Efficient Learning using Constrained Sufficient Statistics

Nir Friedman
Institute of Computer Science
The Hebrew University
Ross building, Givat Ram
Jerusalem 91904 ISRAEL
nir@cs.huji.ac.il

Abstract

Learning Bayesian networks is a central prob-
lem for pattern recognition, density estima-
tion and classification. In this paper, we
propose a new method for speeding up the
computational process of learning Bayesian
network structure. This approach uses con-
straints imposed by the statistics already col-
lected from the data to guide the learning al-
gorithm. This allows us to reduce the num-
ber of statistics collected during learning and
thus speed up the learning time. We show
that our method is capable of learning struc-
ture from data more efficiently than tradi-
tional approaches. Our technique is of partic-
ular importance when the size of the datasets
is large or when learning from incomplete
data. The basic technique that we introduce
is general and can be used to improve learn-
ing performance in many settings where suf-
ficient statistics must be computed. In ad-
dition, our technique may be useful for al-
ternate search strategies such as branch and
bound algorithms.

1 Introduction

In recent years there has been a growing interest
in learning Bayesian networks from data (Cooper &
Herskovits 1992, Lam & Bacchus 1994, Heckerman
1995, Heckerman, Geiger & Chickering 1995). The
common approach to this problem is to introduce a
scoring metric that evaluates each network with re-
spect to the training data, and then to search for
the best network according to this metric. The stan-
dard methods use heuristic search, such as greedy hill-
climbing, to maximize the network score.

In this paper, we propose a new approach to learn-
ing structure from data that uses bounds to make the

Lise Getoor
Computer Science Department
Gates 1A-126
Stanford University
Stanford, CA 94305-9010
getoor@cs.stanford.edu

search more efficient. OQur approach uses constraints
imposed by the statistics already calculated to guide
the search algorithm. This allows us to avoid collect-
ing statistics that are not crucial for learning and thus
save computation time. Qur technique is of particu-
lar importance when the size of the database is large
or when the entries in the database may have missing
values. This new method is one step in making the
learning of Bayesian networks tractable in real world
settings.

Informally, suppose we are considering adding a par-
ent Y to a node X. In order to compute the network
score, we need to collect the statistics for X’s new
family, which consists of X, ¥ and X’s current set
of parents. This is done by passing through the data
set and counting the occurrences of particular instan-
tiations of the variables. Before making this pass, we
have some information about X, namely the statistics
we have already collected about X and its parents.
Most often, we also have statistics for X and Y. We
can use these to constrain the values of the counts for
the new family. In particular, if the best score we can
hope for relative to the constraints is not promising,
we can focus our efforts on another potential search
step, rather than investing the effort to compute an
exact value for the network with this additional edge.

As we show experimentally, our method is capable
of learning structure from data more efficiently than
standard methods. We see a significant improvement
in the score versus time performance profile: given a
fixed amount of time, the network induced by our al-
gorithm has a better score than the network produced
by the standard learning algorithms. This savings is
due to a decrease in the number of passes over the data
set required for each step in the search process.

The rest of the paper is organized as follows. We start
in Section 2 with a review of learning Bayesian net-
works. In Section 3, we analyze the constraints im-
posed by the statistics that we have collected from our
database, and show how these constraints can be used

to minimize the additional statistics that we must com-
pute. In Section 4, we describe a variant of the struc-
ture learning algorithm that makes use of the bounds
that we have computed and analyze its performance.
We conclude with a summary and discuss future re-
search directions.

2 Learning Bayesian Networks

Consider a finite set X = {Xi,...,X,} of discrete
random variables where each variable X; may take on
values from a finite set. We use capital letters, such as
X,Y, Z, for variable names and lowercase letters z, y, z
to denote specific values taken by those variables. Sets
of variables are denoted by boldface capital letters
X.,Y,Z, and assignments of values to the variables
in these sets are denoted by boldface lowercase letters
X,y,z. Finally, let P be a joint probability distribution
over the variables in U, and let X,Y, Z be subsets of
U. The sets X and Y are conditionally independent
given Z if for all x € Val(X),y € Val(Y),z € Val(Z),
P(x | z,y) = P(x | z) whenever P(y,z) > 0.

A Bayesian network is an annotated directed acyclic
graph that encodes a joint probability distribution
over X. Formally, a Bayesian network for X is a
pair B = (G,0). The first component, namely G,
is a directed acyclic graph whose vertices correspond
to the random variables Xj,...,X,. The graph en-
codes the following set of conditional independence
assumptions: each variable X; is independent of its
non-descendants given its parents in G. The second
component of the pair, ©, represents the set of pa-
rameters that quantifies the network. It contains a
parameter 6,5, = P(z;|m;) for each possible value z;
of X;, and ; of II;. Here II; denotes the set of par-
ents of X; in G and w; is a particular instantiation of
the parents. A Bayesian network B specifies a unique
joint probability distribution over X given by:

Pp(Xi,...,Xn) = [] Po(X:/TL)

i=1

The problem of learning a Bayesian network can
be stated as follows. Consider a finite set X =
{X1,...,X,} of discrete random variables where each
variable X; may take on values from a finite set.
Given a training set D = {x!,...,xV} of instances
of X, find a network B that best matches D. The
common approach to this problem is to introduce a
scoring function that evaluates each network with re-
spect to the training data, and then to search for the
best network according to this metric. The two scor-
ing functions most commonly used to learn Bayesian
networks are the Bayesian scoring metrics (Cooper
& Herskovits 1992, Heckerman et al. 1995), and one

based on the principle of minimal description length
(MDL) (Bouckaert 1995, Lam & Bacchus 1994). Let G
be the first component of a Bayesian network, namely
a directed acyclic graph, and let D be a training set.
We denote the score of G by Score(G : D). The MDL
scoring function is given by the following equation:

Scoreypr(G : D) =
log N
2

maxL((G,) : D) HO) O
The first term is the log-likelihood of B = (G, ©) given
D:

N
L(B: D)= _log(Pp(x")).
=1

The log-likelihood has a statistical interpretation: the
higher the log-likelihood is, the more probable D is
generated according to B. The second term is a
penalty term that biases the score metric to prefer
simpler networks, where N is the number of random
variables in the network and #(G) is the number of
parameters in the network. (We refer the interested
reader to (Heckerman 1995, Lam & Bacchus 1994) for
detailed description of this score.)!

The Bayesian score is derived using Bayesian reason-
ing. Without providing details on the derivation, this
score is defined as:

Scorepayes (G : D) =
log P(G | D) =log P(D | G) +1log P(G) — C

where C' is a constant that does not depend on G and
P(D | G) is the integration over all possible parameter
assignments to G,

P(D|G) = /P(D |G,0)P(0 | G)do.

The particular choice of priors P(G) and P(0O | G) for
each G determine the exact Bayesian score.

When all instances x¢ in D are complete—that is, they
assign values to all the variables in X— the stan-
dard scoring functions are decomposable. That is,
the scoring functions have the following general form:
> ;Score(X; | II; : Nx, ;) where Ny, 11, are the
statistics of the variables X; and II; in D—i.e., the
number of instances in D that match each possible in-
stantiation x; and m;. The variables X; and II; are
called the family of X;.

By simple algebraic manipulation it is easy to show
that, in the presence of complete data, the MDL score

!The MDL scoring metric is often defined as the nega-
tive of (1), where learning attempts to minimize the score
rather than maximize it.

1100

Time (Seconds)

O 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Statistics

(a)

1800

Time (Seconds)

O 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Statistics

(b)

Figure 1: A plot of the number of sufficient statistics collected against running time of the learning procedure
for runs of greedy hill-climbing search for 5 datasets of size 50,000 and 100,000 instances. (a) results for the
“alarm” dataset, and (b) results for the “insurance” dataset.

decomposes in this way, and that each term depends
only on the “local” statistics. In particular the log-
likelihood term decomposes into terms that depend on
the sufficient statistics of each family:

Scoreypr(G : D) = ZSCOTQMDL(Xi | IL; : Nx, m,),
i

where SCOI‘eMDL(Xz' | Hi : NXi,Hi) is:

log N

max Z Ny i log(ﬁwimi) -

#(X | 1I;)
Oxcii; zi,11;

and #(X; | II;) is the number of parameters need to
represent P(X; | II;). It is straightforward to show
that the choice of 8,,; that maximizes this equation

i

Neimi YWe then have:

1S Hmimz = N—m

ScoreMDL(X,- | II; : NXi,Hi) =

Ny log N
gle,mlog(N—m)— B

#(X; | 1)

Similarly, in the presence of complete data, if we re-
strict ourselves to certain class of factorized priors,
such as the BDe priors of Heckerman et al. (1995),
then the Bayesian score also decomposes:

ScoreBDe(G : D) = ZSCOI‘GBDE(X,' | H, : NXhHi)7
i

where Scoregpe(X; | IL; : Nx, m,) is:

I'(Ny,)
log H T(NS, + %0, Novrs)

F(N;, w5 + Nzi,ﬂ'i)
logH T(NT)
T

Ti,T5

+

The counts N;, = N'- Ppi(m;) and N, .. = N'-
Pgi(x;,7;) represent the prior assessment of the event

using a prior network B’ with weight N’.

This decomposition of the scores is crucial for learn-
ing structure. A local search procedure that changes
one arc at each move can efficiently evaluate the gains
made by adding or removing an arc. Such a procedure
can also reuse computations made in previous stages
to evaluate changes to the parents of all variables that
have not been changed in the last move. An example
of such a procedure is a greedy hill-climbing proce-
dure that at each step performs the local change that
results in the maximal gain, until it reaches a local
maximum. Although this procedure does not neces-
sarily find a global maximum, it does perform well in
practice; e.g., see Heckerman et al. (1995). Although
we focus on hill-climbing here, other local search pro-
cedures such as beam-search and simulated annealing
can benefit from the methods we describe below.

Any implementation involves caching of computed
counts to avoid unnecessary passes over the data. This
cache also allows us to marginalize counts. Thus, if
Nxy is in the cache, we can compute Nx by sum-
ming over values of Y. This is usually much more
efficient than making a new pass over the data. One
of the dominating factors in the computational cost of
learning from complete data is the number of passes
actually made over the training data. This is particu-
larly true when learning from very large training sets.
The dependency of running time on sufficient statistics
is illustrated Figure 1. This figure shows plot of time
versus number of sufficient statistics for several runs
on two datasets with varying sample sizes. We can
see there is roughly a linear correlation between the

running time and the number of statistics collected.

When the data is incomplete the situation is more
complex. Without going into details, the problem is
that the scores no longer decompose, and each can-
didate structure has to be evaluated using expensive
parameter learning methods, such as EM. One method
of learning structure in this situation extends EM to
structure search. In the Structural EM procedure
(Friedman 1997, Friedman 1998), we use the “cur-
rent” candidate to compute ezpected counts from the
data. Roughly speaking, the procedure computes the
expected value of Nx, given the conditional distribu-
tion over missing values given the observed values and
the current estimate of the distribution. We then learn
a new structure as though these counts came from ob-
servable data. These steps are repeated, each iteration
using the structure found in the previous one for com-
puting expected counts, until convergence. The main
theorems of Friedman (1997, 1998) show that this will
always improve the MDL score, and indicate that it
usually improves the BDe score. Thus, within struc-
tural EM, we can use the same search procedures we
devise for complete data. The only difference is that
counts are now the result of performing computations
over the training instances, and thus, the computa-
tional cost of getting a new count is much more ex-
pensive than in the complete data case.

3 Using Score Bounds to Improve
Search Performance

The greedy hill-climbing algorithm for learning
Bayesian network structure maintains a current net-
work hypothesis. At each step local modifications to
the network, such as adding, deleting or reversing an
edge, are considered. As noted above, we can com-
pute the improvement that each such change will make
by looking only at the local sufficient statistics in the
neighborhood of that change.

We would like to use heuristic search, which is at
the core of much of AI research, to guide our algo-
rithm. When our heuristic information is of some min-
imal quality, and the information is not too expensive
to compute, we can gain great benefits from using a
more informed search method. Here we investigate
the use of both guaranteed upper bounds and heuris-
tic bounds.

A local search procedure examines small changes to
the current candidate structure. To evaluate these
changes, the procedure needs to examine the statis-
tics of the new families in consideration. Intuitively,
however, we do not need to seriously consider all pos-
sible modifications during search; most of these mod-

ifications are not the optimal changes (in the sense
of greedy hill climbing), and some, if not most, actu-
ally do not improve the score. The question is how to
avoid spending time evaluating such unhelpful modifi-
cations.

For concreteness, suppose we are considering adding
a parent Y to a node X (see Figure 2(a)). In or-
der to evaluate the new score of the network, we need
to compute the local score Score(X|Z,Y : Nx zyv),
where Z is the current parents of X. To compute this
term we need the statistics Nx,z,y. What can we say
about this modification before we go out and collect
these statistics? For one, if we can bound from above
the score of this change, and if we see that there is
a better option currently available to us, we can skip
the computation of statistics for this change (at least
for now). In the next few sections we consider how
to find such upper bounds, based on our knowledge of
other statistics from the same database, and then, in
Section 4 we discuss exactly how to use such bounds
within a search procedure.

3.1 Characterization of the Local Score

To bound the score, we need to find a value such that
the score given any of the possible values for Nx y,z
consistent with such constraints will be smaller. A
rough upper bound for the MDL score was suggest by
Suzuki (1996):

SCOI‘GMDL(Xi | Hi : in’ni)

log N
= Y Neom log(0,,11,) — —5—#(Xi | L)
zi,I1;
log N
< - #(X | IL).

This bound is based on the simple fact that the first
term of the bound is non-positive (to see this, note
that this term is the negative of the empirical con-
ditional entropy H(X; | II;), which is non-negative
(Cover & Thomas 1991)). Such a bound, however, to-
tally ignores our (partial) knowledge about the data,
and hence must be quite loose. A somewhat tighter
bound can be found by considering properties of the
conditional entropy.

In contrast to these loose bounds, we aim to find the
tightest possible bound. This is done by maximizing
the local scoring metrics from Section 2,
max Score(X|Y,Z: Nx,v,z)
Nx,vy,z€C

where C is the feasible region of counts according to
our current knowledge. Here the Nx y z are the un-
knowns that we are trying to find, subject to the con-
straints imposed by the counts we have already com-
puted, Nx,y and Nx,z. Figure 2(b) shows a geometric

view, where our unknowns form a three-dimensional
grid, and we see our constraints as requirements placed
on the row and column sums of the grid.

The key idea is that even before we collect the statistics
Nx y,z, we know quite a bit about the dataset. Since
we have an edge from each parent in Z to X, presum-
ably we have the statistics Nx z in our cache. Simi-
larly, we may have considered adding the edge Y — X
at some point in our search, so we probably also have
Nx,y in our cache. Certainly we can use these to
constrain the possible values of Nx v,z in the dataset.
Such constraints are simple linear constraints. For ex-
ample, if we know Nx y, we can impose the constraint:

Z : Nwlay.? Rk

zc“yJ 07 Vl,] (2)

Similar linear constraints are implied by other partial
statistics about X,Y, and Z.

Note that when learning from complete data, we know
that the counts must be integers. Thus, we may want
to focus on the integer solutions within the feasible re-
gion C. However, the problem is simpler when we con-
sider all points within the region, including fractional
counts. (We also note that within the Structural EM
algorithm we are dealing with expected counts which
are usually not integer valued. Thus, in that case we
need to consider all points within the region.) Let X
be a three dimensional array of unknowns, where each
xijk € R. Each x5 is in one-to-one correspondence
with our discrete Nx,y,z (each index 4, j, k ranges over
the indices of the instantiations of X,Y ,and Z respec-
tively).

We are interested only in the portion of the Scoreypr,
that depends on the values of the counts. This is the
log-likelihood term. We define the following objective
function

szﬂklog Z X1 k)
it '

3,5,k

We are interested in maximizing F'(X), subject to pos-
itivity constraints on x;;, and the constraints implied
by the counts we know. Thus, the constraint of (2)
would be stated as:

<mek> - z,,yj = 07 VZ,]

We define C to be the feasible region defined by these
constraints. It is easy to see that C is a convex set.

We begin by showing that, for strictly positive x;j,
F(X) is convex.

Lemma 3.1: The function

Z Xijk log =)

ik ,l: Xz ik

is convex over the positive quadrant, that is when X;jp
are all strictly positive.

Proof: (sketch) We show first that F' is separable into
the sum of independent functions, and then show that
each of these individual terms is convex. Then, since
the sum of convex functions on a convex region is also
convex, F' is convex.

The first step is straightforward.

FX) = Y (quk log(5=—", Jk)>

.77

D Fin(X)
J.k
where
x;ik log(
Z ’L]k g ZZ/ X@]k)

Define Y = X.jk, Yi = Xijk, and F' = ij:

Z Yi IOg Z, var
= Z Yi- (log vi) —log(_ yi’))
Z Yi log yz (Z Yz> -log <Z Yz'>

F'(Y))

The Hessian, V2F", is:

1 1

yi Zi, Yi
1 if i .
s Wi

ifi=j
V2F' =

It is possible to show that, if each y; > 0, the Hessian
is semi-positive definite. This implies F’ is convex.
Therefore, F is also convex. 2 I

Lemma 3.2: The global mazimum of the objective
function F is achieved at an extreme point of the fea-
sible region C.

*Intuitively, a function is convex if it is shaped like a
bowl. If a function is strictly convex, the Hessian is positive
definite. While F’ is convex, it is not strictly convex, thus
we may have a bowl with a flat bottom.

(a)

s <
XZ AR

S

SN

Figure 2: a) Adding an edge to the network b) A geometric view of the problem c¢) The score on the feasible
region for a simple 2 X 2 x 2 example. xggo and xjgo are the two independent counts in the problem and score is

shown on the z-axis.

Proof: As noted earlier, C is a bounded convex set.
It is easy to see that the maximum of a convex func-
tion F' is achievable at the boundary of the feasible
region C. Furthermore, the maximum is achievable
at an extreme point of the feasible region. This fol-
lows from a straightforward argument, see for example
(Luenbeger 1984). 1

Theorem 3.3 The global mazimum of
Scoreyrpr(X|Y,Z : Nxvz) is bounded by the global
mazimum of F and is achieved ot an extreme point of
the feasible region C.

Proof: Follows directly from the definition of F' and
the previous lemma. i

This result makes intuitive sense. Remember that we
are asking which counts consistent with our current
knowledge would make adding an edge most favorable.
The fact that these counts must be extreme, implies
that the local probability model at that node is as
deterministic as possible. This is reasonable, since the
more extreme the data (or the lower entropy of the
data), the better is the score of a probabilistic network.

Although we limit our attention here to the MDL
score, we note that the behavior of the BDe score is
similar for sufficiently large counts. More precisely, our
hypothesis is that if we bound the counts Ny, . . +xijk
above some constant, then the BDe local score is also
convex. When the counts can be smaller, the score
is not well-behaved as x;;; approaches 0. The upshot
of this is that the situation for the BDe is a bit more
complex, but techniques similar to those we discuss
below would generate good approximate bounds also
for this score.

3.2 Computing Bounds on the Local Score

Now that we have characterized the decision problem,
we can use solutions to the problem in one of two ways.
An assignment of values that satisfies our constraints
is a feasible solution in the optimization terminology.
A solution may be a local optimum, a global optimum
or neither. We can use an optimal solution to bound
the local score or we can use any feasible solution as a
heuristic to guide our search.

How difficult is the task of finding the maximal value of
F on C? This problem seems at first similar to entropy
mazimization. In that problem, we attempt to find
a probability distribution that maximizes the entropy
function given some constraints. In entropy maximiza-
tion the objective function is similar to the negative of
our objective function (except for the penalty func-
tion). Thus, in our notation, these problems attempt
to minimize F, and that can be done in a relatively
straightforward way since F' is convex—we only need
to find the “bottom” of the bowl, and this can be done
using, for example, gradient-based methods. Our opti-
mization problem is to find the highest “vertex” of the
bowl. The number of extreme points can be exponen-
tial in the number of constraints, and many of these
can be local maxima. For example, in the example of
Figure 2(c), there are two local maxima, only one of
which is also the global maximum.

While we have reduced our search for a global optimum
to extreme points of the feasible region, a method that
enumerates the extreme points is clearly impractical,
even for very small problems. Alternatively, we may
consider a simplex style algorithm, that moves from
extreme point to neighboring extreme points until no
local improvement is possible. Such an algorithm is
certainly guaranteed to find a local optimum. How-

0 | 83
83/ 0| 0| 083 0o|o0|o0|83|83
369|417 48
48| 0 | 0 369|417 133| 0 |131 153|417
0 |158
2 | 25|131| 0 |158 0 138/ 0 | O |158
0 |342
0 [342| 0 | 0 |342 0 [209| O | 133|342
133 367 131 369
0 133 367 131 369 133 367 131 369

(a)

(b) (c)

Figure 3: (a) Assigning a value using the MAXMAX heuristic (b) A complete feasible assignment for a slice using
the MAXMAX heuristic (¢) An example optimal assignment for the slice from an instance of a larger problem.

ever, since our objective function is nonlinear, it is not
guaranteed to achieve a global optimum. Instead, if we
wish to find a global optimum, we must resort to a non-
linear optimization procedure. There are many cate-
gories of nonlinear optimization algorithms. Here, we
use a quasi-Newton method on the Lagrangian defined
by our objective function and constraints. An attrac-
tive feature of this method is that it can be shown to
converge superlinearly when initiated sufficiently close
to the solution to the Lagrangian.

An alternative to finding the optimal solution is to
consider some extreme point solution. While we can-
not use them to bound our search, we can use them as
a heuristic guide. How do we find an extreme point
of our problem? It turns out that the constraints im-
posed by our cached counts have a particularly nice
form that allow us to quickly find basic feasible solu-
tions to our problem. We have counts Nx y and Nx z.
As we saw earlier, we can look at a particular “slice” of
the problem for a specified value of X. The constraints
describe an assignment problem, where we can view
the N, z as row sums and view the N, y as column
sums. The decision variables are the x;;;. We can find
a feasible solution using the following simple scheme:

1. Pick a row sum j with value r

2. Pick a column sum k with value ¢

3. Let v = min(r,c). Assign x;jr = v.

4. Update the column sum and row sum by subtracting v
from each of them. Note that this will zero one of the

two. This will force all of the unassigned entries in that
row or column to be zero. See Figure 3(a).

5. Repeat until no more assignments can be made.

Each step of this process will zero at least one of the
rows or columns, thus we make at most n +m — 1
assignments, where n is the number of rows and m is
the number of columns. See Figure 3(b) for an example

of a feasible assignment. Figure 3(c) shows an optimal
assignment.

At this point, we can view the cost of each x;;;, assign-
ment as X;j, - log(=2 k) and our problem is to find
o Xl

the minimum cost assignment. If these costs were a
simple linear function of the x;;z, then we could find
the optimal solution by finding “augmenting” paths,
which are analogous to searching along the extreme
points of the simplex in the simplex algorithm. While
we can find augmenting paths in our problem, as noted
earlier, we would only be guaranteed to find a local
maximum using such an algorithm.

Instead, we consider a simple heuristic for choosing i
and j in each iteration of our algorithm for finding fea-
sible solutions. At each point, we choose the row and
column with the maximum row sum and the maximum
column sum.® We call this the MAXMAX heuristic.
The intuition here is that we would like to “pump-up”
F' as much as possible. We can do this by making some
x;;5 as large as possible.

Table 4 compares the solutions found by the quasi-
Newton method and the MAXMAX heuristics. In ad-
dition, we show another heuristic, RANDOM, that ex-
amines several random extreme points, and returns the
best solution among them. We show the algorithms’
performance for different sizes of randomly generated
problems. Using the QUASI-NEWTON solution as a
measure of the optimal solution, we see that the MAX-
MAX heuristic is in fact giving us some useful informa-
tion about our bound. While these numbers give some
flavor for the behavior of the different algorithms, in
practice, our input will be anything but random. In
then next section, we examine our algorithm’s perfor-
mance on more realistic input.

3We would like to thank Walter Murray for suggesting
this heuristic.

Size MAXMAX | RANDOM | QUASI-NEWTON
p-m-n

222 -398.49 -463.19 -321.58

333 -766.78 -806.17 -647.94

444 -1250.33 -1290.38 -1062.35

555 -1752.09 -1852.65 -1548.67

Figure 4: The bounds heuristics give for randomly generated problems of various sizes. Here p, m and n are the
dimensions of X, Y and Z respectively. The scores are unnormalized. Each score is the average of 1000 runs.
MAXMAX uses a simple heuristic for finding a feasible solution. RANDOM examines 100 randomly generated
extreme point solutions. QUASI-NEWTON uses a general nonlinear programming algorithm to find an optimal

solution.

4 Experimental Results

We compared two search procedures. The first is the
simple greedy hill-climbing procedure which we denote
HC. In each iteration this procedure evaluates all pos-
sible modifications to the current candidate and incor-
porates the change that leads to the best improvement.
Upon reaching a local maxima, the procedure applies
a number of random modifications and restarts the
search.

The second search procedure uses our current knowl-
edge of the statistics to guide the search. We call
this procedure Constrained Sufficient Statistics hill-
climbing search, denoted CSS-HC. CSS-HC is es-
sentially the same as HC—the only difference is in
the evaluation of the best next move. This evaluation
uses bounds in the following way. We start by comput-
ing the score of all the changes that can be evaluated
using statistics in the cache. We then compute up-
per bounds on the scores of the remaining changes.
At this stage we prune all the changes that are dom-
inated by another modification. That is, the score of
the pruned change or the upper bound on its score is
smaller than the score of the other modification. If
more than one change remains, we evaluate the true
score of the change with the highest upper bound. We
repeat this until only one modification remains un-
dominated, and return it. It is easy to see that if we
have true upper bounds, then this procedure returns
the best possible change.

We evaluated these two search procedures on two do-
mains. We generated training data from two networks:
alarm—a network for intensive care patient monitor-
ing (Beinlich, Suermondt, Chavez & Cooper 1989) that
has 37 variables; and Insurance—a network for classi-
fying car insurance applications (Binder, Koller, Rus-
sell & Kanazawa 1997) that has 26 variables. From
each network we sampled training sets of sizes 10, 000,
50,000 and 100, 000. We then plotted the performance
profiles of both search procedures on these training
sets. These profiles show the improvement in score as

a function of either computation time or number of
sufficient statistics computed. (This number roughly
correlates with the number of passes over the train-
ing set—some statistics are computed by marginaliza-
tion of statistics in the cache.) Figure 5 shows ex-
amples of such profiles. As we can clearly see, the
CSS-HC procedures quickly zeros in on high scoring
networks. Moreover, although we are not finding true
upper bounds, CSS-HC converges to networks of the
same quality as the standard HC procedure.

As we can see from Figure 5(a) and (b), the profile
of score versus time and score versus the number of
sufficient statistics computed are similar. This is con-
sistent with the claim that the computation of suffi-
cient statistics is indeed the determining factor in the
running time of each algorithm. Finally, Figure 5(d)
shows the scaling of the various algorithms with the
size of the training data. As we can expect, the differ-
ence in performance grows when the cost of computa-
tion is higher.

In the results reported above, CSS-HC uses the
MAXMAX heuristic to compute the bounds at each
step. We also explored using the tighter bounds pro-
duced by a quasi-Newton algorithm. To calculate
these bounds, we used an implementation in the NAG
numerical software library for MATLAB. Interestingly,
we found that the better bounds did not make a signif-
icant impact on our algorithm’s performance. While
computing more accurate bounds did adversely affect
the running time, we did not see a measurable bene-
fit in the number of statistics computed. This is an
indication that our simple heuristic is in fact quite
powerful: it is both cheap to compute and provides
significant guidance.

5 Discussion

In this paper, we investigated methods for finding
bounds on local scores based on partial knowledge
about the dataset and showed how to use these bounds
for speeding up Bayesian network learning. We are

-14

-16 +

-18 +

-20

Score
N
N

T

-26

-28 +

-30

-18

-20

22

o4 L

Score

-26

-28

30F

32
100 150 200 250 300 350 400
Time (Seconds)

()

-14

-16 +
-18 +
-20
g
8 2
24
-26
-28 +
20 ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500
Statistics
(b)
-14 ‘
-16
-18 | HC50K ——
HC 100K —
CSSHC50K
20 ¢ CSS-HC 100K ——]
g
8§ 2 g
24 + 4
-26 + 4
28 + 4
20 ‘ ‘ ‘ ‘ ‘ ‘
0 00 200 300 400 500 600 700

Time (Seconds)

(d)

Figure 5: Performance profiles showing improvement in score versus either time or number of computed statistics:
(a) and (b) Alarm domain with 50,000 instances. (c) Insurance dataset with 50,000 instances. (d) Performance
for different dataset sizes on Alarm domain. The z-axis reports either time in units of seconds, or the number
of computed statistics in the cache. The y-axis reports normalized scores, i.e., the score divided by the number

of training instances.

currently working on a more extensive empirical in-
vestigation of these methods for learning from large
real world datasets and in the presence of miss-
ing data (i.e., in the approach described in Fried-
man (1997, 1998)).

There are several dimensions for further research. Cur-
rently, we use the bounds within the overarching
paradigm of greedy hill-climbing search. A promising
avenue of research is using the bounds in a more global
manner within the heuristic search. In particular, we
are interested in developing a branch and bound search
procedure for learning structure.

We stress that the general approach for bounding
scores based on constraints on the possible sufficient
statistics is not specific to Bayesian network learning.
The same idea can be exploited in other settings such
as decision tree learning and mining association rules.
In addition, this approach is orthogonal to other meth-

ods that handle sufficient statistics efficiently, such as
Moore & Lee (1997).

Acknowledgments

We are grateful to Walter Murray for his guidance
on nonlinear optimization, and optimization software
packages. In addition we would like to thank him for
suggestions on heuristics for finding feasible solutions.
We would like to thank Ronald Getoor for his help in
showing that the Hessian of a certain class of matrices
is positive semidefinite. We would also like to thank
Peter Grunwald, Ron Parr, Daphne Koller and the
members of the DAGS research group at Stanford for
helpful comments. Most of the experiments reported
here were run on the NOW cluster at UC Berkeley.
We thank the NOW group for allowing us to use their
resources. Some of this work was done while Nir Fried-
man was at University of California at Berkeley and

was funded by ARO under grant number DAAHO04-
96-1-0341 and by ONR under grant number N00014-
97-1-0941. Lise Getoor was supported by a National
Physical Sciences Consortium fellowship. This work
was also supported through the generosity of the Pow-
ell Foundation, by ONR grant N00014-96-1-0718, and
ONR grant N66001-97-C-8554.

References

Beinlich, I., Suermondt, G., Chavez, R. & Cooper,
G. (1989), The ALARM monitoring system: A
case study with two probabilistic inference tech-
niques for belief networks, in ‘Proc. 2nd Euro-
pean Conf. on AT and Medicine’, Springer-Verlag,
Berlin.

Binder, J., Koller, D., Russell, S. & Kanazawa, K.
(1997), ‘Adaptive probabilistic networks with hid-
den variables’, Machine Learning 29, 213-244.

Bouckaert, R. (1995), Bayesian Belief Networks: From
Construction to Inference., PhD thesis, Utrecht
University, Utrecht, The Netherlands.

Cooper, G. F. & Herskovits, E. (1992), ‘A Bayesian
method for the induction of probabilistic net-
works from data’, Machine Learning 9, 309-347.

Cover, T. M. & Thomas, J. A. (1991), Elements of In-
formation Theory, John Wiley & Sons, New York.

Friedman, N. (1997), Learning belief networks in the
presence of missing values and hidden variables,
in D. Fisher, ed., ‘Proceedings of the Fourteenth
International Conference on Machine Learning’,
Morgan Kaufmann, San Francisco, CA, pp. 125—
133.

Friedman, N. (1998), The Bayesian structural EM
algorithm, in G. F. Cooper & S. Moral, eds.,
‘Proc. Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI ’98)’, Morgan Kauf-
mann, San Francisco, CA.

Heckerman, D. (1995), A tutorial on learning Bayesian
networks, Technical Report MSR-TR-95-06, Mi-
crosoft Research.

Heckerman, D., Geiger, D. & Chickering, D. M. (1995),
‘Learning Bayesian networks: The combination of
knowledge and statistical data’, Machine Learn-
ing 20, 197-243.

Lam, W. & Bacchus, F. (1994), ‘Learning Bayesian
belief networks: An approach based on the MDL
principle’, Computational Intelligence 10, 269—
293.

Luenbeger, D. (1984), Linear and Nonlinear Program-
ming, Addison Wesley, Reading, MA.

Moore, A. W. & Lee, M. S. (1997), ‘Cached sufficient
statistics for efficient machine learning with large
datasets’, Journal of A.I. Research 8, 67-91.

Suzuki, J. (1996), Learning Bayesian belief networks
based on the minimum description length prin-
ciple: An efficient algorithm using the B & B
technique, in L. Saitta, ed., ‘Proceedings of the
Thirteenth International Conference on Machine
Learning’, Morgan Kaufmann, San Francisco,
CA, 462-470.

