Conditional Products: An Alternative Approach to Conditional
Independence

A. P. Dawid
Department of Statistical Science
University College London
Gower Street, London WC1E 6BT, UK

Abstract

We introduce a new abstract approach to the
study of conditional independence, founded
on a concept analogous to the factoriza-
tion properties of probabilistic independence,
rather than the separation properties of a
graph. The basic ingredient is the “con-
ditional product”, which provides a way of
combining the objects under consideration
while preserving as much independence as
possible. We introduce an appropriate ax-
iom system for conditional product, and
show how, when these axioms are obeyed,
it induces a derived concept of conditional
independence which obeys the usual semi-
graphoid axioms. The general structure is
used to throw light on three specific ar-
eas: the familiar probabilistic framework
(both the discrete and the general case); a
set-theoretic framework related to “variation
independence”; and a variety of graphical
frameworks.

Key words: Directed graph independence, Probabilis-
tic independence, Projection, Semi-graphoid, Undi-
rected graph independence, Variation independence.

1 MOTIVATION

In several distinct mathematical areas, especially those
describing uncertainty in Probability and Statistics
(Dawid 1979) and Artificial Intelligence (Studeny
1993; Shenoy 1994), some concept of conditional in-
dependence plays a fundamental role, permitting the
decomposition of a complex object into simpler pieces.
This concept was introduced in miscellaneous frame-
works, but certain reasonable formal properties are
shared. These formal properties are described by the
abstract theory of conditional independence, as cap-
tured by the “semi-graphoid” axiom system (Dawid
1979; Spohn 1980; Pearl 1988). The archetypal model
for this system is the concept of separation in an undi-
rected graph, and the axioms can most readily be un-
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derstood as being about a generalized form of separa-
tion.

An entirely different approach to conditional indepen-
dence is to try and abstract the factorization prop-
erties which form the traditional basis for the proba-
bilistic definition. This is the task we attempt here.
We first introduce the abstract concept of conditional
product, and propose a suitable axiom system for it.
We use this to introduce conditional independence as a
derived concept, and show that it does then satisfy the
semi-graphoid axioms. Such a point of view provides a
unifying framework for conditional independence, and
suggests new forms and applications. However, not ev-
ery semi-graphoid can arise in this way. In this paper
we describe the appropriate conditional product con-
struction in probabilistic and set-theoretic frameworks
for conditional independence, as well as showing that,
in the frameworks of undirected or directed graphical
models, no suitable conditional product exists.

2 CONDITIONAL PRODUCTS

In this Section we give an axiomatic definition of pro-
jection and conditional product. Then we show that
an induced concept of conditional independence satis-
fies the semi-graphoid axioms.

2.1 AXIOMS FOR PROJECTION AND
CONDITIONAL PRODUCT

We have an index set N; a class A of subsets of IV,
containing @) and closed under union and intersection;
and a set T of “objects”. Associated with any ¢ € T
is its domain d(¢) € N.

2.1.1 Projection

For any ¢ € T and E € N there exists an object
¢F € T, the projection of ¢ onto E. Projection has
the following properties:

Pl d(¢F)=d(¢)NE forpe Y, E€N.
P2 (¢P) =P F forpe Y, E,F e N.



P3 ¢%9) =¢ forpec Y.
The properties above imply that (gi)E)F = (gi)F)E

F = ¢UONF for ¢ € T, E,F € N. In particular,
d(¢) C E implies ¢¥ = ¢ by P3.

We say that ¢,¢v0 € T are (weakly) compatible if
¢4¥) = ) and strongly compatible if there exists
7 € Y such that 7%?) = ¢ and %) = ¢. Strong
compatibility implies weak compatibility, but not nec-
essarily conversely. The collection of pairs of weakly
compatible objects from Y will be denoted by C, and
the collection of pairs of strongly compatible objects
from T by C..

2.1.2 Conditional Product

We consider a mapping ® : D — YT having domain
D C C (often we shall have D = C). The conditional
product operation ® is required to have the following
properties:

1 (¢,94) € D= d(¢@y)=d(¢) Ud(y).
2 (p,9) € D= (¢,90) ED and ¢ R Y = Q ¢.
T3 ¢, E€N = (¢,0) € D and ¢ ® o7 = ¢.
4 (¢,) € D,d(¢p) C E € N = (¢,¢F) € D and
(p®)" =payP.

Axiom T4 can be formulated in apparently stronger
form:

T4' (4,¢) € D, d<¢>nd(w> CEeN = (¢,9F) €D
and (¢ ® )"V = g @ pP.

Indeed, if d(¢) N d(y)) C E one has by P3 and P2
PUDVE — 1 d()N(A(SUE) — ) d()NE — 4 F

T5 (¢,%) € D,d(¢p) Nd(y) C E € N = (p,97) €
D,((¢29"),) € D, and @1 = (¢®¢E)®¢-

T6 ¢, € Y,d(¢p)Nd(y) CE e N,(¢,vF) € D,
(p@9?),¢) e D= (4,%) € D.

Using T4', we can also restate T5 as:

T5' (¢,¢) € D,d(¢) Nd(y)) C E € N = ((¢®
P)4OYIE) ) € D and p® 1) = ((¢p @ 1)V @
¥).

We can further re-express T4-T6 in terms of pairwise
disjoint A, B,C,D € N (using ¥ = ¢d(9)NF by P2):

T4" (,4) € D,d(¢) = AUC,d()) = BUCUD =
(¢’,¢}CUD) D an (¢®¢)AUCUD ¢®,¢CUD

T5" (¢,9) € D,d(¢) = AUC,d()) = BUCUD =
(6, ® V)P, p) € Doand ¢ = (¢
¢)AUOU ®¢_

CUD,(¢,4°P) e D
= (6,1) € D.

Observation 2.1 (¢p®1))* (%)
whenever (¢, ) € D.

= ¢ and (p@9) ") =y

Proof: Use T4, the fact that (¢,v) € C and T3 to
write (¢ © 1)) = p@ %) = p@ ¢4¥) = $. Use T2
for the other equality. ]

Thus, when all the above axioms hold and D = C, we
shall have C = C,, since then we can take 7 = ¢ ® 1.

2.2 SEMI-GRAPHOIDS AND
CONDITIONAL INDEPENDENCE

2.2.1 Semi-Graphoid

A ternary operation - Il - |- on A is called a (full)

semi-graphoid if it satisfies:

Co0 ALB|Cif BCC.
C1 ALB|C = B1A|C.

C2 AL(BUD)|C = ALD|C.

C3 AW (BUD)|C = ALLB|(CUD).

C4 ALB|(CUD)and ALLD|C = AL (BUD)|C.

A partial semi-graphoid on a class of triplets K C
N x N x N is a predicate 1L having K as domain
such that C0—-C4 hold under the additional constraint
that all triplets involved belong to K. We shall here
limit attention to special partial semi-graphoids, where
K is the class of triplets of pairwise disjoint finite sub-
sets of N; equivalently, C0—C4 are only required when
A, B,C, D are pairwise disjoint. These semi-graphoids
will be called disjoint semi-graphoids over N.

2.2.2 Conditional Independence

For every ¢ € YT and pairwise disjoint finite sets
A,B,C € N we write AILB|C [p] if pAYBYC

= pAue ® pBYC (this includes the requirement

(179, pPU) € D).

Observation 2.2 AL B|C Eg&] iff AUB|C [¢] for
¢ ,¢} €Y and ¢AUBUC’ ,(pAU uc

Proof: A consequence of P2 and the definition. [

Observation 2.3 A1l B|C [pAY" ®¢pPY"] whenever
@ € T and (V¢ pBYC) € D.

Proof: Put ¢ = oV ¢ = pPYC and 7 = ¢ @ 9.
Since d(7) C AUBUC (use P1 and T1) 7AYBYC = 7,

By P2 1/JAUO 0% = ¢¢ and one can write using T4
and T3: 74YC = ¢ @ pAYC = ¢ ® ¢¢ = ¢. Similarly,
using T2, TBUC . U

Proposition 2.1 For p € T, the collection of triplets
(A, B|C) of pairwise disjoint finite subsets of N for
which AU B|C [¢] forms a disjoint semi-graphoid
over N.



Proof: Without loss of generality suppose below that
the sets A, B,C, D in C0—-C4 are subsets of d(¢) (oth-
erwise replace every set by its intersection with d(y)).
With B and C disjoint, CO becomes A1L(|C [¢],
which follows from T3 with ¢ = pAYC, E = C' (note
that qﬁo = ¢ by P2). C1 follows from T2 with
¢ = A ¢p = BYC. From this point on, define

AUC ¢ @BuCUD If AlL(BU DCLC[cp] then

AUBUOUD — ¢) SO ﬁOHlPQ @AU

w)AUCUD, _ ¢®¢CUD by T4II _ AUC ®<pC’UD (agam
using P2), so that C2 holds. Also C3 then follows
easily from T5" and P2. Finally, ALB | (C U D) [¢]
and A1LD | C [g] imply pAVBYIP = (¢4 D) 01,
which = ¢ ® ¢ by T6” and T5" with E = C U D, so
that C4 holds. U

Our axioms for projection and conditional product re-
semble those for marginalization and combination of
valuations (Shenoy and Shafer 1990; Shenoy 1994),
which were motivated by the desire to establish an ax-
iomatic framework for belief propagation in join trees,
rather than as a framework for conditional indepen-
dence. The main difference is that their combination
is defined also for non-compatible valuations. How-
ever, Shenoy (1994) also derived graphoid properties
from his axioms for valuations.

3 PROBABILISTIC FRAMEWORK

The classic example of objects satisfying our axioms is
given by probability measures on Cartesian products
of arbitrary measurable spaces. We start with the im-
portant special case of discrete probability measures,
then treat the general case. Throughout, we take A
to be the class of finite subsets of V.

3.1 DISCRETE CASE

For each i € N we are given a non-empty finite set
X;. For non-empty D € N we define Xp =[], p X,
while Xy is taken to be some fixed singleton set {e}.
An object with domain D is a distribution over D, i.e.
a non-negative function p on Xp such that > { p(x) :
X € XD} =1.

The projection of p over D onto E € N is the marginal
distribution p” on X gnp, defined by the formula:

=S {pixy) i xe [ Xi}

i€D\E

for every y € Xgnp (with obvious modification if EN
D = (). Of course, p¥ =pif D\ E = .

The conditional product of a distribution p over E €
and a distribution ¢ over F € N will be defined for
every pair of weakly compatible distributions, so that
C = D in this case. Supposing p is defined on X g and

g on Xp, p® q is defined on Xgyp as follows:

if pPF (y) >0
otherwise

p(x,y)-4(y,z)
ponys) ={

0
for every x € [[;ep\r Xis ¥ € XEaF, 2 € [[icp\ 5 Xi-
Of course, if E'\ F = (), then x is omitted; if FF\ E =
0, then z is omitted. Of course, pPF in (1) can be
replaced by ¢Z"F.

The reader can verify directly:

Proposition 3.1 The properties P1-P3 and T1-T6
hold for the above defined projection and conditional
product of discrete probability distributions.

Thus, by Proposition 2.1 every probability distribution
p over D € N induces a disjoint semi-graphoid over
N as follows: for every triplet (A4, B|C') of pairwise
disjoint finite subsets of N one has AU B|C [p] iff

AUBUC( C( AUC( BUC(

P x,y,z) p~(y) = p" " (x,¥) p" " (y,2)
for every x € [[;cunp Xi, ¥ € Xonp, 2 € [[pnp Xi
(thus corresponding to the standard probabilistic def-
inition of conditional independence for this case). Let
us call these semi-graphoids (as triplets of pairwise dis-
joint subsets of N) discrete probabilistic models.

3.2 GENERAL CASE

Now for every i € N a measurable space (X;, X;) is
given and an object, with domain D € A, is a prob-
ability measure P on the product space (Xp, Xp) =
[T;cp(Xi, &;). The projection of P onto E € N is the

marginal measure of P on (Xgnp, Xenn):
P¥(T) = P(T xXp\p)

Of course, P = P if D\ E = (). An example showing
that weak compatibility may not imply strong com-
patibility in this general framework (that is C # C.)
is given in Appendix B (Example B.1).

for every T € Xgnp .

The definition of conditional product is now more tech-
nical (for relevant background see, for example, Neveu
(1964)). Let P having domain E € N and @ hav-
ing domain F € N be weakly compatible. Given
T € Xp\p (Where E\F # ), by a representative of the
conditional probability of T given Xgnp induced by
P is understood any Xgnp-measurable non-negative
function P(T|-) on XgnF such that

P(TxU) = P(T|u) dPP"F (u) (2)
uel
for every U € X'gnr. Observe that in the discrete case
one has:
p(t,u)

PPOF (1)

P({t}u) =

for t € Xp\p and u € Xpgnr with pPF (u) > 0. For
each T such a representative exists, and any two rep-
resentatives can differ only on a set in Xgnp of P-
probability 0. However, it is not always possible to



choose representatives for all T € Xp\r to ensure o-
additivity over T.

Conditional probability Q(V|-) of V. € Xp\g given
XEenr induced by @ is defined analogously. Then one
can introduce the following set function:

R(TxUxV)= /eU P(T|u) - Q(V|u) dPP"F (u) (3)

for T € Xp\r, U € Xnr, V € Xp\g. Of course,
Cartesian products over the empty set are omitted and
PEOF — QFNF i5 the common projection of P and Q
onto ENF.

Equation (3) defines R only on the subclass S of sets
in Xgup of the form T x U x V, as described above.
Then R is finitely additive, but need not be o-additive,
on §. If it is o-additive, it can be uniquely extended
to a o-additive probability measure on X'pyr, which
we also denote by R. In this case, (P,Q) € D, and we
define the conditional product P ® Q = R. Otherwise,
(P,Q) ¢ D, and P ® @ is not defined.

An example showing that strong compatibility does
not imply the existence of the conditional product (i.e.
D #C,) is given in Appendix B (Example B.2).

With the above definition, the corresponding concept
of conditional independence is given by: for pairwise
disjoint A, B,C e N, ALLB|C[P] if:
for T € X4,V € XA,U € Xp,
P(TxUxV) =/ cu P(Tlu) - P(V|u) dP% (u). (4)

We note, by Observation 2.3, that AL B|C [P & Q]
for (P,Q) € D, d(P) = AU C, d(Q) = BUC, since
(Po@" =P, (PoQ)P" =Q.

We assert, without proof, that equivalent statements
to (4) are:

P(TxV|u) = P(T|u)P(V|u) as.[PY] (5)
P(T|u,v) = P(T|u) a.s. [PBYC] (6)
P(V|t,u) = P(V|u) a.s. [PAYC]. (7)

Further, (6) and (7) are equivalent to the existence
of a Xo-measurable representative of P(T |u,v) or of
P(V|t,u), respectively.

The following proposition is proved in Appendix A:

Proposition 3.2 The azioms of §2.1 hold for the
above defined conditional product of probability mea-
sures.

It now follows from Propositions 3.2 and 2.1 that gen-
eral probabilistic conditional independence, as defined
by (4) above via conditional products, induces a dis-
joint semi-graphoid, which we may term a probabilistic
model.

4 SET-THEORETIC FRAMEWORK

In this Section we consider a framework which is in
some ways analogous to the probabilistic one, but

much simpler. The corresponding concept of condi-
tional independence will turn out to be variation inde-
pendence (Dawid 1998), which arises naturally in the
context of relational databases, and has applications
in the statistical analysis of graphical models (Dawid
and Lauritzen 1993).

We again have a space X; for every i € N but the
o-algebra X; is no longer required. An object S with
domain D € N will now be an arbitrary subset of
Xp. We start by defining projection and conditional
product for points. Thuslet & = (x; : i € D). Then for
E € N we define its projection onto E to be ¥ = (z; :
i € DN E). We say that two points = (z; : i € E)
and y = (y; : © € F') are compatible if z:; = y; for every
1 € ENF, i.e. they have the same projections onto
ENF; and in this case define their conditional product
xRyasz = (z;:1 € EUF) wherez; = x;ifi € E, 2; =
y; if i € F. Then projection of an object S is defined
pointwise: S¥ = {z¥ 1 x € S}. If S and T are two
objects, with respective domains E and F', they will
be compatible if their projections onto ENF coincide;
and in this case we take (S,T) € D, defining S® T =
{x®y:x €S, yeT,xand y are compatible}. It is
then not difficult to verify:

Proposition 4.1 The azioms of §2.1 hold for the
above defined conditional product of sets.

The corresponding definition of conditional inde-
pendence is given by: for disjoint A, B,C C N,
AILB|CS] if, for each z € S¢, {(z*,zP) : = €
S,x¢ = 2z} is a Cartesian product. That is to say, as
a point varies in S subject to having a given projec-
tion onto C, there are no constraints relating its pro-
jections onto A and onto B. By Proposition 2.1, this
concept of “variation independence” defines a disjoint
semi-graphoid on N.

5 GRAPHICAL FRAMEWORK

In this Section we explore two specific graphical frame-
works which are widely used in Artificial Intelligence:
undirected graphs and directed acyclic graphs.

5.1 UNDIRECTED GRAPHS

An undirected graph G over a finite set of nodes D C N
is specified by a collection £ of two-element subsets of
D which are called edges. We call D the nodeset, and
L the edgeset, of G, and write G = (D, £). A pathin G
is a sequence of distinct nodes wy,...,wy, n > 1€ D
such that {w;,w;41} € Lfori=1,...,n — 1. We say
that a triplet (A, B|C) of pairwise disjoint finite sub-
sets of N is represented on G and write AL B|C [G]
if for every path wy,...,w, in G with w; € A and
wy, € B there exists 1 < i < n with w; € C. It is
no problem to verify that -1 - | - [G] forms a disjoint
semi-graphoid over N (see for example Pearl (1988)).
Let us call such semi-graphoids UG-models over N.
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Figure 2: Their Common Projections

A natural question arises: Is it possible to define the
above mentioned conditional independence predicate
1l by means of a suitable conditional product opera-
tion on undirected graphs? The answer is negative.

First, suppose for contradiction that separation in
undirected graphs can be equivalently defined by
means of some projection and conditional product sat-
isfying the axioms from §2.1. Let G be the projection
of an undirected graph G over D € A onto E € N.
Then Observation 2.2 and P2 imply A1LB|C [GF]
ifft AILB|C [G] for every triplet (A4, B|C) of pair-
wise disjoint finite sets of A, B,C C END. Observe
that {u,v} is an edge in an undirected graph H over
END iff =({u}lL{v}|E N D\ {u,v} [H]). Hence,
{u,v} € END is an edge in G iff there exists a path
U= wy,...,w, =v,n > 2in G with w; € D\ E
for 1 < i < n. Thus, the projection G¥ is uniquely
determined. Note that projection operation defined in
this way satisfies P1-P3.

To show that no reasonable conditional product oper-
ation can be introduced within this framework, con-
sider the two graphs over {a,b,c,d} from Figure 1.
Evidently {b}1.{d}|{a,c} [G;] for i = 1,2. In case
1L can be defined by means of a conditional prod-
uct operation ® deduce from the definition in §2.2
G; = Gz{a’b’c} ® Gl{a’c’d} for i = 1,2. However, the
corresponding projections of G; onto {a, b, c} and onto
{a, ¢, d} coincide — they are as in Figure 2. Hence, a
contradictory conclusion G; = G5 is derived. Thus,
we have:

Consequence 5.1
Conditional independence for undirected graphs can-
not be defined by means of projection and conditional

product operations on undirected graphs.

The reader may incline to conclude that conditional
product operation cannot induce UG-models at all.
However, this is not true. The reason is that the
framework of undirected graphs can be considered as a
subframework of the discrete probabilistic framework.
Geiger and Pearl (1993) showed that for every UG-
model over D C N there exists a discrete probability
distribution over D inducing it (see also Studeny and
Bouckaert (1998/9)). Proposition 3.1 says that every
such discrete probabilistic model can be defined by
means of a conditional product (on discrete probabil-
ity distributions).

5.1.1 An Alternative Construction

Although we have seen that there is no way of defin-
ing operations of projection and conditional product
on undirected graphs so as to reconstruct the stan-
dard definition of graphical conditional independence
(separation), other constructions are possible, lead-
ing to new concepts of graphical separation. Thus let
G = (D, L) be an undirected graph on D C N. For
A C D the projection of G onto A is just the induced
subgraph G4 = (A, £ N (A x A)), while for more gen-
eral A we define G4 = GA™P. Then two graphs G and
H are compatible if they have exactly the same edges
between all nodes common to both their domains. In
this case we take (G, H) € D, and define their condi-
tional product G ® H as the graph whose nodeset and
edgeset are obtained as the unions of the correspond-
ing nodesets and edgesets of G and H. It is readily
seen that all the axioms of Section 2.1 are satisfied for
these definitions. Correspondingly, we have the fol-
lowing definition of conditional independence with re-
spect to a graph G = (D, £): for disjoint A, B,C' C N,
A1l B|C[G] if there is no edge in £ containing one el-
ement in A and the other in B. By Proposition 2.1,
this definition yields a disjoint semi-graphoid over N.
However, it is distinct from any of the usual forms mo-
tivated by probabilistic independence. In particular,
we see that, for given A and B, A1L B|C holds or fails
simultaneously for every “conditioning set” C' (so long
only as the disjointness requirement is maintained).

5.2 DIRECTED ACYCLIC GRAPHS

A directed graph H over a finite set of nodes D € N/
is specified by a collection A of ordered pairs (u,v)
of distinct nodes, called arrows. A descending path
in H is a sequence of distinct nodes w1, ..., w,, n >
1 such that (w;,w;y1) € Afori =1,....,n—1. It
is called a directed cycle if moreover (wy,,w1) € A.
A directed acyclic graph is a directed graph without
directed cycles.

Testing whether a triplet (A, B|C) of pairwise disjoint
finite subsets of NV is represented in such a graph is
more complicated than in the undirected case. Let us
describe the moralization criterion of Lauritzen et al.
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(1990) which is equivalent to the d-separation criterion
of Pearl (1988). First, consider the set E of ancestors
of AU B U (C, that is the set of nodes u € D such
that there exists a descending path u = wy,...,w, €
AUuBUC, n > 1in H. An undirected graph G
over F, called the moral graph of H, is constructed
as follows: {u,v} € L iff (u,v) € A or (v,u) € A or
there exists w € F with (u,w) € A and (v,w) € A.
The triplet (A4, B|C)) is represented in H, denoted by
A1l B|C [H], if it is represented in the moral graph
G in the sense described in §5.1. Again, the reader
can verify that - 1l - |- [H] determines a disjoint semi-
graphoid over N. Let us call such semi-graphoids
DAG-models.

One can raise a question analogous to that in the previ-
ous case: Is there any conditional product operation on
directed acyclic graphs inducing the conditional inde-
pendence predicate above? The answer is again nega-
tive. The reason is even more basic than in undirected
case: no reasonable projection operation exists. To see
this, consider the graph H of Figure 3 and ask what
could be the projection of H onto F' = {a,b,d,e}? By
Observation 2.2 the DAG-model over F' induced by
this projection is uniquely determined. However, we
observe the following.

Lemma 5.1 There is no directed acyclic graph K
over {a,b,d,e} such that for every triplet A, B,C' C
{a,b,d,e} of pairwise disjoint sets AL B|C [K] iff
AU B|C [H].

Proof: The argument is based on two observations
concerning an arbitrary directed acyclic graph K over
F. The first observation is that {u,v} is an edge in
K (that is either (u,v) or (v,u) is an arrow in K) iff
=({u}lL{v}| L [K]) for every L C F'\ {u, v}. Indeed,
to show sufficiency of this condition take as L the set
of ancestors of {u,v} in K, excluding v and v. The
second observation is that whenever {u, w} and {v,w}
are edges in K but {u,v} is not an edge in K then
(u,w) and (v,w) are simultaneously arrows in K iff
~({u} LL{} | . [K]) for every {w} C L C F \ {u,v}.
Indeed, to show sufficiency of the condition take as L
the set of ancestors of {u,v,w} in K excluding u and
v.

Suppose for contradiction the existence of a graph
K over {a,b,d, e} satisfying the required conditions.
Then the fact —=( {d}1L.{e} | L [H]) for every L C {a,b}
implies that {d, e} is an edge in K. Similarly, the fact
S({b}LL{d} | L [H]) for every L C {a,e} implies that

{b,d} is an edge in K. The fact {b} 1l {e} |0 [H] im-
plies that {b, e} is not an edge in K. Finally, the fact
-({b}L{e}| L [H]) for {d} C L C {a,d} implies that
(b,d) and (e,d) are arrows in K. However, by the same
consideration, interchanging a with e and b with d, de-
rive that (d,b) and (a,b) are arrows in K. Then the
conclusion that both (b,d) and (d,b) are arrows in K
contradicts the assumption that K is acyclic. U

It follows from Lemma 5.1 and Observation 2.2 that
a suitable projection of H onto F' cannot be defined.
Thus, we have:

Consequence 5.2 Conditional independence for di-
rected acyclic graphs cannot be defined by means of
projection and conditional product operations on di-
rected acyclic graphs.

Again, as in the undirected case, the framework of
directed acyclic graphs can be considered as a sub-
framework of the discrete probabilistic framework.
The result that every DAG-model is a discrete proba-
bilistic model is given by Geiger and Pearl (1990); see
also Studeny and Bouckaert (1998/9).

6 CONCLUSION

We have introduced an abstract concept of conditional
product, ®, and shown how it can be used to derive
an induced concept of conditional independence, L.
Conversely, if we start with a definition of 1l obey-
ing the semi-graphoid axioms, we can search for an
associated conditional product ®: in particular, for
(¢,%) € D with d(¢) = A, d(v)) = B, T = ¢ ®) would
have to satisfy 74 = ¢, 77 =, and AILB|C [1] (see
Observation 2.3). As we have seen in the framework of
graphical models, this is not always possible. In other
contexts, the required construction may be possible
but non-unique.

We have developed the theory of semi-graphoids and
conditional products for the special case of domains
which are subsets of some given index set N. Cor-
respondingly, our definitions in the probabilistic and
set-theoretic frameworks have been based on sample
spaces which are Cartesian products. In fact it is possi-
ble to develop the theory in a still more general frame-
work, in which we need only require that the class
of possible domains be an abstract join semi-lattice
(Birkhoff 1949).

The general abstract algebraic structures underlying
conditional independence would seem to have consider-
able independent mathematical interest, and promise
to richly repay further study. Also, they bring a uni-
fying point of view to the study of many application
areas, and it will be fruitful to identify new applica-
tions, both within and beyond the motivating areas
of probability and other uncertainty formalisms, and
graph theory. In particular, in further work we plan
to investigate the existence, nature and properties of



conditional products for a number of special problem
areas of natural interest, including:

1. Possibility theory and Spohn’s theory of k-
functions, as mentioned in Shenoy (1994).

2. Meta Markov models and hyper Markov models
(Dawid and Lauritzen 1993). These are formed
by suitably combining the concepts of probabilis-
tic (§3) and set-theoretic (§4) conditional prod-
uct. The combination process involved can be
abstracted to apply to conditional products more
generally.

3. Dempster-Shafer belief functions (Shafer 1976).
Again, suitable definitions of conditional prod-
uct and conditional independence here will in-
volve combining probabilistic and set-theoretic
concepts.

4. Semi-graphoids induced by imsets (supermodu-
lar integer-valued set functions on subsets of N)
(Studeny 1994/5).

5. Completely general semi-graphoids over N. Is
there any reasonable definition of conditional
product for semi-graphoids? Or perhaps for in-
teresting subclasses, such as those arising from
probabilistic models?

A PROOF OF PROPOSITION 3.2

T1 and T2 are immediate from the definition. For
T3, take P to have domain E, and Q = P¥ where,
without loss of generality, F' C E. In (3), V € Ay =
{0, {#}}, and we have Q(0] ) = 0 a.5.[Q], Q({e} |u) =
1 a.s. [Q]. We can regard R as defined on a subclass
of Xr (on identifying T x U x {e} with T x U), and
then R(T x U) = [, .y P(Tlu)dP" (u), with U € Xp,
= P(T xU). So clearly (P, PT') € D and and P® PF =
P, i.e. T3 holds.

Now suppose (P,Q) € D, with d(P) = A U C,
d(Q) = BUC U D, where A, B,C, D are pairwise dis-
joint. Let S = P ® @Q, so that SAYC = p, §BUCUD —
Q. Then AU(B U D)|C[S]. Using (4) = (6),
we thus have S(T|u,w,z) = S(T|u) a.s. [SBYCVD],
with v € Xg, (w,z) € Xpup = X x Xp.
Equivalently, S(T|u,w,z) is (more precisely, has a
representative that is) Xco-measurable. It readily
follows that S(T|u,z) is Xc-measurable, so that
AlLD | C [SAUC’UD], ie. (P®Q)AUCUD — P®QOUD,
viz. T4" holds; and that S(T|u,w,z) is Xeup-
measurable, so AILB|(C U D)[S], i.e. P® Q =
(P ® Q)AYCYP © @Q, viz. T5" holds.

For verification of T6" take P,Q with d(P) = AU
C, d(Q) = BUCUD, where A,B,C,D are pair-
wise disjoint. Let R = P ® Q°“P, S = R® Q,
so that SAYCYP = R Then AILB|(C U D)[S]
and using (4) = (6) we have that S(T|u,w,z) =
S(T|u,z) as. [S], with u € X¢, w € Xp, z € Xp.
However AL D |C [R] implies that there exists a X¢-

measurable representative of R(T | u, z) and thus a X¢-
measurable representative of S(T |u,z). Hence, there
exists a Xo-measurable representative of S(T |u,w, z),
which is equivalent to Al (B U D)|C[S]. Since
SAUC — p GBUCUD — () this implies S = P ® Q.

B TWO EXAMPLES (Studeny 1987)

To give examples that C # C, and C, # D in the
framework described in §3.2 we utilize the following
lemma.

Lemma B.1 Let (T, .A) be a measurable space, and
B C A a sub-o-algebra such that the diagonal {(t,t) :
t € T} is A x B-measurable. Let us put (X;,)) =
(X3,43) = (T, A4), (X2, A2) = (T, B).

(i) Every probability measure P on (X; x Xa X
X3, X; x Xy x X3) whose marginals on X; x Xo
and X, x X3 are concentrated on their diagonals
is concentrated on the diagonal D = {(t,t,t) :
teT}.

(ii) Every probability measure 7 on (T,.A) induces,
by the formula

PAxBxC)=n(AnBNC)

for A € X1, B € X, A € X3, a probability measure
Pon (X; x Xy x X3, x Xo x X3) concentrated
on the diagonal.

(iii) Conversely, every such measure can be introduced
in this way.

(iv) The marginal of P on X; and on Xj is =, the
marginal of P on X5 is the restriction of 7 to B.

Proof: For (i), realize that both Dy = {(t,t,v)

t,v € T} and Dy = {(v,t,t) : t,v € T} belong
to X1 x Xy x Xz. Of course, D = Dy N Dy and
the assumption P(D;) = P(D3) = 1 imply P(D) =
1. Consider the mapping t — (t,t,t) from T into
X1 x X5 x X3. The reader can easily verify that it is
a measurable one-to-one transformation of (T, A) into
(X1 x Xo x X3, X x Xo x X3) (realize that the inverse
image of A x B x Cis ANBNC) whose inverse transfor-
mation is measurable as well (the image of A can be
written as (A x T x T) N D). Since the image of T is
D, probability measures on (T, A) are transformed to
probability measures on (X; x Xa X X3, X] x X5 x X3)
concentrated on D. Thus, both (ii) and (iii) are evi-
dent; (iv) follows from the formula in (ii). ]

Let us put T = (0, 1) and consider the o-algebra B of
Borel subsets of T. Let us denote by A the Lebesgue
measure on (T,B). It was shown in Halmos (1974)
(Theorem E in §16) that there exists a set M C T
such that A\,(M) = A.(T \ M) = 0. Here A. denotes
Lebesgue inner measure defined by the formula:

A(M) = sup{A(K) : KC M, Ke B}.



Put A={(ENM)U(F\M) : E,F € B}: it is the o-
algebra generated by BU{M}. Observe that whenever
(ENM)U(F\M) = (ENM)U(F\M) for E,E, F,F € B then
EAE C T\ M and FAF C M and therefore A(EAE) =
A(FAF) = 0. In particular, for every a € (0, 1) the set
function on A defined by:

7a(G) = a-AE) + (1 —a) - A(F), (8)
where G = (ENM)U (F\ M), E;F € B, is well-
defined. The reader can show by the procedure in
the proof of Theorem A, §17 of Halmos (1974) that
To 1S a probability measure on (T,.4). Evidently,
the restriction of 7, to B is A for every a € (0, 1),
1 is concentrated on M and 7y is concentrated on
T \ M. Put (XlaXl) = (TaA)a (X2,X2) = (TaB)a
(X3,X;) = (T, A) and introduce the measure R, on
(X1 X X2 X X3,X1 X XQ X Xg) for o € (0,1> by the
formula:

R,(AxBxC)=m,(ANBNCQC) (9)

for A€ X;, B e Xs, A€ X;. By Lemma B.1(ii) R, is
a probability measure concentrated on the diagonal.

Example B.1 There are measurable spaces (X;, X;)
i = 1,2,3 and probability distributions P on (X; x
Xo, X1 x Xp) and @ on (Xs x X3, Ao x A3) which are
weakly compatible but not strongly compatible.

Repeat the construction above and define P to be the
marginal of Ry on X; x X3 and @ to be the marginal
of Ry on X3 x X3. By Lemma B.1(iv) the marginal
of P on X, is \; the same conclusion holds for Q.
Thus, P and @ are weakly compatible. Suppose that
T is a distribution on (X; x Xy x X3, X x X x A3)
having P and @ as marginals. Then 7 has on X;
the same marginal as P, and therefore as Ry, that
is mo (use Lemma B.1(iv)). Similarly, 7" has on X3
the same marginal as @, that is ;. However, by
Lemma B.1(i) T is concentrated on the diagonal and
by Lemma B.1(iv) the marginals of T on X; = X3
coincide. This leads to the contradictory conclusion
mp = m1. Therefore P and ) are not strongly compat-
ible.

Example B.2 There are measurable spaces (X;, X;)
i = 1,2,3 and probability distributions P on (X; x
XQ,Xl X Xg) and Q on (X2 X X3,X2 X Xg) which
are strongly compatible but their conditional product
from §3.2 is not defined.

Repeat the construction before Example B.1 and put
R = R, for a = % Define P and @ to be the re-
spective marginals of R. They are evidently strongly
compatible. Suppose for contradiction that 7" is the
conditional product of P and @ as defined in §3.2.
By Lemma B.1(i) T is concentrated on the diagonal.
Moreover, by Lemma B.1(iv) the marginal of 7" on X4
is 1. Thus, using Lemma B.1(iii), we derive T' = R.
The reader can observe that for G € X; = A of the
form G = (ENM) U (F\ M) where E,F € B the formula

1

P(Glu) = 5 - Xg(w) + 5 - XF(W)

gives a representative of the conditional probability
of G given X> = B induced by P (verify (2) using
(9) and (8) with a = 1). A similar conclusion holds
for Q. Put T = ((0,3) N M) U ((3,1) \ M) € A1,
U=1(0,1) € X, V= ((3, 1) nM) U ((0,3) \ M) € As.
Then p(T|-) = 1 and ¢(V 1 by the formula above
and (3) implies R(T x U

1

) =3

xV)=T(TxUxV)=1.
However, since TNV = 0, (9) gives a contradictory

conclusion R(T x U x V) = 0. Therefore P and @ have
no conditional product.
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