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Abstract

This paper is about the task-directed updating of
an incomplete and inaccurate geometric model
of a nuclear environment, using only robust
radiation-resistant sensors installed on a robot
that is remotely controlled by a human opera-
tor. In this problem, there are many sources of
uncertainty and ambiguity. This paper proposes
a probabilistic solution under Gaussian assump-
tions. Uncertainty is reduced with an estima-
tor based on a Kalman filter. Ambiguity on the
measurement-feature association is resolved by
running a bank of those estimators in parallel,
one for each plausible association. The residual
errors of these estimators are used for hypothe-
sis testing and for the calculation of a probability
distribution over the remaining hypotheses. The
best next sensing action is calculated as a Bayes
decision with respect to a loss function that takes
into account both the uncertainty on the current
estimate, and the variance/precision required by
the task.

1 Introduction

Remote handling equipment in nuclear environments is of-
ten exposed to intense gamma radiation fields. This radia-
tion influences the properties of many materials, and lim-
its the lifetime of equipment. Cameras in e.g. the future
fusion reactor will “live” for about one minute to a few
hours. Hence, they will only allow for a quick look, not
for continuous live images during task execution. More ro-
bust radiation-resistant sensors do exist, but they have sim-
ple transducers and remote electronics, such as some types
of ultrasonic, force and optical sensors, see Fig. 1. Unfor-
tunately, these sensors return only a limited amount of in-
formation, such as the distance to one point on a surface.
Therefore, the operator will have to rely on a synthetic im-
age based on a rough geometric model obtained from these

“quick-look” images and from CAD models. This geomet-
ric model should then be refined, verified and corrected, lo-
cally around the robot, with a few carefully chosen mea-
surements of the radiation-resistant sensors. To do this,
methods are needed (i) to update a geometric model from
partial, uncertain sensor data, (ii) to determine, for each
measurement, from which feature of which object it orig-
inates, and (iii), to find the best next sensing action.

This paper proposes a probabilistic solution to these three
problems, under Gaussian assumptions. A Kalman filter
based estimator finds the location of an object, given a geo-
metric model of this object and a geometric model of the
interaction between the sensor and this object. Objects
are represented as collections of features, such as planes
and cylinders. Constraints define the relative position of
these features. This object representation allows for con-
structing complicated object models from a limited num-
ber of features. Basically, these constraints can be treated
as just another source of information, in the same way as
a measurement. However, as explained in Section 2, spe-
cial precautions are needed with nonlinear constraints. Lin-
earisation errors might prevent the Kalman filter to con-
verge. Similarly, also incorrect hypotheses about the object
model or about measurement-feature associations prevent
the Kalman filter to converge properly. Therefore, Section
3 outlines a multiple-hypothesis algorithm. This algorithm
allows for postponing decisions about hypotheses until suf-
ficient evidence is available. New features of this algorithm
are that it uses the residual error of the Kalman filter to elim-
inate hypotheses, and that it does not rely on Bayes’ rule to
calculate a probability distribution over the remaining hy-
potheses. The performance of a Kalman filter and of this
multiple-hypothesis algorithm is clearly determined by the
quality of the raw data, the measurements. Therefore, Sec-
tion 4 outlines an action selection strategy using Bayesian
decision theory. We have proposed a new loss function that
takes into account both the precision required by the task
and the precision of the current estimate.

The methods outlined in this paper are described more in
detail in (De Geeter 1998), and in (De Geeter et al. 1996;
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Figure 1: Robust Radiation-Resistant Sensors. The left figure shows a robot equipped with an ultrasonic sensor and an
infra-red optical detector. The ultrasonic sensor measures the distance to a surface. The infra-red sensor returns an output
voltage that is a function of the intensity of the reflected light, and is used to detect edges. The white probe (right figure) is
used to explore the environment by touch, very much like the visually impaired. A force sensor measures the forces on this
probe in six dimensions (three forces, three moments).

De Geeter et al. 1997; De Geeter et al. 1997; De Geeter
et al. 1998).

2 The smoothly constrained Kalman filter

The Kalman filter is a recursive implementation of a
weighted least squares estimator (Kalman 1960). Given a
linear system model, a linear measurement model, a state
estimate and a new measurement, this filter calculates a
new estimate that minimizes a quadratic loss function. The
system model describes the dynamic behavior of a system,
while the measurement model describes the relation be-
tween the state of a system and the measurement. In gen-
eral, these equations are not linear, and need to be linearised
around the most recent estimate. In the applications con-
sidered in this paper, the system model is trivial since the
scenes are static. The measurement model, however, is
highly nonlinear. If the sensing action is, as in Fig. 1 (right),
to move the force-controlled robot vertically down until the
peg touches the object, then the measurement is the position
of the robot along this motion path where the robot stops.
Hence, this measurement can be predicted, given the state
of the object, as the point along the motion path where the
top plane of the object, the top plane of the peg and its cylin-
drical surface intersect in one point, see (De Geeter 1998)
for more details.

As long as the amplitude of the measurement noise is large
compared to the amplitude of the linearisation errors, the
Kalman filter will converge properly. The correct conver-
gence of the filter can easily be verified with the consistency
checks, described e.g. in (Bar-Shalom and Li 1993). Usu-

ally the Kalman filter converges nicely even with nonlinear
measurement equations. However, constraints often cause
convergence problems. Similar to a measurement equation,
constraints too describe a relation between state variables,
the value of which is not determined by a real-world mea-
surement, but by prior knowledge from e.g. CAD mod-
els. Hence, there is often no uncertainty at all on this re-
lation. As this relation is perfectly known, the Kalman esti-
mate satisfies this relation perfectly after application. Con-
straints appear as perfect correlations in the covariance ma-
trix. If this correlation is slightly wrong due to linearisation
errors, this prevents the Kalman filter from converging to
the true value. To solve this problem, we have proposed the
Smoothly Constrained Kalman Filter (SCKF) (De Geeter
et al. 1997).

The SCKF artificially weakens constraints, i.e. increases
the variance of constraint relations, and applies them sev-
eral times instead of only once. In this way, the applica-
tion of a constraint is smoothed over different time steps,
with the integration of measurements in between, which en-
sures the gradual decrease of linearisation errors as the esti-
mate converges to the true value. The SCKF decides when
to start and stop applying a constraint in this way, and cal-
culates the weakening variance as a function of the num-
ber of times the constraint has been applied. The SCKF
outperforms other methods that have been proposed in the
past to deal with linearisation errors, such as the iterated ex-
tended Kalman filter and the second order Kalman filter, see
e.g. (Bar-Shalom and Li 1993), or the pseudo Kalman fil-
ter (Viéville and Sander 1992). Wen and Durrant-Whyte
(1992) even completely abandon the constrained estimate
due to convergence problems, and hence they have to ap-



randomly placed plate (800 x 550 mm)

infra-red sensor

sensor
motion

Figure 2: Detection of the edge-crossing point with an op-
tical sensor. The measurement is derived from the change
in output voltage of the sensor.

ply the constraints again at each time step.

2.1 Example: location of a rectangle with an
infra-red sensor

Suppose the task is to locate a rectangular plate, using only
an infra-red sensor installed on a six degree-of-freedom
robot, Fig. 1 (left). This measurement is the point on the
motion path where the sensor crosses the edge of the plate,
which appears as a discontinuity in the output voltage of the
sensor, Fig. 2. Figure 3 shows the result of a simulation.
The rectangle is described, in two dimensions, as a collec-
tion of four lines, with five constraints. With the line repre-
sentation chosen in this example, the three constraints spec-
ifying the right angles are linear, while the two constraints
specifying the length and width are nonlinear. In this simu-
lation, the measurements are generated according to a uni-
form distribution over the four edges. Gaussian noise with
standard deviation 10mm is added in a direction perpendic-
ular to the edges. Figures 3b-f clearly illustrate the effect of
the constraints. Note that the SCKF applies the nonlinear
constraint on the length only after the integration of mea-
surement 4. This example shows that the SCKF is able to
cope with an initial estimate that deviates substantially from
the true value, and hence implies substantial linearisation
errors.

3 Multiple-hypothesis tree

An important problem in geometric environment modeling
is the ambiguity on the origin of measurements, besides the
uncertainty (noise) on the value of the measurement. Which
feature of which object was observed by sensor s at time
step k? It is often hard to find a unique answer to this ques-
tion. Nonetheless, finding for each measurement the corre-
sponding feature is a prerequisite to the correct estimation
of the parameters of the proposed geometric model.

More in general, system state estimation requires the choice

of a system model, describing the system dynamics, and, for
each measurement, a measurement model, describing the
relation between the system and the measurement.

Instead of taking the risk of a wrong choice of system or
measurement model, the multiple-hypothesis tree (MHT)
allows for several hypothesised models to coexist until
more evidence is available that allows to reject some of
them with higher confidence.

The MHT, presented in (De Geeter et al. 1997) solves this
problem under two assumptions: 1) all noise distributions
are Gaussian, and 2) all measurements originate from a sin-
gle (though unknown) system with time-invariant dynam-
ics, whose model is one out of a given list of system models.
These assumptions may seem very restrictive; their validity
can however be verified at all times.

The main innovation of the MHT, compared to existing
multiple-hypothesis approaches of e.g. (Cox and Leonard
1994), is the use of the residual error of the Kalman filter to
prune the MHT, and to calculate a probability distribution
over the remaining hypotheses.

3.1 Definitions

Definition 1 (Hypothesis) A hypothesis � is the associa-
tion of a sensing action with (i) a system model, (ii) a mea-
surement model and (iii) a state estimate.

A collection of hypotheses, one for each sensing action, is
called a k-interpretation1:
Definition 2 (k-interpretation) A k-interpretation �k
consists of a sequence of hypotheses �j ; j = 1 : : :k, one
for each sensing action up to time step k.

The number of hypotheses is limited by Assumption 2,
which says that all measurements originate from the same
system. This means that, if a (k � 1)-interpretation �k�1
is based on system model m, every k-interpretation �k, de-
rived from �k�1 by the addition of one hypothesis, should
use the same system model m.

Definition 3 (Multiple-Hypothesis Tree) The MHT is
shown in Fig. 4:
The top level in this tree consists of a dummy root node.
Level 0 is the system level, consisting of one node �0i for
each possible system model i.
Levels l = 1 : : :k are measurement levels. Each measure-
ment level corresponds to a measurement. The hypotheses
on measurement level l are labeled �l1 : : : �lNl , where Nl is
the number of hypotheses on level l.
An arc �l�1;ml;n from �l�1m to �ln means that �ln borrows from�l�1m the system model and the state estimate.1This term is borrowed from (Grimson and Lozano-Pérez
1984)
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Figure 3: Convergence of the SCKF. Figure a shows the convergence of the estimate towards the true rectangle. Figures b
to f show the first five time steps more in detail. The edge labels are defined in Fig. f. In step 1, a KF integrates the new
measurement, shown as �, with the previous estimate. Step 2 conditionally applies constraints in the same way as a mea-
surement
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Figure 4: Definition of the Multiple Hypothesis Tree.

The set of leaf nodes corresponds to the hypotheses cur-
rently under consideration.
A path from a particular leaf node �kj to the system level of
the MHT corresponds to a k-interpretation �kj .

3.2 Pruning and calculating probabilities

Pruning of the MHT is done in two steps:� A threshold on the innovation. The innovation is
the difference between the actual measurement and
the predicted measurement, calculated from the cur-
rent state estimate and the measurement model. This
test eliminates obviously wrong hypotheses, and only
serves at avoiding breakdown of calculation accuracy
due to geometrically badly conditioned measurement
equations. This test also avoids the explosion of the
MHT before the test on the residual error, described
below, reaches a level of significance high enough to
take decisions.� ”Goodness of fit” test on the residual error. The resid-
ual error �rk of the estimate at time step k can easily be
calculated from the Kalman filter equations, for proof
see (De Geeter et al. 1997). �rk is �2-distributed with
as many degrees of freedom as statistically indepen-
dent measurements.

In a Bayesian approach, the choice of the prior probabili-
ties, i.e. the probabilityP (�kjk�1j ) at time step k using mea-
surements zl; l = 1 : : :k�1, is a delicate task that requires a
lot of domain knowledge. In our approach, these priors are
of limited importance, and are chosen equal to the probabil-
ity of the parent node �k�1pj of �kj , divided by the number of
child nodes of this parent node. HenceP (�kjk�1j ) = P (�k�1jk�1pj )=cpj ; (1)

where cpj is the number of child nodes of node �k�1pj .

The posterior probability PS(�kjkj ) is chosen to be propor-
tional to p�2(�rk;j), the value of the �2 probability density
function (PDF) at �rk;j. Normalisation is needed to make

sure that the probabilities of all nodes on one level sum to
one. HencePS(�kjkj ) = p�2(�rk;j)= NkXm=1 p�2(�rk;m); (2)

where Nk is the number of nodes on level k (or the number
of plausible k-interpretations), and p�2(:) is the �2-PDF.

Hence, PS(�kjkj ) does not use the prior probabilities as cal-
culated above. Hence, a bad choice for these priors does
not permanently affect the probability distribution as in a
Bayesian approach.

3.3 Example: location of a rectangle with an
infra-red sensor

This is the same example as in Section 2.1. Suppose now
that the operator is in doubt which of two plates is really
present, Fig. 5. Note that the difference between both plate
models is only five times the simulated standard deviation
of the measurement. The threshold on the innovation is
chosen to be 1m, which is the length of the rectangle. Fig-
ure 5 shows that during the first few steps, the probabil-
ity mass spreads out over the hypotheses. The two main
branches corresponding to the two system models get as-
signed approximately equal probability. This is due to the
fact that the first three measurements do not provide evi-
dence for one or the other system model. As more measure-
ments are taken, the probability mass concentrates on the
correct branch. After a while, the correct interpretation is
clearly the most probable. It is clear that with active sens-
ing, attention can be directed towards “interesting” features,
such as opposite edges, and the MHT would never blow up
as in this example.

4 Active sensing: Tolerance-weighted
L-optimal experiment design

Active sensing is the task-directed choice of the control-
lable parameters of a sensing system (Bajcsy 1988). An ac-
tive sensor system decides for itself where to look and what
sensor to use.

In decision theory or game theory, this decision problem is
a game with Nature. The observed system plays the role of
Nature that behaves according to a known probability dis-
tribution. The optimal Bayes decision (or sensing action)
minimises the expected value of a loss function. The loss
function expresses the preference of the decision-maker for
the possible outcomes of an action, given the task (Luce and
Raiffa 1957).

This paper concentrates on “information-gathering” tasks,
where no other criteria than “information gain” are rele-
vant. Other gains or losses such as traveled distance, time
... are not considered. The quest for information is univer-
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Figure 5: The MHT, Example. The right figure shows the same MHT as the left figure, with the probabilities as calculated
by Eq. (2) superimposed. SNIS stands for: the Sum of the Normalised Innovations Squared, which is exactly equal to the
residual error.

sal to most tasks; the other criteria are usually more task-
dependent and can easily be accounted for in the loss func-
tion. This paper assumes that all noise distributions are un-
correlated and Gaussian.

The task-specification is similar to the quality specification
in factory production: product quality is expressed in terms
of tolerances toli on the state xti of some target propertyi; i = 1 : : :Nt of a system, together with a required
fraction Mi of the products that should meet this tolerance.
Similarly, the information needs of a task are expressed in
terms of tolerances toli on the estimated state x̂ti of target
property i, and a required probability Mi that its true state�xti is within the tolerance interval. Suppose, for instance,
the task is to insert a peg in a hole. The observable system
is the object with the hole. The target property is the loca-
tion of the hole, and the tolerance is the clearance between
the peg and the hole. Together, toli and Mi specify a de-
sired standard deviation �i on x̂ti. The end-condition for the
information-gathering task is bP tii;k � �2i ; i; i = 1 : : :Nt,
where bP tii;k is the variance of the estimated target state x̂ti;k
on time step k.

It is desirable that the success rate of the task, based on the
estimated target states x̂ti;k, “smoothly” increases with k.
The success rate of the task is to a large extent determined
by the most badly estimated target state. Suppose that the
information-gathering task is completed for Nt � 1 target
properties, i.e. the estimated target state variance bP tii;k ��2i , but that for one target property j, bP tjj;k >> �2j . Then,
it is very likely that the insertion of the peg in the hole
fails if sensing would be stopped at this time step k, despite
the effort already spent. Therefore, this paper requires that�2i = bP tii;k � �2j= bP tjj;k for any two target properties i andj throughout the information gathering task. This relation
is called the task-invariant. Unlike the end-condition, this
task-invariant makes the sensing sequence task-dependent.

This decision problem is related to the problem of optimal
experiment design (Fedorov 1972; Pukelsheim 1993). The
purpose of an experiment is to optimally estimate the state
of a system, where optimal is to be understood as minimum
variance under Gaussian assumptions. Therefore, the opti-
misation criterion must be a scalar function l( bP ) of the co-
variance matrix of the estimated state. Since no scalar func-
tion can capture all aspects of a matrix, no function suits
the needs of every experiment. Pukelsheim (Pukelsheim
1993) derives so-called information functions: they pos-
sess the properties of nonnegativity, concavity etc. that
make them suitable for ranking; cf. loss functions in de-
cision theory (Luce and Raiffa 1957). The most popular
information functions are the logarithm of the determinant
log(det( bP )), the trace (or average variance) 1=n tr( bP ),
the weighted trace tr(W bP ) and the maximum eigenvalue�max( bP ), leading to D, A, L and E-optimality respectively
(Fedorov 1972; Pukelsheim 1993).

Among these existing optimal experiment designs, the D-
optimal design is most popular, see (Caglioti 1994; Sw-
evers et al. 1997; Whaite and Ferrie 1997) for some re-
cent applications. One important reason is the invariance of
this experiment design to any transformation with nonsin-
gular Jacobian (Pukelsheim 1993). Unfortunately, a stan-
dard D-optimal design does not satisfy the task-invariant:
the loss function is not task-dependent. The same remark
holds for the A and E-optimal designs. In addition, the lat-
ter are not invariant to most transformations such as scal-
ing. Therefore, we proposed a new design that has the
property of invariance to transformations with nonsingular
Jacobians, and that produces a task-dependent sensing se-
quence: the tolerance-weighted L-optimal experiment de-
sign (De Geeter et al. 1998).

This tolerance-weighted L-optimal design is a special in-
stance of an L-optimal design that minimises tr(W bP ). The



weighting matrix follows naturally from two transforma-
tions: a normalisation transformation that normalises ev-
ery state variable with the standard deviation required by
the task, i.e. the required precision of the estimate of this
state variable. The second transformation weighs each state
variable with the distance to the goal, which is the differ-
ence between the desired state variance in normalised space
(equal to 1!) and the actual variance. After some alge-
bra, the transformation matrices may be grouped into one
weighting matrix, and the final loss function isltol( bP k+1;a) = Xi: bP k;ii>�2i 1�4i �bP k;ii � �2i � bP k+1;ii;a;

(3)
where the index a denotes the dependence of the predicted
variance bP k+1;ii;a on the selected action a.

4.1 Example: location of a rectangle with an
infra-red sensor

Suppose now the task is to drill a hole at the location on
the plate xhole = [0:25m 0:125m]T (shown as “+” in
Fig. 6). The plate location is to be estimated such that there
is 95% chance of finding the desired hole location in a rect-
angle around the estimated hole location, with dimensions2tol1 � 2tol2, with tol1 = 0:02m and tol2 = 0:006m.
Since 95% corresponds to the 2� limits of a Gaussian dis-
tribution, �1 = tol1=2 = 0:01m and �2 = tol2=2 =0:003m.

Fig. 6 shows the resulting measurements. These measure-
ments are taken as close as possible to the desired hole lo-
cation. Note that if the task were to insert a square peg in
a slot, orientation of the plate would be important too, and
some measurements would move to the vertices of the rect-
angle.

The sensing sequence obtained with
this tolerance-weighted L-optimal design is shorter than the
sequence resulting from a D-optimal design, Fig. 7: the for-
mer needs only 14 measurements, while the latter needs 18
measurements.

4.2 Location of a cylinder with an ultrasonic sensor

The task is to drill a hole in the centre point of the top
plane of the cylinder. The axis of the hole should coin-
cide with the cylinder axis, Fig. 8. The target state xt =[x y z �c �c]T , where x, y and z are the coordinates of the
intersection point and �c, �c describe the orientation of the
cylinder. The desired standard deviation of each of these
target properties is �1 = 0:001m, �2 = 0:001m, �3 =0:01m, �4 = 0:01rad and �5 = 0:01rad. �3 is larger
than �1 and �2, since a force-controlled drilling robot can
accommodate for errors on z. The robot uses only the ul-
trasonic sensor, see Fig. 1. Fig. 9 shows the first 10 sens-
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Figure 6: Tolerance-optimal design. This figure shows
all 14 measurements, the estimated plate location, the es-
timated hole position, shown as �, and the 10� uncertainty
ellipse on the hole position. The bottom figure zooms in on
part of the top figure.

ing actions generated by a tolerance-optimal design. Fig. 10
shows as an illustration the value of the loss function on the
top plane of the cylinder, used to plan respectively sensing
action 4 and 5. This figure clearly shows the effect of sens-
ing action 4 on the loss function used to plan sensing action
5.

5 Discussion

3D geometric modeling. This paper only gives examples
in 2D for reasons of clarity and conciseness of the paper.
For more simulation and experimental results in 3D, the
reader is referred to (De Geeter 1998).

Bottom-up vs. top down approach. This work emerged,
not only from the obvious need in nuclear applications,
but also from the long tradition of research into sensor-
based robot control and into the motion of objects in con-
tact, by Bruyninckx, De Schutter and Van Brussel, see
e.g. (De Schutter and Van Brussel 1988a; De Schutter
and Van Brussel 1988b; Bruyninckx and De Schutter 1996;
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Figure 8: Locating a cylinder. The task is to drill a hole in
the centre of the top plane of the cylinder, with hole axis
aligned with the cylinder axis.

Dutré et al. 1997). The whole purpose of robotics is to mod-
ify the world, which requires controlled contact with the
world. This is in contrast to the top-down approach often
taken by researchers from “AI”, mainly in mobile robotics,
whose main goal is to avoid contact between the (mobile)
robot and the world.
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sensing actions. The position and orientation of the US sen-
sor are shown as � and!.
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Figure 10: Locatinga cylinder with a US sensor: tolerance-
optimal design. Loss functions log10(ltol(a)) used to plan
sensing action 4 (top) and 5 (bottom), evaluated on the top
plane of the cylinder.

Implicit vs. explicit reasoning with uncertainty. Geo-
metric modeling requires one to deal with uncertainty ex-
plicitly. This is complementary to the implicit way of ac-
commodating for uncertainty in control. Force-controlled
compliant robot motion allows to successfully assemble



pieces despite considerable uncertainty on their relative lo-
cation. However, there are limits to the amount of uncer-
tainty control loops can accommodate for. Recently, there
too, the need arose to explicitly model the geometric rela-
tion between manipulated objects and the environment, see
for instance (Demey 1996; Dutré 1998).

Priors and Bayes’ rule. One of the common criticisms on a
Bayesian approach is that specification of prior probability
distributions is difficult, and requires a lot of domain knowl-
edge. Different “experts” will come up with different prob-
abilities. In this paper, prior probabilitiesare needed, firstly,
to initialise the Kalman filter for each system model. In our
experiments, the human operator can see the object to be
located, and uses a simple graphical user interface to esti-
mate the position of the object. The performance of the hu-
man operator did not differ too much over time and over
the position of the object. Hence the variance could be esti-
mated once and for all, and never caused convergence prob-
lems for the Kalman filter. Secondly, prior probabilities are
needed to predict the probability of an interpretation be-
ing correct, see Eq. (1). These are particularly difficult to
find, and therefore, their importance is limited in this paper:
What is the probabilitythat the next measurement is on edge
4 of the plate, given the current location of the robot, the
current estimate of the plate location, the motion command
given to the robot, ... ?. This prior probability distribution
over the predicted plausible interpretations is only used to
select the best one, which is then used to plan the best next
sensing action as in Section 4. These priors are not used to
calculate the posterior probabilities over the plausible inter-
pretations, since these are calculated at each time step from
the residual error of the KF, see Eq. (2).

This paper stops where AI people start getting inter-
ested... Many interesting problems remain. For instance,
when the MHT rejects an interpretation as being implausi-
ble, it is assumed that the large residual error of the KF is
due to an incorrect choice of the geometric object or mea-
surement model. However, there might be other reasons
why the KF does not converge properly: the sensor might
not be workingproperly due to radiation, the positioningac-
curacy of the robot is deteriorating, the support of the infra-
red sensor on the robot might be bent, etc. More elaborate
diagnosis would be interesting here, see e.g. (Roumelio-
tis, Sukhatme, and Bekey 1998). We are currently studying
Bayesian networks for this purpose. Also the action plan-
ning could be sophisticated further. Its only aim is now to
reduce uncertainty. It would also be interesting to take into
account the ambiguity (the amount of plausible interpreta-
tions), to keep the size of the MHT down, see e.g. (Wein-
shall and Werman 1997).�2-tests and errors in judgement. A �2-variable is used
to test whether a value is acceptable as a sample from ann-dimensional Gaussian distribution. �2-tests are conve-
nient, as it is lot easier to test on a scalar variable than

on an n-dimensional variable. However, as argued already
in Section 4 with the design of a loss function, no single
scalar variable can capture all the information of a variable
in a higher-dimensional space. With the projection of an n-
dimensional space onto a one-dimensional space, a lot of in-
formation on the original distribution is lost. The question
then is whether a �2-variable contains the right information
for our purpose. Will this not lead to the rejection of correct
interpretations? There are probably other scalar variables
that allow for easy hypothesis testing, and that are as good
as �2-variables.

6 Conclusion

This paper briefly reviews a probabilistic solution to deal-
ing with uncertainty when constructing a geometric model
of a nuclear environment with only simple but robust sen-
sors. Since sensor information is sparse and expensive,
our approach is very different from the approach in com-
puter vision. There, data processing amounts to throwing
away most of the data, so as to find the relevant informa-
tion buried in it. In contrast to this, here our purpose is to
actively go and look, so as to find exactly the information
that is needed for the task.

The proposed solution consists of three parts. First, the
Smoothly Constrained Kalman filter estimates the location
of an object, given a geometric object model, given a new
measurement and a geometric measurement model for the
sensing action. The SCKF is able to integrate nonlinear
constraints without convergence problems, better than ex-
isting methods. Second, the MultipleHypothesis Tree man-
ages the ambiguity on the measurement-feature associa-
tion. The MHT runs a bank of SCKFs in parallel, one for
each plausible hypothesis. New features are that the MHT
uses the residual error of the SCKF to eliminate unlikely
interpretations, and to calculate a probability distribution
over the remaining interpretations. This makes the MHT
less dependent on ”experts”, compared to the more clas-
sic Bayesian approach. Third, for the best interpretation,
the best next sensing action is calculated as a Bayes de-
cision that minimises a loss function. The new loss func-
tion that leads to the tolerance-weighted L-optimal experi-
ment design, has the interesting invariance properties of a
D-optimal design, and in addition, leads to a shorter task-
dependent sensing sequence.
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