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Abstract

Methods to avoid overfitting fall into two
broad categories: data-oriented (using sepa-
rate data for validation) and representation-
oriented (penalizing complexity in the
model). Both have limitations that are hard
to overcome. We argue that fully adequate
model evaluation is only possible if the search
process by which models are obtained is also
taken into account. To this end, we recently
proposed a method for process-oriented eval-
uation (POE), and successfully applied it
to rule induction (Domingos, 1998a). How-
ever, for the sake of simplicity this treat-
ment made two rather artificial assumptions.
In this paper the assumptions are removed,
and a simple formula for model evaluation
is obtained. Empirical trials show the new,
better-founded form of POE to be as accu-
rate as the previous one, while further reduc-
ing theory sizes.

1 INTRODUCTION

Overfitting avoidance is a central problem in machine
learning and statistics (Cheeseman & Oldford, 1994).
If a learner is sufficiently powerful, whatever repre-
sentation and search methods it uses, it must guard
against selecting a model that fits the training data
well but captures the underlying phenomenon poorly.
Current methods to address it fall into two broad cat-
egories. Data-oriented evaluation uses separate data
to learn and validate models, and includes methods
like cross-validation (Breiman, Friedman, Olshen, &
Stone, 1984; Stone, 1974), the bootstrap (Efron &
Tibshirani, 1993), and reduced-error pruning (Brunk
& Pazzani, 1991). It has several disadvantages: it
is often computationally intensive, reduces the data

available for learning, can be unreliable if the val-

idation set is small, and is itself prone to overfit-
ting if a large number of models is compared (Ng,
1997).  Representation-oriented evaluation seeks to
avoid these problems by using the same data for train-
ing and validation, but a priori penalizing some mod-
els. Bayesian approaches in general fall into this cate-
gory (Cheeseman, 1990; MacKay, 1992; Chickering &
Heckerman, 1997). Representation-oriented measures
typically contain two terms, one reflecting fit to the
data, and one penalizing model complexity (Akaike,
1978; Schwarz, 1978; Wallace & Boulton, 1968; Rissa-
nen, 1978; Moody, 1992). This approach is only ap-
propriate when the simpler models are truly the more
accurate ones, and there is mounting evidence that
this is typically not the case ((Domingos, 1998b, 1997;
Schuurmans, Ungar, & Foster, 1997; Lawrence, Giles,
& Tsoi, 1997; Webb, 1996; Schaffer, 1993; Murphy
& Pazzani, 1994), etc.). Structural risk minimization
(Vapnik, 1995; Shawe-Taylor, Bartlett, Williamson, &
Anthony, 1996; Scheffer & Joachims, 1998) and PAC
learning (Kearns & Vazirani, 1994) are representation-
oriented methods that seek to bound the difference be-
tween training and generalization error using a func-
tion of the model space’s (effective) dimension. This
typically produces bounds that are overly broad, and
requires severely restricting the model space.

We believe the limitations of representation-oriented
evaluation stem from ignoring the search process by
which candidate models' are obtained. A learner with
an unlimited model space can avoid overfitting as long
as it attempts only a limited number of models (even
if it is not possible a priori to predict which). Intu-
itively, the more search has been performed to obtain a
model, the higher its expected generalization error for
a given training-set error. In a recent paper (Domin-
gos, 1998a) we made this intuition precise and applied
the resulting formulas to the CN2 rule learner (Clark &
Niblett, 1989), obtaining systematic improvements in

!By “model” we mean model structure and parameter
values.



generalization error and theory size. However, for the
sake of simplicity the treatment in (Domingos, 1998a)
made two rather artificial assumptions: that all er-
ror rates are a priori equally likely, and that a model’s
generalization error can be roughly estimated by treat-
ing all previously-generated models as having similar
generalization errors. In this paper we remove these
two assumptions, interpret the result, and successfully
apply it to CN2.

2 PROCESS-ORIENTED
EVALUATION

Suppose learner L, consists of drawing m hypotheses
at random (independently) from some model space,
and returning the one with lowest error on a training
sample S. Let hy,,,; be the ith hypothesis generated
by Ly,. If hy, ;’s true error rate is €, ; and S consists
of n independently drawn examples, the number of
errors e, ; committed by h,,; on S is a binomially
distributed variable with parameters n and €, ;:

p(em7i|n: €m7i) = b(em7i|n: €m7i)
n em,i - .
= ()i e
(1)

Let B(em,i|n, €m,i) be the probability that the number
of errors is greater than €m,i:

n

Z b(i|n, €m,i) (2)

i=em,i+1

B(em7i|n: €m7i) =

Notice that this notation is the opposite of the usual
notation for a cumulative distribution function (i.e.,
B(eln,e) = 1 — Binomial_cdf(e|n,€)). It will be more
convenient for what follows.

The probability of L,, returning a hypothesis h,, that
misclassifies e,, training examples is the probability
that at least one of the m hypotheses h,, ; makes e,
errors, and all the others make e,, or more errors.
Equivalently, it’s the probability that all hypotheses
hm,; make more than e,, — 1 errors, minus the proba-
bility that they all make more than e,, errors:

plem|n, ém) = HB(em —1|n, €m i)
i=1
~ I Bemn, em.:) (3)

i=1

where €, = (€m,1;- -, €mis---; €m,m). By Bayes’ the-
orem:

P(Em|n, em) X P(Em) P(em|n, ) (4)

Let hy,,. be the hypothesis with lowest error (i.e., the
“chosen” hypothesis, so that learner L,, returns hp, .
and e, = em,.). Our goal is to predict hy, = hm,c's
true error rate €, = €, . from e,,. For this purpose,
we marginalize Equation 4 over all the e, ; save em,c:2

Dlemcln, em) /

€m\ e

P(€m) p(em[n, €m) dgm\c (5)

where the integral is multiple, over all components of
€m Save €, .. The expected value of €,, . can now be
computed by integration:

1
/ Em,c p(ﬁm,c|n:€m) dEm,c
Elem.cn, em] = 22 (6)

1
/ P(€m e, €m) dem ¢
0

Let:
1
o= [ plendbenlnendens (0
0
1
F = / p(em’i) B(em|n, em,i) dem’i (8)
0
1
/ em,C p(em,c) b(em|n7 em,C) dem,c
Eb[em,c] = 0 1
/ P(€m,c) b(em|n, €m c) dem .
0
(9)
1
/ em,c p(em,c) B(e‘m‘na Em,C) dEm,c
EB [em,c] 0

1
/ Dlem.e) Blem!n, eme) dem.e
0
(10)

Substituting Equation 3 into 5 and 5 into 6, using the
assumption of independent hypotheses, and assuming
the same prior p(en ;) for all hypotheses, we obtain
the following expression:

2This is where we previously assumed that V; €, =
€m,. and dropped the prior p(&.).



m—1
E[em,c|n:em] = (F,ﬂ_f‘f-g—n{)_mEb[em,c]
F(F+f)m ' - Fm 1]
BT EE T

(11)

For all but the smallest n, F' > f (Equations 7,
8, 1 and 2). Thus, using the binomial expansion of
(F + f)™ we obtain that (F + f)™ — F™ ~mfF™~!,
(F+ f)ym=t — Fm=! ~ (m — 1)fF™72, and (F +
f)m 1 ~ Fm™~1 Substituting these into Equation 11
and simplifying, we obtain:

n, em] _ Eb[Em,c] + (m — ]-)EB[Em,c] (12)

Elem e
m

Let €)% = e, /n be the maximum likelihood estimate
of €. For sufficiently large n, Ejy[em, ] ~ )L (Equa-
tion 9, given a well-behaved prior p(em ), i.e., as long
as p(€m,c) # 0 in the neighborhood of €, . = €m/n).
Let eﬁl’:i‘” = fol €m,eP(€m,c) dem, be the prior expected
value of €, .. Suppose a beta or similarly bell-shaped
prior is used (Bernardo & Smith, 1994); this is what
makes intuitive sense for error rates. In general e, /n
(the inflection point of B(em|n, €m ) as a function of
€m,c) will fall below €,.7i°" (the peak of the prior), since
em will tend to zero as more hypotheses are gener-
ated and the one with lowest error selected. Then, for
sufficiently large n, B(em|n,€m,.) ~ 1 over the entire
range where p(€,, ) is significantly greater than zero
(leaving out only the left tail of the distribution), and
Eplém,] ~ el7i" (Equation 10). Making these substi-
tutions we finally obtain (omitting the ¢ indexes, since

€Em = €m,c):

ML -1 Prior

Elem|n,em] =
m

This formula is quite similar to the well-known Laplace
correction or m-estimate (Cestnik, 1990; Good, 1965).
Its role for the number of hypotheses is similar to the
m-estimate’s role for the number of examples. The m-
estimate gradually changes from the maximum likeli-
hood estimate to the prior as the number of examples
decreases; similarly, Equation 13 gradually uncovers
the prior as the number of hypotheses generated in-
creases. The intuitive meaning of Equation 13 is clear:
when a learner generates a series of hypotheses and re-
turns the one with lowest training-set error, the more
hypotheses it generates the less sure we are that the
observed error corresponds to the true error, and the

more weight should be given to the a prior: expected
error.

This result is intuitively satisfying, because it gives a
mathematical basis for increasing model uncertainty as
the amount of search performed increases. However,
Equation 13 as it stands is of limited practical use,
because it converges very rapidly to €Z""°" as more
independent hypotheses are generated. As a result,
for all but the earliest few hypotheses, the error es-
timate Elen|n,en] is quite insensitive to the empiri-
cal error eME, This effect, however, is at least partly
due to the fact that hypothesis dependences are be-
ing ignored, and as a result the empirical error of one
hypothesis carries no information about the true er-
ror of another. In particular, only the empirical er-
ror of the chosen hypothesis carries information about
its true error, resulting in the chosen hypothesis’ ex-
pected error being the unalloyed prior in all a priori
possible situations where the minimum empirical er-
ror is not the chosen hypothesis’ (Equation 3). In
practical learners, on the other hand, the hypothe-
ses generated are typically very strongly dependent.
Thus, in general, all the empirical errors observed will
carry information about the true error of the chosen
hypothesis, and Equation 13 should converge corre-
spondingly slower to the prior term e£7°". We pro-
pose to model this by replacing m in Equation 13 by
a slower-growing function of m, which can be thought
of as the “effective number of independent hypotheses
attempted.” For example, attempting ten hypothe-
ses with given dependences between them may be
equivalent (with respect to the convergence of Equa-
tion 13 to efi°") to attempting two independent hy-
potheses. Thus, Equation 13 provides a simple way of
combining data-oriented, representation-oriented and
process-oriented information when estimating general-
ization error: €M’ is the data-oriented component (the
model’s empirical error), e£7°" is the representation-
oriented component (a function of the model’s form),
and m is the process-oriented component (a function
of the search process that led to the model).

3 AN APPLICATION: RULE
INDUCTION

Most rule induction systems employ a set covering
or “separate and conquer” search strategy (Michalski,
1983; Clark & Niblett, 1989). Rules are induced one at
a time, and each rule starts with a training set com-
posed of the examples not covered by any previous
rules. A rule is induced by adding conditions one at
a time, starting with none (i.e., the rule initially cov-
ers the entire instance space). The next condition to
add is chosen by attempting all possible conditions.



Conditions on symbolic attributes are typically of the
form a; = v;;, where v;; is a possible value of attribute
a;. Conditions on numeric attributes are typically of
the form a; < wv;; or a; > v;;, where the thresholds
v;; are usually values of the attribute that appear in
the training set. In the beam search process used by
many rule learners, at each step the best b versions of
the rule according to some evaluation function are se-
lected for further specialization. AQ (Michalski, 1983)
continues adding conditions until the rule is “pure”
(i.e., until it covers examples of only one class). This
can lead to severe overfitting. The latest version of the
CN2 system (Clark & Niblett, 1989; Clark & Boswell,
1991) uses a simple and effective Bayesian method to
combat this: induction of a rule stops when no spe-
cialization improves its error rate, and the latter is
computed using a Laplace correction or m-estimate. If
n, is the number of examples covered by a rule r, and
e, is the number of those examples it misclassifies, the
conventional estimate of the rule’s error rate is e, /n..,
but its m-estimate is:

¢, = Ert meo (14)
N, +m

where €q is the rule’s a priori error, which CN2 takes to
be the error obtained by random guessing if all classes
are equally likely: €y = (¢ — 1) /¢, where ¢ is the num-
ber of classes. This prior value is given a weight of m
examples (i.e., the behavior of Equation 14 is equiva-
lent to having m additional examples covered by the
rule, one of each class). CN2 uses m=c. As conditions
are added, the rule covers fewer and fewer examples,
and €, tends to €. Thus a rule making more misclassi-
fications may be preferred if it covers more examples,
causing induction to stop earlier and reducing overfit-
ting. Clark and Boswell (1991) found this version of
CN2 to be more accurate than C4.5 (Quinlan, 1993)
on 10 of the 12 benchmark datasets they used for test-
ing. However, this scheme ignores that, as more and
more conditions are attempted, the probability of find-
ing one that appears to reduce the rule’s error merely
by chance increases. This will lead the m-estimate
to underestimate the chosen condition’s true error,
and CN2 to overfit. The upward correction made to
¢, should increase with the number of conditions at-
tempted. The process-oriented evaluation framework
described in the previous section allows us to do this
in a systematic way, as follows.

Equation 13 can be used to compare the hypotheses
returned by k learners Ly, ..., Ly, ..., L, and choose
the one with lowest predicted error. It can also be used
to compare successive stages of the same learner, by
taking L.,,, to be the result of continuing the search of
learner L,,, (mi < may) with mg —m; more hypothe-

ses. In particular, the successive stages can be the suc-
cessive versions of a rule returned by CN2 or a similar
“separate and conquer” rule learner. A natural choice
for the prior expected error eflfg"”’ for all rule versions
is the default error rate, obtained by always predicting
the most frequent class in the training set. The choice
of slower-growing function of m is less obvious. One
possibility is m' = logm (for m > 1), based on an anal-
ogy with decision tree induction. When learning a tree
using an algorithm like CART (Breiman et al., 1984),
ID3 (Quinlan, 1986) or C4.5 (Quinlan, 1993), each new
hypothesis is obtained by modifying the previous one
in only a fraction of the instance space (the fraction
corresponding to the node currently being expanded),
and this fraction becomes exponentially smaller as in-
duction progresses. Only an entire new level of the
decision tree corresponds to an entirely new hypothe-
sis. Since the depth of the tree grows on average with
the logarithm of the number of nodes, we can take
the equivalent number of independent hypotheses at-
tempted m' to be proportional to the logarithm of the
total number of hypotheses attempted m. Since a rule
corresponds to a path through a decision tree, both in
its content and in the way it is induced by a system
like CN2, we can apply a similar line of reasoning to
the number of rules attempted.?

Let each hypothesis be one version of the rule at-
tempted during the beam search. Equation 13 does
not need to be computed for every rule version gen-
erated during the beam search. This would intro-
duce a preference for adding some conditions instead
of others, which is unlikely to produce good results un-
less there is domain knowledge supporting such pref-
erences. Instead, Equation 13 can be computed only
once for each round. One round consists of gener-
ating every possible one-step specialization of each
rule version in the beam, and selecting the b best.
Thus, if there are a attributes and v is the maximum
number of values of any attribute (in the worst case,
v = n for numeric attributes), one round corresponds
to O(bav) rule versions. Let myj be the total num-
ber of rule versions generated up to, and including,
round k. Round 1 consists of the initial rule with
no conditions, and m; = 1. Induction stops when
E[Emk‘nmwemk] > E[Emk—1|nmk—1=€mk—1]’ for k> 1.

4 EMPIRICAL STUDY

In order to test the effectiveness of process-oriented
evaluation, default and process-oriented versions of

®In the experiments described below, the results were
not sensitive to the base of the logarithms used. Base 2,
base e and base 10 all yielded practically indistinguishable
error rates and theory sizes. The results reported are for
base 2.



Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 with two versions of process-

oriented evaluation (CN2-POE1 and CN2-POE2).

Dataset Error rate Theory size

CN2 CN2-POE1 CN2-POE2 CN2 CN2-POE1 CN2-POE2
Breast 30.0+1.4 29.7+£1.4 30.3+1.3 114.5+2.4 58.7+2.6 104.9£2.6
Echocardio | 32.74+1.2 32.3+1.3 31.24+1.1 42.94+1.2 35.44+2.1 39.2+1.3
Glass 39.0£1.5 38.3+1.7 39.1+1.4 51.8+£1.0 54.7£1.1 45.2+1.0
HeartC 20.8+0.8 22.54+0.8 22.440.8 57.84+0.9 52.0+1.0 52.6+1.0
HeartH 22.4+1.1 21.8+1.3 21.9+1.1 69.2+1.5 60.3+1.4 58.9+1.1
Hepatitis 21.240.9 19.2+1.3 18.8+1.1 40.2+1.7 34.0+1.3 34.4+1.1
Lympho 21.4+1.1 24.1+£1.1 23.4£1.2 39.5+0.7 38.7£1.0 32.841.1
Soybean 19.5+1.0 19.4+1.0 22.9£1.2 116.7+£2.3  110.9+3.1 97.7+1.7
Thyroid 4.1£0.2 3.8+0.2 4.0£0.2 97.5+2.0 104.84+2.0 83.4+2.6
Tumor 60.1£1.0 65.1+1.3 60.0£1.2 302.844.6 273.9+4.4  241.6+£3.9
Voting 4.8+0.4 4.3+0.3 4.3+£0.3 61.7+2.9 49.6+£2.5 33.2+1.7

CN2 were compared on the benchmark datasets previ-
ously used by Clark and Boswell (1991).* The process-
oriented versions were implemented by adding the nec-
essary facilities to the CN2 source code. Details of the
earlier version of POE and its implementation can be
found in (Domingos, 1998a). CN2’s Laplace estimates
are still used to choose the best b specializations in
each round. This is preferable to using uncorrected
estimates, since as implemented POE has no prefer-
ence between hypotheses within the same round, and
this is also a factor in avoiding overfitting. However,
the Laplace correction distorts the value of eM” used
in Equation 13. This will be particularly pronounced
when there are many classes, since CN2 uses m = c.
In order to minimize this problem, m = 2 was used
with POE.?

The experimental procedure of (Clark & Boswell,
1991) was followed. Each dataset was randomly di-
vided into 67% for training and 33% for testing, and
the error rate and theory size (total number of con-
ditions) were measured for default CN2, CN2-POE1
(the earlier version) and CN2-POE2 (the version de-
scribed in this paper). This was repeated 20 times.
The average results and their standard deviations are
shown in Table 1;% the results for CN2 and CN2-POE1
are from (Domingos, 1998a).

Compared to CN2-POE1, CN2-POE2 roughly main-

4With the exception of pole-and-cart, which is not avail-
able in the UCI repository (Blake, Keogh, & Merz, 1998).

Simply changing m = ¢ to m = 2 in default CN2 does
not change its performance on the datasets used.

8There are some differences between CN2’s results and
those reported in (Clark & Boswell, 1991). This may be
due to the fact that the default version of CN2 uses a beam
size of 5, whereas Clark and Boswell used b = 20. The
distribution version of CN2 may also differ from the one
used in (Clark & Boswell, 1991).

tains accuracy (lower error in five datasets, higher
in five, same in one; 0.2% lower error on average)
while reducing theory size in most datasets (lower in
seven, higher in four, 4.5 fewer conditions on average).
This indicates that Equation 13 is successfully delet-
ing unnecessary conditions that the previous method
retained. Being in closed form, Equation 13 is also
much more efficient to evaluate than the integrals in
(Domingos, 1998a).

These results are obviously very preliminary. A version
of POE that takes CN2’s search process into account
in more detail is currently being developed. We plan to
apply it to the datasets above and study its behavior in
more detail, using those datasets and synthetic ones.

5 RELATED WORK

The literature on model selection and error estimation
is very large, and we will not attempt to review it
here. The incompleteness of representation-oriented
evaluation was noted 20 years ago by Pearl (1978):

It would, therefore, be more appropriate to
connect credibility with the nature of the se-
lection procedure rather than with properties
of the final product. When the former is not
explicitly known ... simplicity merely serves
as a rough indicator for the type of processing
that took place prior to discovery.

Huber (St. Amant & Cohen, 1997; Huber, 1994) ex-
presses thus the need for process-oriented evaluation:

Data analysis is different from, for exam-
ple, word processing and batch programming:
the correctness of the end product cannot be



checked without inspecting the path leading
to it.

Several pieces of previous work take into account the
number of hypotheses being compared, and so can be
considered early steps towards process-oriented evalu-
ation. This includes notably systems that use Bonfer-
roni corrections when testing significance (e.g., (Kass,
1980; Gaines, 1989; Jensen & Schmill, 1997); see
also (Miller, 1981; Klockars & Sax, 1986; Westfall &
Wolfinger, 1997)). A key difference between these sys-
tems and what is proposed here is that they require
a somewhat arbitrary choice of significance threshold,
while this paper directly attempts to optimize the end
goal (expected generalization error). Also, the Bonfer-
roni correction does not take hypothesis dependencies
into account, while the present framework offers (at
least in principle) a way of doing so.

Quinlan and Cameron-Jones’s (1995) “layered search”
method for automatically selecting CN2’s beam width
can also be considered a form of process-oriented eval-
uation. While layered search and the approach pro-
posed here have similar aims, their biases differ: lay-
ered search limits the search’s width, while the present
method limits its length. The latter may be more effec-
tive in reducing the fragmentation and small disjuncts
problems (Pagallo & Haussler, 1990; Holte, Acker, &
Porter, 1989). The assumptions made here are also
clearer than those implicit in Quinlan and Cameron-
Jones’s (1995) measure.

Freund (1998) recently proposed a form of process-
oriented evaluation that is closer to the PAC-learning
framework. It is an extension of the statistical query
model (Kearns, 1993) that attempts to obtain tighter
bounds on generalization error by considering the tree
of queries that the learner could make. While the gen-
eral algorithm to obtain these bounds has exponential
computational cost in the number of queries made,
Freund proposes a specialized version for algorithms
based on local search (e.g., CN2) that is more efficient,
at the price of loosened bounds. How tight the bounds
will be in either case is still an open question; no em-
pirical testing of Freund’s (1998) method has been car-
ried out so far. These bounds could be used for model
selection by preferring the model with the lowest up-
per bound (for given parameters). However, as with
Bonferroni corrections, the result will in general de-
pend on the choice of parameters, for which there is
no clear criterion. While the approach proposed in
the present paper directly obtains an estimate of the
generalization error, it would also be useful to have a
confidence interval for it, and Freund’s (1998) method
may be a path to it.

Evaluating models that are the result of a search
process, not just of fitting the parameters of a pre-
determined structure, has traditionally not been a con-
cern of statisticians. However, this is beginning to
change (Chatfield, 1995).

Some of the arguments made here for taking into ac-
count the number of hypotheses attempted are made
in greater detail in (Jensen & Cohen, 1998) and (Ng,
1997). The present paper goes further in also propos-
ing a method for taking dependences between those
hypotheses into account, and in proposing a princi-
pled way of combining search process information with
more traditional representation-based factors.

6 CONCLUSION

Two main types of model selection are currently avail-
able. In data-oriented evaluation, a hypothesis’s score
does not depend on its form or how the hypothe-
sis was found, but only on its performance on the
data. In representation-oriented evaluation, the score
depends on the data and on the hypothesis’s form,
but not on the search process that led to it. Recently
(Domingos, 1998a) we argued that the latter cannot
be ignored, and proposed process-oriented evaluation
(POE). However, in (Domingos, 1998a) we assumed
that all models searched had similar true error rates,
and that all error rates were equally likely a priori.
In this paper we removed these assumptions, and de-
rived a simple approximation for the generalization er-
ror of the returned hypothesis as a function of the num-
ber of hypotheses searched. This approximation is a
weighted average of the maximum likelihood estimate
of the error and the prior expected error, that increas-
ingly favors the prior as more models are attempted.
This approximation gives a mathematical basis to the
intuition that model uncertainty should increase with
the amount of search conducted.

In the future we plan to: study the statistical proper-
ties of Equation 11, in particular when the sample size
is not large enough to approximate it by Equation 13;
compare the method proposed here with other forms
of process-oriented evaluation (e.g., Bonferroni cor-
rections (Jensen & Schmill, 1997) and layered search
(Quinlan & Cameron-Jones, 1995)); apply it to other
learners; and study methods for accurately estimating
the growth of the effective number of hypotheses m/
in each of these learners.
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