
Process-Oriented Evaluation: The Next StepPedro DomingosArti�cial Intelligence GroupInstituto Superior T�ecnicoLisbon 1049-001, Portugalpedrod@gia.ist.utl.pthttp://www.gia.ist.utl.pt/�pedrodAbstractMethods to avoid over�tting fall into twobroad categories: data-oriented (using sepa-rate data for validation) and representation-oriented (penalizing complexity in themodel). Both have limitations that are hardto overcome. We argue that fully adequatemodel evaluation is only possible if the searchprocess by which models are obtained is alsotaken into account. To this end, we recentlyproposed a method for process-oriented eval-uation (POE), and successfully applied itto rule induction (Domingos, 1998a). How-ever, for the sake of simplicity this treat-ment made two rather arti�cial assumptions.In this paper the assumptions are removed,and a simple formula for model evaluationis obtained. Empirical trials show the new,better-founded form of POE to be as accu-rate as the previous one, while further reduc-ing theory sizes.1 INTRODUCTIONOver�tting avoidance is a central problem in machinelearning and statistics (Cheeseman & Oldford, 1994).If a learner is su�ciently powerful, whatever repre-sentation and search methods it uses, it must guardagainst selecting a model that �ts the training datawell but captures the underlying phenomenon poorly.Current methods to address it fall into two broad cat-egories. Data-oriented evaluation uses separate datato learn and validate models, and includes methodslike cross-validation (Breiman, Friedman, Olshen, &Stone, 1984; Stone, 1974), the bootstrap (Efron &Tibshirani, 1993), and reduced-error pruning (Brunk& Pazzani, 1991). It has several disadvantages: itis often computationally intensive, reduces the dataavailable for learning, can be unreliable if the val-

idation set is small, and is itself prone to over�t-ting if a large number of models is compared (Ng,1997). Representation-oriented evaluation seeks toavoid these problems by using the same data for train-ing and validation, but a priori penalizing some mod-els. Bayesian approaches in general fall into this cate-gory (Cheeseman, 1990; MacKay, 1992; Chickering &Heckerman, 1997). Representation-oriented measurestypically contain two terms, one re
ecting �t to thedata, and one penalizing model complexity (Akaike,1978; Schwarz, 1978; Wallace & Boulton, 1968; Rissa-nen, 1978; Moody, 1992). This approach is only ap-propriate when the simpler models are truly the moreaccurate ones, and there is mounting evidence thatthis is typically not the case ((Domingos, 1998b, 1997;Schuurmans, Ungar, & Foster, 1997; Lawrence, Giles,& Tsoi, 1997; Webb, 1996; Scha�er, 1993; Murphy& Pazzani, 1994), etc.). Structural risk minimization(Vapnik, 1995; Shawe-Taylor, Bartlett, Williamson, &Anthony, 1996; Sche�er & Joachims, 1998) and PAClearning (Kearns & Vazirani, 1994) are representation-oriented methods that seek to bound the di�erence be-tween training and generalization error using a func-tion of the model space's (e�ective) dimension. Thistypically produces bounds that are overly broad, andrequires severely restricting the model space.We believe the limitations of representation-orientedevaluation stem from ignoring the search process bywhich candidate models1 are obtained. A learner withan unlimited model space can avoid over�tting as longas it attempts only a limited number of models (evenif it is not possible a priori to predict which). Intu-itively, the more search has been performed to obtain amodel, the higher its expected generalization error fora given training-set error. In a recent paper (Domin-gos, 1998a) we made this intuition precise and appliedthe resulting formulas to the CN2 rule learner (Clark &Niblett, 1989), obtaining systematic improvements in1By \model" we mean model structure and parametervalues.



generalization error and theory size. However, for thesake of simplicity the treatment in (Domingos, 1998a)made two rather arti�cial assumptions: that all er-ror rates are a priori equally likely, and that a model'sgeneralization error can be roughly estimated by treat-ing all previously-generated models as having similargeneralization errors. In this paper we remove thesetwo assumptions, interpret the result, and successfullyapply it to CN2.2 PROCESS-ORIENTEDEVALUATIONSuppose learner Lm consists of drawing m hypothesesat random (independently) from some model space,and returning the one with lowest error on a trainingsample S. Let hm;i be the ith hypothesis generatedby Lm. If hm;i's true error rate is �m;i and S consistsof n independently drawn examples, the number oferrors em;i committed by hm;i on S is a binomiallydistributed variable with parameters n and �m;i:p(em;ijn; �m;i) = b(em;ijn; �m;i)= � nem;i � �em;im;i (1� �m;i)n�em;i(1)Let B(em;ijn; �m;i) be the probability that the numberof errors is greater than em;i:B(em;ijn; �m;i) = nXi=em;i+1 b(ijn; �m;i) (2)Notice that this notation is the opposite of the usualnotation for a cumulative distribution function (i.e.,B(ejn; �) = 1 � Binomial cdf(ejn; �)). It will be moreconvenient for what follows.The probability of Lm returning a hypothesis hm thatmisclassi�es em training examples is the probabilitythat at least one of the m hypotheses hm;i makes emerrors, and all the others make em or more errors.Equivalently, it's the probability that all hypotheseshm;i make more than em � 1 errors, minus the proba-bility that they all make more than em errors:p(emjn;~�m) = mYi=1B(em � 1jn; �m;i)� mYi=1B(emjn; �m;i) (3)

where ~�m = (�m;1; : : : ; �m;i; : : : ; �m;m). By Bayes' the-orem: p(~�mjn; em) / p(~�m) p(emjn;~�m) (4)Let hm;c be the hypothesis with lowest error (i.e., the\chosen" hypothesis, so that learner Lm returns hm;cand em = em;c). Our goal is to predict hm = hm;c'strue error rate �m = �m;c from em. For this purpose,we marginalize Equation 4 over all the em;i save em;c:2p(�m;cjn; em) / Z~�mnc p(~�m) p(emjn;~�m) d~�mnc (5)where the integral is multiple, over all components of~�m save �m;c. The expected value of �m;c can now becomputed by integration:E[�m;cjn; em] = Z 10 �m;c p(�m;cjn; em) d�m;cZ 10 p(�m;cjn; em) d�m;c (6)Let: f = Z 10 p(�m;i) b(emjn; �m;i) d�m;i (7)F = Z 10 p(�m;i) B(emjn; �m;i) d�m;i (8)Eb[�m;c] = Z 10 �m;c p(�m;c) b(emjn; �m;c) d�m;cZ 10 p(�m;c) b(emjn; �m;c) d�m;c (9)EB [�m;c] = Z 10 �m;c p(�m;c) B(emjn; �m;c) d�m;cZ 10 p(�m;c) B(emjn; �m;c) d�m;c (10)Substituting Equation 3 into 5 and 5 into 6, using theassumption of independent hypotheses, and assumingthe same prior p(�m;i) for all hypotheses, we obtainthe following expression:2This is where we previously assumed that 8i �m;i =�m;c and dropped the prior p(~�m).



E[�m;cjn; em] = f(F + f)m�1(F + f)m � FmEb[�m;c]�F [(F + f)m�1 � Fm�1](F + f)m � Fm EB [�m;c](11)For all but the smallest n, F � f (Equations 7,8, 1 and 2). Thus, using the binomial expansion of(F + f)m we obtain that (F + f)m �Fm ' mfFm�1,(F + f)m�1 � Fm�1 ' (m � 1)fFm�2, and (F +f)m�1 ' Fm�1. Substituting these into Equation 11and simplifying, we obtain:E[�m;cjn; em] = Eb[�m;c] + (m� 1)EB [�m;c]m (12)Let �MLm;c = em=n be the maximum likelihood estimateof �m;c. For su�ciently large n, Eb[�m;c] ' �MLm;c (Equa-tion 9, given a well-behaved prior p(�m;c), i.e., as longas p(�m;c) 6= 0 in the neighborhood of �m;c = em=n).Let �Priorm;c = R 10 �m;cp(�m;c)d�m;c be the prior expectedvalue of �m;c. Suppose a beta or similarly bell-shapedprior is used (Bernardo & Smith, 1994); this is whatmakes intuitive sense for error rates. In general em=n(the in
ection point of B(emjn; �m;c) as a function of�m;c) will fall below �Priorm;c (the peak of the prior), sinceem will tend to zero as more hypotheses are gener-ated and the one with lowest error selected. Then, forsu�ciently large n, B(emjn; �m;c) ' 1 over the entirerange where p(�m;c) is signi�cantly greater than zero(leaving out only the left tail of the distribution), andEB [�m;c] ' �Priorm;c (Equation 10). Making these substi-tutions we �nally obtain (omitting the c indexes, since�m = �m;c):E[�mjn; em] = �MLm + (m� 1)�Priormm (13)This formula is quite similar to the well-known Laplacecorrection or m-estimate (Cestnik, 1990; Good, 1965).Its role for the number of hypotheses is similar to them-estimate's role for the number of examples. The m-estimate gradually changes from the maximum likeli-hood estimate to the prior as the number of examplesdecreases; similarly, Equation 13 gradually uncoversthe prior as the number of hypotheses generated in-creases. The intuitive meaning of Equation 13 is clear:when a learner generates a series of hypotheses and re-turns the one with lowest training-set error, the morehypotheses it generates the less sure we are that theobserved error corresponds to the true error, and the

more weight should be given to the a priori expectederror.This result is intuitively satisfying, because it gives amathematical basis for increasing model uncertainty asthe amount of search performed increases. However,Equation 13 as it stands is of limited practical use,because it converges very rapidly to �Priorm as moreindependent hypotheses are generated. As a result,for all but the earliest few hypotheses, the error es-timate E[�mjn; em] is quite insensitive to the empiri-cal error �MLm . This e�ect, however, is at least partlydue to the fact that hypothesis dependences are be-ing ignored, and as a result the empirical error of onehypothesis carries no information about the true er-ror of another. In particular, only the empirical er-ror of the chosen hypothesis carries information aboutits true error, resulting in the chosen hypothesis' ex-pected error being the unalloyed prior in all a prioripossible situations where the minimum empirical er-ror is not the chosen hypothesis' (Equation 3). Inpractical learners, on the other hand, the hypothe-ses generated are typically very strongly dependent.Thus, in general, all the empirical errors observed willcarry information about the true error of the chosenhypothesis, and Equation 13 should converge corre-spondingly slower to the prior term �Priorm . We pro-pose to model this by replacing m in Equation 13 bya slower-growing function of m, which can be thoughtof as the \e�ective number of independent hypothesesattempted." For example, attempting ten hypothe-ses with given dependences between them may beequivalent (with respect to the convergence of Equa-tion 13 to �Priorm ) to attempting two independent hy-potheses. Thus, Equation 13 provides a simple way ofcombining data-oriented, representation-oriented andprocess-oriented information when estimating general-ization error: �MLm is the data-oriented component (themodel's empirical error), �Priorm is the representation-oriented component (a function of the model's form),and m is the process-oriented component (a functionof the search process that led to the model).3 AN APPLICATION: RULEINDUCTIONMost rule induction systems employ a set coveringor \separate and conquer" search strategy (Michalski,1983; Clark & Niblett, 1989). Rules are induced one ata time, and each rule starts with a training set com-posed of the examples not covered by any previousrules. A rule is induced by adding conditions one ata time, starting with none (i.e., the rule initially cov-ers the entire instance space). The next condition toadd is chosen by attempting all possible conditions.



Conditions on symbolic attributes are typically of theform ai = vij , where vij is a possible value of attributeai. Conditions on numeric attributes are typically ofthe form ai � vij or ai > vij , where the thresholdsvij are usually values of the attribute that appear inthe training set. In the beam search process used bymany rule learners, at each step the best b versions ofthe rule according to some evaluation function are se-lected for further specialization. AQ (Michalski, 1983)continues adding conditions until the rule is \pure"(i.e., until it covers examples of only one class). Thiscan lead to severe over�tting. The latest version of theCN2 system (Clark & Niblett, 1989; Clark & Boswell,1991) uses a simple and e�ective Bayesian method tocombat this: induction of a rule stops when no spe-cialization improves its error rate, and the latter iscomputed using a Laplace correction or m-estimate. Ifnr is the number of examples covered by a rule r, ander is the number of those examples it misclassi�es, theconventional estimate of the rule's error rate is er=nr,but its m-estimate is:̂�r = er +m�0nr +m (14)where �0 is the rule's a priori error, which CN2 takes tobe the error obtained by random guessing if all classesare equally likely: �0 = (c� 1)=c, where c is the num-ber of classes. This prior value is given a weight of mexamples (i.e., the behavior of Equation 14 is equiva-lent to having m additional examples covered by therule, one of each class). CN2 uses m=c. As conditionsare added, the rule covers fewer and fewer examples,and �̂r tends to �0. Thus a rule making more misclassi-�cations may be preferred if it covers more examples,causing induction to stop earlier and reducing over�t-ting. Clark and Boswell (1991) found this version ofCN2 to be more accurate than C4.5 (Quinlan, 1993)on 10 of the 12 benchmark datasets they used for test-ing. However, this scheme ignores that, as more andmore conditions are attempted, the probability of �nd-ing one that appears to reduce the rule's error merelyby chance increases. This will lead the m-estimateto underestimate the chosen condition's true error,and CN2 to over�t. The upward correction made to�r should increase with the number of conditions at-tempted. The process-oriented evaluation frameworkdescribed in the previous section allows us to do thisin a systematic way, as follows.Equation 13 can be used to compare the hypothesesreturned by k learners L1, : : :, Lm, : : :, Lk, and choosethe one with lowest predicted error. It can also be usedto compare successive stages of the same learner, bytaking Lm2 to be the result of continuing the search oflearner Lm1 (m1 < m2) with m2 �m1 more hypothe-

ses. In particular, the successive stages can be the suc-cessive versions of a rule returned by CN2 or a similar\separate and conquer" rule learner. A natural choicefor the prior expected error �Priorm;c for all rule versionsis the default error rate, obtained by always predictingthe most frequent class in the training set. The choiceof slower-growing function of m is less obvious. Onepossibility ism0 = logm (form > 1), based on an anal-ogy with decision tree induction. When learning a treeusing an algorithm like CART (Breiman et al., 1984),ID3 (Quinlan, 1986) or C4.5 (Quinlan, 1993), each newhypothesis is obtained by modifying the previous onein only a fraction of the instance space (the fractioncorresponding to the node currently being expanded),and this fraction becomes exponentially smaller as in-duction progresses. Only an entire new level of thedecision tree corresponds to an entirely new hypothe-sis. Since the depth of the tree grows on average withthe logarithm of the number of nodes, we can takethe equivalent number of independent hypotheses at-tempted m0 to be proportional to the logarithm of thetotal number of hypotheses attempted m. Since a rulecorresponds to a path through a decision tree, both inits content and in the way it is induced by a systemlike CN2, we can apply a similar line of reasoning tothe number of rules attempted.3Let each hypothesis be one version of the rule at-tempted during the beam search. Equation 13 doesnot need to be computed for every rule version gen-erated during the beam search. This would intro-duce a preference for adding some conditions insteadof others, which is unlikely to produce good results un-less there is domain knowledge supporting such pref-erences. Instead, Equation 13 can be computed onlyonce for each round. One round consists of gener-ating every possible one-step specialization of eachrule version in the beam, and selecting the b best.Thus, if there are a attributes and v is the maximumnumber of values of any attribute (in the worst case,v = n for numeric attributes), one round correspondsto O(bav) rule versions. Let mk be the total num-ber of rule versions generated up to, and including,round k. Round 1 consists of the initial rule withno conditions, and m1 = 1. Induction stops whenE[�mk jnmk ; emk ] � E[�mk�1 jnmk�1 ; emk�1 ], for k > 1.4 EMPIRICAL STUDYIn order to test the e�ectiveness of process-orientedevaluation, default and process-oriented versions of3In the experiments described below, the results werenot sensitive to the base of the logarithms used. Base 2,base e and base 10 all yielded practically indistinguishableerror rates and theory sizes. The results reported are forbase 2.



Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 with two versions of process-oriented evaluation (CN2-POE1 and CN2-POE2).Dataset Error rate Theory sizeCN2 CN2-POE1 CN2-POE2 CN2 CN2-POE1 CN2-POE2Breast 30.0�1.4 29.7�1.4 30.3�1.3 114.5�2.4 58.7�2.6 104.9�2.6Echocardio 32.7�1.2 32.3�1.3 31.2�1.1 42.9�1.2 35.4�2.1 39.2�1.3Glass 39.0�1.5 38.3�1.7 39.1�1.4 51.8�1.0 54.7�1.1 45.2�1.0HeartC 20.8�0.8 22.5�0.8 22.4�0.8 57.8�0.9 52.0�1.0 52.6�1.0HeartH 22.4�1.1 21.8�1.3 21.9�1.1 69.2�1.5 60.3�1.4 58.9�1.1Hepatitis 21.2�0.9 19.2�1.3 18.8�1.1 40.2�1.7 34.0�1.3 34.4�1.1Lympho 21.4�1.1 24.1�1.1 23.4�1.2 39.5�0.7 38.7�1.0 32.8�1.1Soybean 19.5�1.0 19.4�1.0 22.9�1.2 116.7�2.3 110.9�3.1 97.7�1.7Thyroid 4.1�0.2 3.8�0.2 4.0�0.2 97.5�2.0 104.8�2.0 83.4�2.6Tumor 60.1�1.0 65.1�1.3 60.0�1.2 302.8�4.6 273.9�4.4 241.6�3.9Voting 4.8�0.4 4.3�0.3 4.3�0.3 61.7�2.9 49.6�2.5 33.2�1.7CN2 were compared on the benchmark datasets previ-ously used by Clark and Boswell (1991).4 The process-oriented versions were implemented by adding the nec-essary facilities to the CN2 source code. Details of theearlier version of POE and its implementation can befound in (Domingos, 1998a). CN2's Laplace estimatesare still used to choose the best b specializations ineach round. This is preferable to using uncorrectedestimates, since as implemented POE has no prefer-ence between hypotheses within the same round, andthis is also a factor in avoiding over�tting. However,the Laplace correction distorts the value of �MLm usedin Equation 13. This will be particularly pronouncedwhen there are many classes, since CN2 uses m = c.In order to minimize this problem, m = 2 was usedwith POE.5The experimental procedure of (Clark & Boswell,1991) was followed. Each dataset was randomly di-vided into 67% for training and 33% for testing, andthe error rate and theory size (total number of con-ditions) were measured for default CN2, CN2-POE1(the earlier version) and CN2-POE2 (the version de-scribed in this paper). This was repeated 20 times.The average results and their standard deviations areshown in Table 1;6 the results for CN2 and CN2-POE1are from (Domingos, 1998a).Compared to CN2-POE1, CN2-POE2 roughly main-4With the exception of pole-and-cart, which is not avail-able in the UCI repository (Blake, Keogh, & Merz, 1998).5Simply changing m = c to m = 2 in default CN2 doesnot change its performance on the datasets used.6There are some di�erences between CN2's results andthose reported in (Clark & Boswell, 1991). This may bedue to the fact that the default version of CN2 uses a beamsize of 5, whereas Clark and Boswell used b = 20. Thedistribution version of CN2 may also di�er from the oneused in (Clark & Boswell, 1991).

tains accuracy (lower error in �ve datasets, higherin �ve, same in one; 0.2% lower error on average)while reducing theory size in most datasets (lower inseven, higher in four, 4.5 fewer conditions on average).This indicates that Equation 13 is successfully delet-ing unnecessary conditions that the previous methodretained. Being in closed form, Equation 13 is alsomuch more e�cient to evaluate than the integrals in(Domingos, 1998a).These results are obviously very preliminary. A versionof POE that takes CN2's search process into accountin more detail is currently being developed. We plan toapply it to the datasets above and study its behavior inmore detail, using those datasets and synthetic ones.5 RELATED WORKThe literature on model selection and error estimationis very large, and we will not attempt to review ithere. The incompleteness of representation-orientedevaluation was noted 20 years ago by Pearl (1978):It would, therefore, be more appropriate toconnect credibility with the nature of the se-lection procedure rather than with propertiesof the �nal product. When the former is notexplicitly known : : : simplicity merely servesas a rough indicator for the type of processingthat took place prior to discovery.Huber (St. Amant & Cohen, 1997; Huber, 1994) ex-presses thus the need for process-oriented evaluation:Data analysis is di�erent from, for exam-ple, word processing and batch programming:the correctness of the end product cannot be



checked without inspecting the path leadingto it.Several pieces of previous work take into account thenumber of hypotheses being compared, and so can beconsidered early steps towards process-oriented evalu-ation. This includes notably systems that use Bonfer-roni corrections when testing signi�cance (e.g., (Kass,1980; Gaines, 1989; Jensen & Schmill, 1997); seealso (Miller, 1981; Klockars & Sax, 1986; Westfall &Wol�nger, 1997)). A key di�erence between these sys-tems and what is proposed here is that they requirea somewhat arbitrary choice of signi�cance threshold,while this paper directly attempts to optimize the endgoal (expected generalization error). Also, the Bonfer-roni correction does not take hypothesis dependenciesinto account, while the present framework o�ers (atleast in principle) a way of doing so.Quinlan and Cameron-Jones's (1995) \layered search"method for automatically selecting CN2's beam widthcan also be considered a form of process-oriented eval-uation. While layered search and the approach pro-posed here have similar aims, their biases di�er: lay-ered search limits the search's width, while the presentmethod limits its length. The latter may be more e�ec-tive in reducing the fragmentation and small disjunctsproblems (Pagallo & Haussler, 1990; Holte, Acker, &Porter, 1989). The assumptions made here are alsoclearer than those implicit in Quinlan and Cameron-Jones's (1995) measure.Freund (1998) recently proposed a form of process-oriented evaluation that is closer to the PAC-learningframework. It is an extension of the statistical querymodel (Kearns, 1993) that attempts to obtain tighterbounds on generalization error by considering the treeof queries that the learner could make. While the gen-eral algorithm to obtain these bounds has exponentialcomputational cost in the number of queries made,Freund proposes a specialized version for algorithmsbased on local search (e.g., CN2) that is more e�cient,at the price of loosened bounds. How tight the boundswill be in either case is still an open question; no em-pirical testing of Freund's (1998) method has been car-ried out so far. These bounds could be used for modelselection by preferring the model with the lowest up-per bound (for given parameters). However, as withBonferroni corrections, the result will in general de-pend on the choice of parameters, for which there isno clear criterion. While the approach proposed inthe present paper directly obtains an estimate of thegeneralization error, it would also be useful to have acon�dence interval for it, and Freund's (1998) methodmay be a path to it.

Evaluating models that are the result of a searchprocess, not just of �tting the parameters of a pre-determined structure, has traditionally not been a con-cern of statisticians. However, this is beginning tochange (Chat�eld, 1995).Some of the arguments made here for taking into ac-count the number of hypotheses attempted are madein greater detail in (Jensen & Cohen, 1998) and (Ng,1997). The present paper goes further in also propos-ing a method for taking dependences between thosehypotheses into account, and in proposing a princi-pled way of combining search process information withmore traditional representation-based factors.6 CONCLUSIONTwo main types of model selection are currently avail-able. In data-oriented evaluation, a hypothesis's scoredoes not depend on its form or how the hypothe-sis was found, but only on its performance on thedata. In representation-oriented evaluation, the scoredepends on the data and on the hypothesis's form,but not on the search process that led to it. Recently(Domingos, 1998a) we argued that the latter cannotbe ignored, and proposed process-oriented evaluation(POE). However, in (Domingos, 1998a) we assumedthat all models searched had similar true error rates,and that all error rates were equally likely a priori.In this paper we removed these assumptions, and de-rived a simple approximation for the generalization er-ror of the returned hypothesis as a function of the num-ber of hypotheses searched. This approximation is aweighted average of the maximum likelihood estimateof the error and the prior expected error, that increas-ingly favors the prior as more models are attempted.This approximation gives a mathematical basis to theintuition that model uncertainty should increase withthe amount of search conducted.In the future we plan to: study the statistical proper-ties of Equation 11, in particular when the sample sizeis not large enough to approximate it by Equation 13;compare the method proposed here with other formsof process-oriented evaluation (e.g., Bonferroni cor-rections (Jensen & Schmill, 1997) and layered search(Quinlan & Cameron-Jones, 1995)); apply it to otherlearners; and study methods for accurately estimatingthe growth of the e�ective number of hypotheses m0in each of these learners.ReferencesAkaike, H. (1978). A Bayesian analysis of the mini-mum AIC procedure. Annals of the Institute ofStatistical Mathematics, 30A, 9-14.
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