that 
does  not  require  a  priori  knowledge  of  the  probability 
characteristics  of the sources.   Call source S1  at least  as 
well  informed  as  source  S2  if  the  classification  of  a 
chemical is conditionally independent (CI) of the prediction 
from  S2,  given  the  prediction  from  S1.   S1  is  better  
informed than S2 if S1 is at least as well informed as S2 but 
not vice versa.  The classification tree test for this relation is 
as follows.  

Comparing Predictive Systems via a Tree Algorithm

C Take the correct  classification of a chemical  (e.g., 

carcinogen or not) as the dependent variable.  

c Split  the  correct  classification  on  the  output 

(predictions) from S1 to form a one-split tree.  Call 
this tree T1.

t Allow tree T1 to be extended by splitting each of its 

leaves on the predictions from S2.  

l If S2 does not enter the tree when this is done, but if 

splitting the chemical classification first on S2 and 
then on S1 results in S1 entering the tree below S2, 
then S1 is better informed than S2.  Interpretively, 
S1 is  "sufficient  for"  S2,  but  not  vice  versa; see 
DeGroot, 1970, Chapter 14.

This characterization of comparative expertise defines a 
partial  ordering  that  complements  earlier  ones  in the 
statistical  decision  theory  literature  (DeGroot,  1970, 
433-439).   It  can  readily  be  extended  to  compare 
subsets of variables (or tests, or predictive systems), by 
treating  each  subset  in  turn  as  the  allowed  set  of 
independent  variables  entering  a  classification  tree 
analysis.  For example, after conditioning (by growing a 
tree,  T1)  on  {Weisburger,  RASH,  COMPACT}, 
Tennant and Tript2 will still enter at the bottom of the 
tree if  allowed to.   Conversely, after conditioning on 
{Tennant,  Bakala,  Tript2},  Weisburger,  RASH,  and 
COMPACT will  all  still  enter  if  allowed  to.   Thus, 
neither set is more informative than the other:  they are 
complementary.

4.3 OPTIMALLY COMBINING PREDICTIONS 

The ability  to  compare  prediction systems  based on 
trees suggests constructing a new, best-informed source 
of predictions,  say,  S*, by combining the predictions 
from individual sources into a tree such no other tree 
composed  from these sources  is  better-informed than 
S*.   A useful approximate  construction heuristic  that 
uses  standard  classification  tree  algorithms  is  the 
following.   Grow an initial  tree  myopically,  e.g.,  by 
choosing the strongest predictors of correct  classes in 
the training set first.  Then refine it by making pairwise 
swaps of variables below the root  node with the root 
node variable until no further improvements (defined as 
reduction of average prediction error rate in the test set) 
can be found.  Apply this tree-improvement routine to 
several initial trees formed by random selection of the 
top few candidate  splits  at  each node.   The result  is 
often  a  tree  that  (a)   yields  the  smallest  achievable 
average prediction error in the test set;  and (b)  does so 
using an efficient set of variables, i.e., a set of variables 
such  that  any  proper  subset  yields  significantly 
deteriorated  performance.   This  tree  is  a  practical 
estimate  or  approximation  to  S*,  the  best-informed 
predictor of chemical class that can be formed from the 
sources considered.  

In our experience, as discussed in Section 2, the best-
informed source if often inconsistent with axioms that 
have  sometimes  been  proposed  in  the  management 
science literature for combining expert predictions (e.g., 
the "unanimity" axiom, according to which S* should 
make  the  same  prediction  as  its  component  sources 
when  all  of  them  agree).   However,  it  is  easy  to 
demonstrate  by  examples  that,  in  these  cases,  the 
axioms are not useful, whereas S* is, in making the best 
possible predictions.  Thus, it appears that classification 
trees may offer a useful general alternative to previous 
methods  of  combining  expert  predictions,  as  well  as 
making  more  specific  contributions  to  chemical 
carcinogen prediction.



4.4  OTHER FINDINGS

Other findings from our classification tree analysis of Table 
1 include the following.

1 The different methods are much better predictors  of 

each  other  than  of  the  true  classification  of  the 
chemicals.   This  suggests  that  there  is  important 
information  captured in the  rodent  cancer  bioassays 
that is not captured in the predictive methods currently 
in use.  As shown in  Figure 2, such complementary 
information can be exploited to reduce the number of 
expensive bioassays performed.

e Combining  predictions  from  different  predictive 

methods leads to a best-informed tree that improves on 
the  predictive  accuracy  of  any single method.   The 
best-informed tree is not unique, however. 

b When only the least expensive (SAR or QSAR, but not 

AAR)  tests  are  considered,  the  best  hybrid  tree 
classifier  based  on  {Bakala's  Ke,  MULTI-CASE, 
COMPACT,  DEREK,  TOPKAT}  has  a  20% 
resubstitution misclassification error rate.

r A  key  goal  of  carcinogen  prediction  has  been  to 

identify  a  battery  of  low-cost  tests  and  assays  that 
would collectively be as informative as the much more 
expensive  rodent  bioassays  about  the  likely 
carcinogenicity  of  chemicals.   Classification  trees 
were  applied  to  test  how  well  this  goal  has  been 
achieved.   Whether  carcinogenicity  in  each  species 
and  sex  is  conditionally  independent  of 
carcinogenicity in the other three, given the results of 
all predictive methods, can be tested by the two-phase 
tree-growing procedure outlined above.   It  turns out 
that  the  other  carcinogenicity  bioassays  contain 
relevant  information  not  captured  in  the  predictive 
methods (i.e.., the predictive methods being used are 
not sufficient for the carcinogenicity experiments.)

n On  the  positive  side,  classification  trees  show  that 

carcinogenicity  of  a  chemical  in  a  specific  rodent 
species  and  sex  can  be  predicted  as  well  from 
carcinogenicity testing results in one other species and 
sex  and  a  few  (typically  two)  of  the  prediction 
methods as it  can be from results of carcinogenicity 
testing in all three other species-sex combinations

t The classification tree method suggests the possibility 

(and provides a constructive algorithm) for combining 
whole-animal  carcinogenicity  testing  with  less 
expensive predictive methods to obtain predictions of 
human carcinogenicity that are at least as informed as 
methods  based  on  more  extensive  whole-animal 
testing in additional species and sexes.

5 SUMMARY AND CONCLUSIONS

In summary, we have identified a tree-based approach 
to combining the results of multiple tests to reduce test 
costs  (e.g., by using results of less expensive tests to 
determine  which  expensive  ones  to  perform)  and  to 
reduce error rates by hybridizing predictions based on 
complementary  information.   The  approach  appears 
promising  for  the  data  in  Table  1.   It  can  be 
implemented using standard classification tree software. 
However, some important open issues remain.   These 
include the following. 

1. Tracking  concept  drift.  The  classification  tree 

analysis revealed that  year of completion of  peer 
review of rodent cancer  bioassays is itself quite 
informative about the likelihood that a chemical is 
a rodent carcinogen.  Roughly 30% of chemicals 
reviewed  in  1990,  60%  of  those  reviewed  in 
1991-1993,  and  100%  of  the  (three)  chemicals 
reviewed in 1994 and 1995 were found to be rodent 
carcinogens.   Thus,  the  proportion  of  rodent 
carcinogens  among  chemicals  selected  for  long-
term cancer bioassays may be increasing over time. 
(Indeed,  if  year  of  review  is  used  as  the  sole 
predictor  of  rodent  carcinogenicity,  the  sample 
misclassification error rate is 36%, lower than for 
several of the predictive systems.)  When training 
and test sets are obtained by partitioning chemicals 
according  to  the  year  in  which  a  peer-reviewed 
cancer bioassay was completed, it appears that the 
first chemicals tested (mainly genotoxic ones) yield 
trees  that  are  especially  weak  predictors  of  the 
carcinogenicity of later chemicals (which contain 
more  non-genotoxic  ones).   Thus,  when  the 
concept being learned "drifts" over time (e.g., away 
from  genotoxic  and  toward  non-genotoxic 
carcinogens, in this case), it is important to make 
sure  that  the  training  set  is  balanced  (or  re-
balanced) to adequately emphasize the components 
that are to be predicted. 

2. Formal  cost-optimization.  This  paper  has 
emphasized construction of best-informed sources 
from  several  less-informed  sources.   As  briefly 
mentioned, a useful extension would be to assign 
costs  to the different  tests  and seek a  minimum-
expected cost tree that balances the costs of testing 
against the costs of decision error.  Computational 
complexity  results  and  practical  heuristics  are 
available for such problems (Cox 1994).

3. Latent variables.  A potentially desirable approach 
to predicting chemical carcinogenicity is to allow 
for  hierarchical  concept-learning,  including 
induction  of  latent  variables  (such  as  "genotoxic 
carcinogen").   Such  variables  do  not  arise  as 



Boolean  combinations  of  attribute  values,  but  may 
greatly  simplify  the  interpretation  of  attribute  value 
combinations.   It  may  be  worthwhile  to  extend 
classification tree algorithms to partition training sets 
into  relevant  and  irrelevant  exemplars,  based  on 
hypothesizing a latent  variable (e.g., the "genotoxic" 
classification) that is related to the observed attribute 
values but not  directly  measured.   For example,  we 
have  found  that  classification  trees  can  provide 
powerful  predictors  of  mineral  oil  carcinogenicity, 
with  clear  advantages  compared  to  older  statistical 
methods,  if  latent  variables  can  first  be  used  to 
partition  the  training  and  test  sets  into  relatively 
homogeneous subsets.
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