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Abstract

This paper discusses the use of a power law to
predict decision tree performance. Power laws are
fit to learning curves of decision trees trained on
data sets from the UCI repository. The learning
curves are generated by training C4.5 on different
size training sets. The power law predicts
diminishing returns in terms of error rate as
training set size increase. By characterizing the
learning curve with a power law, the error rate for
a given size training set can be projected. This
projection can be used in estimating the amount
of data needed to achieve an acceptable error rate,
and the cost effectiveness of further data
collection.

1 INTRODUCTION

This paper examines the idea of projecting the error rate of
decision trees from a portion of a data set. To do this a

power function (P:AS'b) is fit to the error rate
performance of decision trees generated with C4.5
(Quinlan, 1993) from different sized training sets. In the
power function, S is the size of the training set and P is
the error rate performance. A and b are best fitting
parameters. The power function predicts diminishing
returns in error rate for increasing training set size. By
characterizing the learning curve with a power function,
the error rate for a given size training set can be projected.
This projection can be used to estimate the amount of data
that needs to be collected to achieve an acceptable level of
error rate.

The motivation to use a power law to examine decision
tree performance was in part due to the ubiquity of the
power law. The power law occurs frequently in learning,
including human learning performance. Anderson and
Schooler (1991) review a number of paradigms in which a
power law appears to describe human performance. For
example, the power law of practice is a phenomenon in
which the performance measure (e.g., response time, error
rate) on a task is related by a power function to the
amount of time spent practicing. Thus, the amount of
time it takes to memorize a list, for example, can be

predicted by the function P=AS"D where § is the amount
of time spent in practice and P is a performance measure.

In machine learning the power law has been used to
estimate performance of single and multi-layer networks
(Cortes, Jackel, Solla, Vapnik, and Denker, 1995; Cortes,
Jackel, and Chiang, 1995). If the power law holds for
decision trees in practice, it can be used to predict the
number of examples needed to achieve a particular error
rate,

Coupled with a result of Oates and Jensen (1997), the
power law can also be used to predict the size of the tree
necessary to give a particular error rate. Oates and Jensen
tested the hypothesis that the size of trees generated with
C4.5 using an error-based pruning method (i.e., default
pruning) grows linearly with training set size. This
occurs even though error rate levels off. Oates and Jensen
suggest reducing the training set to the size where error
rates level off. Using a power law projection, a smaller
decision tree can be generated with equivalent error rates to
larger trees, based on the power law estimate of the error
rate for a given training set size.

2 METHODS

The hypothesis being examined is whether the error rate of
a pruned decision tree generated by C4.5 can be predicted
by a power law defined on the size of the training set.

The error rate is the percentage of instances incorrectly
predicted by the tree. The pruning method used is error
based pruning which is the default pruning method for
C4.5. The error rates for the pruned trees are determined
with different sizes of training sets using incremental k-
fold cross-validation (Cohen, 1995).

In k-fold cross-validation, a data set, D, of size n is
partitioned into k sets. Each of these D; subsets (i.e.,

I<= i <=k) is the same size n/k. Before the data set is
segmented into the k-folds, it is randomized. The ith tree
is built on the training set (D - D;) which is the difference

between the entire set and the subset D;. The tree is then
tested on the subset D;. This is done for each i. The

resulting k trees are averaged to give the average size and
error rate of the trees over all k-folds.
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Figure 1. Changes in the percentage of errors for the tic-tac-toe data set across 1% increments in training set
size. The average error rates of the 10-fold cross validation are fit with the power law function displayed in the
upper right corner. The power function (thin line) is plotted along with the average observed error rates (x).

In the incremental cross-validation method (Cohen, 1995),
a range of data set sizes are used for each k-fold to build
the decision tree. In this paper, k& equals 10. For each 10-
fold, training set sizes increase in increments of 1%.
Consequently, training sets increasing from 1% to 100%
are used to build the trees. The different training set sizes
are sequentially sampled from the training set (i.e., D -
D). The test set of the previous run is placed at the

beginning of D - Dj, causing a different sample ordering
each run. The results for each different training set size
are averaged across the 10-folds.

Although this paper is mainly focused on the power law
function because of its ubiquity across diverse learning
environments, three other types of functions (linear,
logarithmic, and exponential) are compared. QOates and
Jensen (1997) have shown that under some circumstances
(i.e., decision tree size) a linear model provides a
reasonable account. However, diminishing returns are
typically observed in error rate performance so, the linear

model is not expected to perform well. The other two
models (logarithmic and exponential) should provide
reasonable alternatives to the power law. Each of the four
model classes has two free parameters. The four
functions, a power, a linear, a logarithmic, and an
exponential, are fit to the change in error rate across
training set size.

The error rate fit is measured in terms of r% values and chi-

squared (XZ), a goodness of fit measure. Fourteen data
sets, thirteen from the UCI repository and one generated
(i.e., parity), are examined (for list see Table 1). The
parity function.is defined on seven binary attributes and is
true if and only if an odd number of the attributes have the
value true. A greedy decision tree learner is not going to
capture the regularity in the data set so a decreasing error
rate curve is not expected. The intent of including this data
set was to show a data set that was difficult for the power
law to model.
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3 RESULTS

The results suggest that the error rate of a pruned
decision tree generated by C4.5 can be predicted by a
power law. Figure 1 displays changes in error rates
across training set size for the fic-tac-toe data set. Each
point is the average error rate of the 10-fold cross
validation. Error rates are plotted across training set
size (depicted by percentage of training set size). Since
the training set size was incremented by 1%, going
from 1% to 100% of the full training set (D-Dy), there

are a hundred points. The power law (thin line) is
plotted along with the learning curve of the observed

data (i.e., x). The best fitting power law (y = 81.437
x"0-359) and its 12 of 0.952 are displayed in Figure 1.

The error rates for the decision trees result from different
sizes of training sets. These error rates show a power
law behavior (see Table 1). The power law is able to
account for the largest amount of the data variability
(ie., 1'2) compared to a linear, logarithmic, or
exponential fit. Of the four models, the power law is
the best fit for the data sets in Table 1, except for the
heart data set in which the fit is equal to a logarithmic
fit, and the pariry data set which both the linear and the
exponential fits are better than the power fit.

Table 1. Power, linear, logarithmic, and exponential functions are fit to the percentage of errors across training
set size for the average of the 10-fold cross validation. The equation and measure of fit (i.e., 1‘2) for each data set are
presented for each function. The largest r2 for each data set is indicated by a bold font.

Data Sets Power Linear Logarithmic Exponential
breast-cancer y=52.l9x‘0-145 y=-0.148x +38.84 y=-12.48 log(x) +51.06 y=38.15 x10-0.002x
n =286 r2=0.64 r2=0.41 r2=0.56 2=0.53

glass y=90'79x-0.226 y=-0.290x +55.62 y=-25.92 log(x) +81.91 y=55.12 #10-0.003x
n=214 +2=0.90 r2=0.57 r2=0.87 22071

heart y=47.56x‘0'154 y=-0.127x +33.91 y=-11.24 log(x) +45.28 y=33.67 %10-0.002x
n=155 r2=0.82 r°=0.54 r2=0.82 2=0.61

hypothyroid y=6.29x'0'463 y=-0.022x +2.49 y=-2.03 log(x) +4.56 y=2.234 #10-0.006x
n=3163 220.83 r2=0.45 12=0.71 12062

iris y=80.94x'0-632 y=-0.257x +23.75 y=-27.04 log(x) +53.51 y=18.57 ¥10-0-007x
n=150 +220.91 r2=0.35 r2=0.76 220,59

kr-vs-kp y:85.86x']'117 y=-0.175x +12.88 y=-19.98 log(x) +35.62 y=7'41=x=]0—0.014x
n= 3196 +220.94 r2=0.22 r2=0.56 122075

labor-neg y=63.94x‘0'350 y=-0.406x +33.35 y=-24.20 log(x) +55.36 y=31.20 %10-0.006x
n=57 r2=0.69 12=0.38 r2=0.67 12-0.43
lymphography y:54.82x'0-201 y=-0.163x +35.29 y=-15.57 log(x) +51.66 y=34.17 %10-0.002x
n=141 +220.78 r2=0.43 r2=0.75 220,49

parity y=39.00x0-118 y=0.242x +48.26 y=15.94 log(x) +35.32 y=48.83 *100-002x
n=128 2071 r2=0.83 r2=0.70 12-0.83
sickenthyroid y=10.20x‘0'350 y=-0.039x +5.19 y=-4.12 log(x) +9.71 y=4.26 #10-0.003x
n=3163 2065 r2=0.30 r2=0.62 12032
soybean,large y=150.54x-0.640 [ y=-0.422x +39.88 y=-40.57 log(x) +82.65 | y=37.14 %10-0.008x
n = 683 2-0.98 12049 r2=0.88 12=0.79

tic-tac-toe y=81.437x'0-359 y=-0.281x +37.88 y=-25.43 log(x) +63.84 y=37.05 #10-0.004x
n =958 r2=0.95 r2=0.56 r2=0.89 22076

vote y=26.99x'0'458 y=-0.103x +11.23 =-11.48 log(x) +24.14 y=9.24 #16-0.005x
n =435 +2=0.86 r2=0.24 r2=0.58 122056

vote 1 y=33.88x'0-275 y=-0.118x +19.01 y=-11.56log(x) +31.33 y=18.20 x10-0.003x
n =435 r2=0.83 2=0.37 r2=0.69 12=0.61
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Figure 2. Changes in the percentage of errors for the parity data set across training set size. The average error
rates of the 10-fold cross validation are fit with the power law function displayed in the upper right corner. The
power function (thin line) is plotted along with the average observed error rates (X).

The parity function was fit equally well by the linear
and exponential functions. The observed error rates are
plotted in Figure 2. The error rate grows with increased
training set size. The power law is also plotted (thin
line), and it projects a higher error rate for larger
training set size.

Although we do not present the results, these
experiments also verify Oates and Jensen’s finding that
tree size grows linearly with training set size, regardless
of error rate.

4 PROJECTION

Knowing that decision tree learning curves can be
modeled by a power law suggests that a power law fit to
a small portion of data can be used to estimate the error
rate for decision trees learned on a larger.amount of data.
This can be of value if there is a cost associated with
collecting data. A projection can be made using a small
portion of data, and the projected learning curve can be
used to decide what would be gained from collecting
more data. The projection can also be used to estimate
the smallest training set size to achieve a desired level

of error rate that gives the additional benefit of smaller
decision trees.

Figure 3 depicts the power, linear, logarithmic, and
exponential fits obtained from only 15% of the training
set of the tic-tac-toe database. The projected power law
values estimate the error rates of the rest of the observed
values (i.e., 85% of the remaining data) within 3%.

The other three functions can be seen to diverge.

This procedure is used for all the goodness of fit

significance tests, xz, presented in Table 2. The

functions are fit to the first fifteen points (i.e., 15% of
the data). The tails (i.e., the last 85%) of the data sets
are compared so that the first 15% used to estimate the

functions are excluded from the comparisons. The x2
results are displayed in Table 2. The fits are calculated
relative to the same observed learning curves used for
Table 1. The four functions are the best fitting curves
to the first 15% of the data, The derived functions are
then used to estimate the remaining 85% of the data.
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Figure 3. Changes in the percentage of errors for the fic-tac-toe data set across training set size. The average
observed error rates (x) of the 10-fold cross validation for 15% of the data are fit with the power (Pow, solid
line), linear (Lin, dotted line), logarithmic (Log, medium dashed line), and exponential (Exp, large dashed line)
functions. The functions for 15% of the data are fit using the first fifteen points.

Table 2. Chi-squared (x2) values for the last 85% of the error rate data for each data set across the four types of fits are
presented. The first 15% of the error rate data are fit to the four functions. The tails of 85% of the remaining unfit data
are used to compare the projections made by each of the functions. Bold font and an **’ indicate a significant XZ. A
significant x2 indicates that the data were not generated by the function with 99.9% confidence. The critical value of %2
is 125.17 with an alpha of 0.001. There are 83 degrees of freedom (df). df = N-M degrees of freedom, where N = 85 =
number of data points (note N = 43 for labor-neg) and M = 2 = number of parameters.

Data Sets Power Linear Logarithmic Exponential
breast-cancer 12.65 26088.50* 53.45 1464.15%
glass 53.26 31303.86* 467.03% 912.39%
heart 43.85 11739.47* 195.39% 876.48*
hypothyroid 56.68 23630.78* 91.65 163.27 *
iris 7.65 250652.81* 3951.32% 152.10 *
kr-vs-kp 63.14| 25582478.00* 557237.56* 269.95%
labor-neg (df =41, cv =74.23) 1.87 2668.61%* 15.39 55.00
lymphography 11.80 8306.75% 66.68 300.79%
parity 191.44 * 390.71% 187.70* 339.45*%
sickeuthyroid 34.57 73760.48% 291.24%* 459.07*
soybean large 35.36 93469.806* 1573.49* 742.11%*
tic-tac-toe 7.92 146103.91* 1095.61*% 1877.59*
vote 43.22 119159.34* 4040.04* 156.76 *
votel 67.29 46611.88* 1302.54% 507.88%
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Table 3. The average absolute difference between the observed and the projected error rates (IObserved - predicted|) for the
last 85% of the error rate data for each data set across the four types of fits are presented. The standard deviations of these
absolute differences are reported within the parentheses. For each data set, the smallest average absolutedifference and
standard deviation are indicated by a bold font. The first 5% of the error rate data are fit to the four functions. The tails
of 85% of the remaining unfit data are used to compare the projections made by each of the functions.

Data Sets Power Linear Logarithmic Exponential
breast-cancer 2.02 (1.14) 78.85 (42.72) 4 (1.72) 21.5 (5.96)
alass 6.79 (2.71) 149.43 (81.19) 20.15  (6.85) 29.33  (6.94)
heart 4.06 (1.84) 61.93  (33.63) 8.62 3.1 18.45  (5.32)
hypothyroid 0.41 (0.14) 8.21 (4.97) 0.5 (0.25) 0.81 (0.22)
iris 1.24  (0.79) 195.38 (108.46) 125.69 (11.16) 5.92 (1.26)
kr-vs-kp 0.54 (0.26) 193.53 (104.08) 132.63 (11.54) 1.17 (0.62)
labor-neg 2.3 (1.83) 92.36 (55.55) 6.89 (4.55) 14.76  (4.86)
lymphography | 3.6 (2.08) 97.7 (54.4) 8.87 (4.32) 19.62  (5.07)
parity 13.48  (6.76) 19.32  (9.63) 13.34 (6.73) 18 (8.96)
sickeuthyroid 0.59 (0.27) 25.7 (14.95) 1.66 (0.89) 2.22 (0.48)
soybean large 3.72 (0.95) 216.16 (122.73) [22.17 (10.66) 9.68 (2.09)
tic-tac-toe 0.85 (0.54) 128.23 (71.78) 11.46  (5.01) 15.56  (3.01)
vote 2.12 (0.53) 97.89  (52.65) 19.66 (6.42) 4.14 (0.63)
votel 3.38 (1.36) 79.95 (43.33) 14.77  (4.98) 9.65 2.4)

The chi-squared values are calculated using the observed
data, the observed variances, and the predicted data. The
null hypothesis is that the observed and predicted data do
not differ. If the chi-squared value is greater than the
critical value using an alpha of 0.001, the likelihood
that the data were generated with the model is equal to
or less than 0.001%. A chi-squared value less than the
critical value does not ensure that the observed data set
was generated by the model. It suggests thatitis a
possible model of the data set.

The results in Table 2 show that the power laws based
on 15% of the observed data do not differ significantly
from the predicted 85% of the error rate data for thirteen
out of the fourteen data sets. The linear functions were
significantly different for all the data sets. The observed
and predicted logarithmic functions were with high
confidence indistinguishable for four of the fourteen data
sets. The exponential function was significantly
different from the observed data for all but labor-neg,
which had relative few data points and a large standard
deviation.

The power law did fail at predicting parity. But parity
is expected to have a poor fit based on a small subset of
the data because its error increases with increasing data
set size (see Figure 2).

In Table 3 the mean values of the absolute difference
between the observed and projected error rates are shown
for the four models. The standard deviations for these
absolute differences are also displayed. As can be seen
from Table 3, the power laws have smaller average
absolute difference values for all the data sets except
parity. The power laws also have small standard

deviations. Excluding parity, the average absolute
differences range between 0.41% and 6.79% for power
law. Compare this to the linear which ranges from
8.21% to 216.16%, the logarithmic which ranges from
0.5% to 32.63%, and the exponential which ranges
from 0.81% to 29.33%. Coupled with the chi squared
goodness of fit test, the average absolute difference
scores suggest that the power law is a better fit than the
linear, logarithmic, and exponential models.

The predictive ability of the power law can also fail if
an insufficient amount of data is used for the projection.
This is demonstrated in Figure 4 when only 307,
soybean instances are used. The power law over
estimates the error given 15% of the data. If 25% of the
data were used, the power law would have a much better
fit. Undoubtedly this is a result of soybean having
nineteen classes which requires more instances to
properly learn the classification. With too small a
training set, the classes may not be adequately
represented.

In general the under sampling of the soybean data raises
the question of when do you know that enough data
have been used in making a projection for error rates of
larger training set size. More work is needed to answer
this question, but an initial direction would be to
measure the stability of the power law being used for
the projection. If increasing the size of the data set does
not change the projection significantly this may be an
indication that the fit of the power law will not greatly

improve with additional data.
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Figure 4. Changes in the percentage of errors for the soybean data set across training set size if only 307
instances are used. The average error rates (x) of the 10-fold cross validation for 15% of the data are fit with the
power (Pow, solid line), linear (Lin, dotted line), logarithmic (Log, medium dashed line), and exponential (Exp,
large dashed line) functions. The functions for 15% of the data are fit using the first fifteen points.

S CONCLUSION

The power law provides the best fit for the error rates
for thirteen out of fourteen data sets. This suggests that
the decision tree error rates follow a power law with
diminishing returns for increased training set size. The
more training examples used the less of an
improvement in error rate. Being able to model the
error rate with a power law suggests the possibility of a
principled stopping criterion. For example, stop
increasing the training set size when the power law
predicts insufficient gains in error rate.

Oates and Jensen suggest a criterion to restrict the size
of the training set based on the mean of three adjacent
error rates being within 1% of the error rate of the tree
trained on all training data. Since they found that tree
size increases linearly with training set size without
regard to the error rate, their criterion produced smaller
trees for many of the data sets they examined. A power
law criterion could also be used to reduce the decision
tree size by reducing the training set size. This could be
done by training with a data set size for which the
power law predicts an error rate acceptable to the user.
More generally we can use a trade-off function of error
rates projected by the power law, tree size, and the cost
of collecting subsequent data, to decide the size of the
training set.
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