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Abstract

We prove that many graphical models with

hidden variables are not curved exponen-

tial families. This result, together with the

fact that some graphical models are curved

and not linear, implies that the hierarchy

of graphical models, as linear, curved, and

strati�ed, is non-collapsing; each level in the

hierarchy is strictly contained in the larger

levels. This result is discussed in the context

of model selection of graphical models.

1 Introduction

A graphical model is a family of probability distribu-

tions speci�ed via a set of conditional independence

constraints that a graph represents or via a parametric

de�nition dictated by a graph. The wide applicability

of graphical models to many problems in Statistics is

due to several features. Graphical models provide a

language to facilitate communication between a do-

main expert and a statistician, provide exible and

modular de�nitions of families of probability distri-

butions, and are amenable to scalable computational

techniques (e.g., Pearl, 1988; Whittaker, 1990; Lau-

ritzen, 1996). Furthermore, graphical models based on

directed acyclic graphs (DAGs), which are called DAG

models or Bayesian networks, are useful for modeling

causal relationships (e.g., Spirtes et al., 1993, Pearl,

1998).

Graphical models can be viewed as a hierarchy ac-

cording to their representation as exponential fam-

ilies. Undirected graphical models with no hidden

variables are linear exponential families (LEFs) (Lau-

ritzen, 1996), directed acyclic graphical models with

no hidden variables are curved exponential families

(CEFs) (Geiger and Meek, 1998), and graphical mod-

els with hidden variables are strati�ed exponential

families (SEFs) (Geiger and Meek, 1998).

Herein we prove that many graphical models with hid-

den variables are not curved exponential families. This

result, together with the fact that some graphical mod-

els are curved and not linear, implies that the hierarchy

of graphical models, as linear, curved, and strati�ed,

is non-collapsing; each level in the hierarchy is strictly

contained in the larger levels. We also show how to

compute the dimension of a SEF by proving a connec-

tion between the dimension of the highest stratum and

the regular rank of a Jacobian matrix.

Our work is motivated by results on model selec-

tion within linear and curved exponential families. A

Bayesian approach to model selection is to compute

the probability that the data is generated by a given

model via integration over all possible parameter val-

ues with which the model is compatible and to se-

lect a model that maximizes this probability. We call

this probability the marginal likelihood. Although,

in principle, this Bayesian approach is appealing, in

practice, it is often impossible to evaluate the inte-

gral (even by sampling techniques) when the number

of parameters is large. When the dataset consists of

many cases, asymptotic results for approximating the

marginal likelihood are useful.

Schwarz (1978) considered the problem of evaluat-

ing the marginal likelihood when a model is a lin-

ear exponential family. He derived an asymptotic for-

mula for the marginal likelihood, P (DatajModel) =

L(

^

�)N � d=2 logN +O

p

(1), where L is the likelihood,

^

� is the maximum likelihood estimator, d is the dimen-

sion of the a�ne subspace, and N is the sample size.

This formula has become known as the Bayesian Infor-

mation Criteria (BIC). Haughton (1988) established,

among other results, that BIC, under some regular-

ity assumptions, is an O

p

(1) asymptotic approxima-

tion of the marginal likelihood for curved exponential

families. The main regularity assumption of her work,

and of Schwarz's work, is that the prior distribution

expressed in a local coordinate system near the maxi-

mum likelihood solution is bounded and bounded away



from zero. Other regularity assumptions are used to

insure that with su�cient data, a unique model is se-

lected with high probability. When these assumptions

are acceptable, Haughton's results on model selection

apply to graphical models without hidden variables.

However, although researchers have been using BIC for

selecting models among graphical models with hidden

variables, this methodology has not yet been estab-

lished as an asymptotic approximation of a Bayesian

procedure as it has for CEFs. Herein, we show that

graphical models with hidden variables are not CEFs.

This implies that the justi�cations given by Schwartz

and Haughton for BIC do not apply to graphical mod-

els with hidden variables and that a generalization of

their arguments is needed.

2 Background

In this background section we recall the de�nitions of

smooth manifolds, topological manifolds, and strati-

�ed sets, based on (Spivak 1965, Akbulut and King,

1992, Benedetti and Risler, 1990). We then provide

the de�nitions for linear, curved, and strati�ed expo-

nential families based on (Lauritzen, 1996, Kass and

Vos, 1997, Geiger and Meek, 1998).

2.1 Manifolds and strati�ed sets

A di�eomorphism f : U � R

n

! R

m

is a smooth

(C

1

) 1-1 function having a smooth inverse. A subset

M of R

n

is called a k-dimensional smooth manifold in

R

n

if for every point x 2M there exists an open set U

in R

n

containing x and a di�eomorphism f : U \M !

R

k

. When f is only assumed to be continuous and to

have a continuous inverse (namely, a homeomorphism),

then the set M is called a topological manifold. Since

composition of di�eomorphisms is a di�eomorphism,

we get the following proposition.

Proposition 1 If g : A � R

n

! B � R

n

is a dif-

feomorphism, then M � A is a smooth manifold if

and only if g(M) is a smooth manifold and N � B is

a smooth manifold if and only if g

�1

(N) is a smooth

manifold.

Another way to verify whether a subset of R

n

is a

smooth manifold is given by the following Theorem

(e.g., Spivak, 1965).

Theorem 1 Let A � R

m

be open and let h : A !

R

m�n

be a smooth function such that h

0

(x) has rank

m � n whenever h(x) = 0. Then h

�1

(0) is a n-

dimensional smooth manifold in R

m

.

A strati�cation of a subset E of R

m

is a �nite partition

fA

i

g of E such that (1) each A

i

(called a stratum of

E) is a d

i

-dimensional smooth manifold in R

m

and (2)

if A

j

\ A

i

6= ;, then A

j

� A

i

and d

j

< d

i

(frontier

condition) where A

i

is the closure of A

i

in R

m

. See

Akbulut and King (1992) for a more general de�ni-

tion. A strati�ed set is a set that has a strati�cation.

The dimension of a strati�ed set is d

1

| the largest

dimension of a stratum. We note that if E is a strat-

i�ed set and f is a di�eomorphism, then f(E) is also

a strati�ed set.

An example of a smooth manifold, a topological man-

ifold and a strati�ed set are shown in Figure 1.

2.2 Exponential families

A family (or model) is a set of probability density func-

tions. A probability density in an exponential family

is given by

p(xj�) = e

<�;t(x)>� (�)

(1)

where x is an element of a sample space X with a

dominating measure � and t(x) is a su�cient statistics

de�ned on X taking values in R

k

with an inner product

< :; : >. The sample space X is typically either a

discrete set, R

n

, or a product of these.

Every probability distribution for a �nite sample space

X belongs to an exponential family. For example, a

sample space that consists of four outcomes can be

written in the form of Eq. (1) by choosing t(x) and �

as follows: t(x) = (t

1

(x); t

2

(x); t

3

(x)) where t

i

(x) = 1

if x is outcome i, 1 � i � 3, and zero otherwise, and

�

i

= log(w

i

=w

0

) where w

i

is the probability of outcome

i, 1 � i � 3, and w

0

= 1�

P

3

i=1

w

i

is the probability

of the forth outcome.

When the vector � has k coordinates and when p(xj�)

cannot be represented with a parameter vector smaller

than k, then the representation is minimal and the

order (or dimension) of this family is k, and the pa-

rameters are called natural parameters. It is known

that this order is unique for each family. The natural

parameter space is given by

N = f� 2 R

k

j

Z

e

t(x)�� (�)

d�(x) <1g:

The set of probability distributions having the form

(1) are denoted by S. If for each � in N there exists

P

�

in S, then S is said to be a full exponential family;

if, in addition, N is an open subset of R

k

, then S is

said to be a linear exponential family.

A subfamily of a linear exponential family is a subset

S

0

of S. A subfamily can be described by a mapping

f : � ! N which de�nes S

0

via N

0

= ff(�)j� 2 �g.

When f is a linear mapping of rank p, and � is an

open set, a new linear exponential family is formed of

order k � p.
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Figure 1: Three types of surfaces

A curved exponential family of dimension n is de�ned

to be a subfamily of an exponential family of order k

such that N

0

is a n-dimensional smooth manifold in

R

k

. A subfamily of an exponential family S

0

� S is

often described by a mapping f : �! N which de�nes

S

0

viaN

0

= ff(�)j� 2 �g and where � is an open set.

A strati�ed exponential family (SEF) of dimension n

as a subfamily of an exponential family having a nat-

ural parameter space N of order k if its parameter

space N

0

� N is a n-dimensional strati�ed set in R

k

.

In other words an SEF is a �nite union of CEFs of var-

ious dimensions satisfying some regularity condition.

3 Graphical models with hidden

variables are not CEFs

It is clear that SEFs is a class of models that is strictly

larger than CEFs, however, it remains to show that the

former class contains graphical models which are not

contained in the smaller class. In this section we show

that many graphical models with a hidden variable

(which are SEFs) are not CEFs.

We �rst study in detail a class of graphical models

which are often called naive Bayes models. We show

that naive Bayes models are strati�ed exponential fam-

ilies but are usually not curved exponential families.

Then we extend the proof to wider classes of graphical

models.

Let H;F

1

; : : : ; F

n

be a set of variables each hav-

ing a �nite set of possible values denoted by

dom(H); dom(F

i

), respectively. Let jdom(H)j = k

and jdom(F

i

)j = k

i

and let p(h) stand for p(H =

h) where h 2 dom(H). A naive Bayes model is a

set of multinomial distributions for the sample space

dom(F

1

)� : : :� dom(F

n

) such that

p(f

1

; : : : ; f

n

) =

X

h2dom(H)

p(h)

n

Y

i=1

p(f

i

jh); (2)

where f

i

2 dom(F

i

). The variable H is called the class

variable and each F

i

is called a feature. When k = 2

we get a Binary naive Bayes model and when k

i

= 2

the feature F

i

is binary and its domain is ff

i

; f

i

g. In

applications, H denotes a mutually exclusive and ex-

haustive set of classes and each F

i

is a measurement

that has a �nite set of possible outcomes. By observ-

ing outcomes of F

i

, a common task is to infer how

many classes should H have, or when the number of

classes is known, to �nd the most likely class given the

measurements. We focus on inferring the number of

classes, and more generally on model selection.

We note that Eq. 2 de�nes a mapping g

n;k;k

1

;:::;k

n

:

A � R

n̂

! R

m

where n̂ = k � 1 +

P

n

i=1

(k

i

� 1)k is

the number of coordinates on the right hand side, also

called the network parameters, and m = (

Q

n

i=1

k

i

)� 1

is the number of coordinates on the left hand side mi-

nus one (since these coordinates sum to 1), also called

the joint-space parameters. The set A is an open

set of R

n̂

de�ned by the following inequalities. For

each h 2 dom(H) and f

i

2 dom(F

i

), 1 � i � n,

we have 0 < p(h) < 1, 0 < p(f

i

jh) < 1, and

P

f

i

2dom(F

i

)

p(f

i

jh) = 1. These are the usual restric-

tions regarding strict probabilities. Note that the set

A depends on n; k, and k

i

but this dependence is sup-

pressed in our notation.

In order not to clutter our notation, we �rst present

the results for naive Bayes models with binary features

and then extend to naive Bayes models with features

for which k

i

� 2, and to other graphical models. When

all k

i

equal 2, the mapping de�ned by Eq. 2 is denoted

by g

n;k

: A � R

n̂

! R

m

where n̂ = nk + k � 1 and

m = 2

n

� 1. For Binary naive Bayes models with

n binary features, the mapping de�ned by Eq. 2 is

denoted by g

n

: A � R

n̂

! R

m

where n̂ = 2n+ 1 and

m = 2

n

�1. The set g

n;k;k

1

;:::;k

n

(A) is called the image

of a naive Bayes model.

We now show that the image of a naive Bayes model



with k classes and n binary features is not a smooth

manifold when n � 2k. Assume fh

1

; : : : ; h

k

g are the

k values of dom(H) and ff

i

; f

i

g are the two values

of dom(F

i

). Let the source coordinates of g

n;k

be

t

1

; : : : ; t

k�1

, a

ic

, 1 � i � n, 1 � c � k, where t

c

=

p(h

c

) and a

ic

= p(f

i

jh

c

). Note that t

k

= 1�

P

k�1

c=1

t

c

is not a source coordinate. The target coordinates of

g

n;k

can be indexed as follows:

w

i

1

i

2

:::i

r

=

k

X

c=1

t

c

Y

i2I

(1� a

ic

)

Y

i2I

a

ic

(3)

where each index i has 2 possible values, I is the set

of r indices fi

1

; : : : ; i

r

g which are assigned with their

second (or last) value and I is the set of the remaining

n � r indices. The �rst coordinate, when I = ;, is

denoted by w

;

.

Theorem 2 The image of a naive Bayes model with

k classes and n � 2k binary features is not a smooth

manifold.

Proof: The crucial fact we use is that if the image

of g

n;k

were a smooth manifold, then the image would

have a tangent hyperplane at each point and the di-

mension of that tangent hyperplane could not exceed

the dimension of A which is kn+ k � 1. Furthermore,

if the image of g

n;k

were a smooth manifold, then

@g

n;k

=@a

ic

evaluated at a point x in the domain of g

n;k

would be a tangent vector to M at the point g

n;k

(x)

in the image. This is because these partial derivatives

are columns of the Jacobian matrix for g

n;k

and the

Jacobian matrix gives the mapping between the tan-

gent space of A and the tangent space ofM . The proof

provides a point in the image at which there are more

than kn+ k � 1 linearly independent tangent vectors.

Hence, the dimension of the tangent hyperplane is too

large for the image to be a smooth manifold. (See, for

example, Figure 1 where there are three independent

tangent vector at the origin while the surface has a

dimension only of 2).

Suppose now that the image of g

n;k

is a smooth man-

ifold M in R

2

n

�1

. Pick some j � n and some point

x

j

2 A with t

c

= 1=k and a

ic

= 1=2 for all c and

i 6= j. Furthermore, for x

j

, let a

j1

6= a

j2

, a

jc

= 1=2

for c > 2, and 1=2 =

P

k

c=1

t

c

a

jc

(i.e., a

j1

+ a

j2

= 1).

Note that y = g

n;k

(x

j

) is independent of which j we

choose because w

i

1

i

2

:::i

r

= (1=2)

n

.

Consider the partial derivatives @g

n;k

=@a

ic

, c = 1; 2,

evaluated at x

1

; : : : ; x

n

. Each partial derivative, as

well as any linear combination of partial derivatives,

is a tangent vector at y. We show that there are

n+n(n�1)=2 linearly independent tangent vectors at

y. Consequently, since kn+ k� 1 < n+n(n� 1)=2 for

n � 2k we reach a contradiction: the number of inde-

pendent tangent vectors is greater than the dimension

of A. Consequently, M is not a smooth manifold at y.

We select the following n+n(n�1)=2 tangent vectors:

@g

n;k

=@a

i1

+ @g

n;k

=@a

i2

evaluated at x

i

, 1 � i � n,

and @g

n;k

=@a

j1

� @g

n;k

=@a

j2

evaluated at x

i

, 1 � i <

j � n. We consider these vectors as columns of a

matrix and examine the submatrix formed by the �rst

1 + n + n(n � 1)=2 coordinates, denoted w

;

, w

i

; w

ij

,

i < j. By subtracting line w

;

from each of the other

lines w

i

and w

ij

, removing w

;

from the matrix, and

pulling the common constant from each column, we

get a convenient square matrix of size n+ n(n� 1)=2.

This matrix, which consists only of zeros and ones, has

the form:

�

I B

0

B C

�

where I is the identity matrix of size n� n, B

0

is the

transpose of B and every line w

ij

when restricted to B

has two ones, in column i and j, and zeros otherwise

(in B), and the square matrix C has zeros on the two

main diagonals and ones otherwise. By subtracting

lines w

i

and w

j

from line w

ij

, 1 � i < j � n, we get

a diagonal matrix as needed. These calculations are

facilitated by the equation

@w

i

1

i

2

:::i

r

=@a

jc

(x

l

) = (1=k)(1=2)

n�2

�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�(1� a

lc

) j 2 I; l 2 I; j 6= l

�a

lc

j 2 I; l 2 I; j 6= l

1� a

lc

j 2 I; l 2 I; j 6= l

a

lc

j 2 I; l 2 I; j 6= l

�1=2 j; l 2 I; j = l

1=2 j; l 2 I; j = l;

and by the fact that a

l1

+ a

l2

= 1 for 1 � l � n. 2

Suppose now that the features are not all binary. Let

f

ij

i

be the jth element in dom(F

i

). Let a

icj

i

stand

for p(f

ij

i

jh

c

), and let t

c

= p(h

c

). Then the target

coordinates of g

n;k;k

1

;:::;k

n

can be indexed as follows:

w

i

1

i

2

:::i

r

=

k

X

c=1

t

c

Y

i2I

(1�

k

i

�1

X

j

i

=1

a

icj

i

)

Y

i2I

a

icj

i

(4)

where each index i has k

i

possible values, I is the set of

r indices fi

1

; : : : ; i

r

g which are assigned with their last

value and I is the set of the remaining n� r indices.

Theorem 3 The image of a naive Bayes model with

k classes and n features is not a smooth manifold,

whenever n � 2(k

0

� 1)k, where k

0

= max

i

k

i

, k

i

=

jdom(F

i

)j.

Proof: We use the same idea as in the proof of The-

orem 2 and so we only describe the relevant changes.



The image of a naive Bayes model is discussed in the

notation of Eq 4. The point y for which we count

the number of linearly independent tangent vectors

is given as follows. Let t

c

= 1=k and a

icj

i

= 1=k

i

,

for all i 6= j, 1 � j

i

� k

i

, and 1 � c � k. Let

a

j11

6= a

j21

, and a

jcj

i

= 1=k

j

otherwise. Finally, let

1=k

j

=

P

k

c=1

t

c

a

jcj

i

(i.e., a

j11

+ a

j21

= 2=k

j

). Note

that y = g

n;k;k

1

;:::;k

n

(x

j

) is independent of which j we

choose because w

i

1

;:::;i

n

=

Q

i

(1=k

i

). We now compute

the same derivatives as in Theorem 2, namely, with

respect to a

i11

and a

i21

(which are denoted in the pre-

vious proof by a

i1

and a

i2

). The 1 + n + n(n � 1)=2

lines are also selected as before. In line w

;

every in-

dex is assigned its �rst value. In line w

i

, 1 � i � n,

index i is assigned its last value and all other indices

are assigned their �rst value. In the next n(n � 1)=2

lines, w

ij

, j > i, the indices i and j are assigned their

last value and all other n � 2 indices are assigned

their �rst value. The resulting matrix, after pulling

constants from each column, is identical to the one

given in the proof of Theorem 2 and so its rank is

n+n(n�1)=2. Now, since the dimension of the image

is at most k� 1+

P

n

i=1

(k

i

� 1)k < k� 1+ n(k

0

� 1)k

and since k � 1 + n(k

0

� 1)k < n + n(n � 1)=2 when

n � 2(k

0

� 1)k, the image is not a smooth manifold at

y. 2

The proof technique of Theorems 2 and 3 can, with

minor modi�cations, be used to prove that many DAG

models with a hidden variable do not correspond to a

smooth manifold.

Theorem 4 The image of a discrete DAG model with

a hidden variable H with n children is not a CEF

whenever n(n + 1)=2 is larger than the cardinality of

the state space over the observable variables.

We note that the proof of Theorem 4, as well as all

other proofs in this section, exhibits one singular point

y at which the image of a graphical model is not a

smooth manifold. It does not describe the set of all

singular points at which the image is not a smooth

manifold. It also does not determine whether the point

y is singular because the image is not a topological

manifold at y or because it is not smooth at y.

In the Appendix we give full answers to these ques-

tions for binary naive Bayes model with n binary fea-

tures. In particular, we show that the image is not

even a topological manifold at singular points, and

that the singular points are precisely those for which

p(f

i

jh) = p(f

i

jh) for all values of i, except at most two

values fi

1

; i

2

g where inequality is possible. Additional

results are provided in the appendix that shed light on

the geometry of the image of binary naive Bayes mod-

els with binary features. We derive a formula that

provides the two possible source points for every non

singular point in the image of a binary naive Bayes

model with n binary features.

4 Computation of the dimension

We now show how to compute the dimension of a SEF

when speci�ed as an image of a polynomial mapping

composed with a di�eomorphism, by proving a con-

nection between the dimension of the highest stratum

and the regular rank of some Jacobian matrix. For this

discussion, it is su�cient to consider only the polyno-

mial portion of the mapping because di�eomorphisms

do not change the dimension.

The next lemma suggests a random algorithm for cal-

culating the maximal rank of the Jacobian matrix of

a polynomial mapping. The algorithm and Lemma 5

were also studied more generally for analytical map-

pings in Bamber and van Santen (1985). A proof for

polynomial mappings, which is all we need, is much

simpler and thus included herein.

Lemma 5 Let g : R

m

! R

n

be a polynomial map-

ping. Let J(x) = @g=@x be the Jacobian matrix at x.

Then the rank of J(x) equals the maximal rank almost

everywhere.

Proof: Let d be the maximal rank of J(x). Because

the mapping g is polynomial, each entry in the matrix

J(x) is a polynomial in x. When diagonalizing J(x),

the leading elements of the �rst d lines remain polyno-

mials in x, whereas all other lines, which are linearly

dependent given every value of x, become identically

zero. The rank of J(x) falls below d only for values of

x that are roots of some of the polynomials in the diag-

onalized matrix. The set of all such roots has measure

zero. 2

A random algorithm for computing the maximal rank

of J(x) is now evident. At the �rst step, the algorithm

computes the Jacobian matrix J(x) symbolically from

g(x). This computation is possible since g is a vector

of polynomials in x. Then, it assigns a random value to

x and diagonalizes the numeric matrix J(x). Lemma 5

guarantees that, with probability 1, the resulting rank

is the maximal rank of J(x).

The next theorem shows that this algorithm computes

the dimension of the image of a polynomial mapping.

Such an image is a strati�ed set and its dimension is

de�ned to be the dimension of the highest stratum

(Benedetti and Risler, 1990).

A subset V of R

n

is called a semi-algebraic set if

V = [

s

i=1

\

r

i

j=1

fx 2 R

n

jP

i;j

(x) ,

ij

0g were P

ij

are

polynomials in R[x

1

; : : : ; x

n

] and ,

ij

is one of the

three comparison operators f<;=; >g. Loosely speak-

ing, a semi-algebraic set is simply a set that can be



described with a �nite number of polynomial equali-

ties and inequalities. When only equalities are used

the set is algebraic.

Theorem 6 Let g : A � R

m

! R

n

be a polynomial

mapping where A is a semialgebraic open set. Let

J(x) = @g=@x be the Jacobian matrix at x. Then

the maximal rank of J(x) is equal to the dimension

of g(A).

This theorem is a special case (with V = R

m

) of the

following theorem:

Theorem 7 Let g : R

m

! R

n

be a polynomial map-

ping. Let A be an open semialgebraic subset of R

m

and let V be an algebraic subset of R

m

. Suppose that

A\V is contained in the nonsingular points of V . For

x 2 A \ V , let J(x) = @g=@x be the Jacobian matrix

of g at x, and let P

V

(x) be the matrix of orthogonal

projection to the tangent space of V at x. Let d be

the maximum over x 2 A \ V of the rank of the ma-

trix J(x)P

V

(x). Then g(A \ V ) is a semialgebraic set

whose dimension is d.

Proof: We recall a few facts about semialgebraic

sets. Let A and B be semialgebraic sets. If A �

B then dim(A) � dim(B). Also dim(A [ B) =

max(dim(A); dim(B)). The closure A is semialgebraic

and dim(A) = dim(A). Finally, any semialgebraic set

has only a �nite number of connected components.

We prove this theorem by induction on d. By Propo-

sition 2.4.3 of Akbulut and King (1992), we know the

entries of P

V

(x) are rational functions, whose denom-

inators do not vanish on the nonsingular points of V .

Consequently, there is an algebraic subset W � V so

that W \ A is the set of points x 2 A \ V at which

J(x)P

V

(x) has rank less than d. (The subset W is

given by the vanishing of all d�dminors of J(x)P

V

(x),

or alternatively, see the proof of Lemma 5.) By induc-

tion, we know that g(W \ A) has dimension less than

d. In particular, let W

0

= W and let W

i

be the sin-

gular points of W

i�1

if i � 1. We apply this theorem

with A replaced by A �W

i+1

and V replaced by W

i

.

Note that if x 2W

i

then the tangent space of W

i

at x

is contained in the tangent space of V at x and so the

rank of J(x)P

W

i

(x) is less than or equal to the rank of

J(x)P

V

(x) which is less than d. So by induction the

dimension of g(A \ (W

i

�W

i+1

)) is less than d. So if

B is the closure of g(A \W ), then B is semialgebraic

and dim(B) < d.

Let C = A � g

�1

(B). Note that C is an open

semialgebraic set and J(x)P

V

(x) has rank d at all

points x 2 C \ V . We have reduced to showing that

dim(g(C \ V )) = d. Take any point y 2 g(C \ V ) and

any x 2 C \ V \ g

�1

(y). Theorem 5.4 of Br�ocker and

J�anich (1982) gives a local description of g near x in

V . In particular, there is a neighborhood U of x in V

so that g(U) is a d dimensional submanifold of R

n

and

g

�1

(y)\U is a submanifold of V . So if x

0

2 g

�1

(y)\V

is close enough to x, a neighborhood of x

0

in V will be

mapped to the exact same d dimensional submanifold

as a neighborhood of x. Consequently, if x

0

is any point

in the same connected component of C \ V \ g

�1

(y)

as x, a neighborhood of x

0

in V will be mapped to the

exact same d dimensional submanifold as a neighbor-

hood of x. Since C\V \g

�1

(y) is semialgebraic, it has

only a �nite number of connected components. Hence

a neighborhood of y in g(C \ V ) is a �nite union of d

dimensional submanifolds. So dim(g(C \ V )) = d. 2

In the context of graphical models g is the mapping

from the network parameters to the joint-space pa-

rameters. For example, for naive Bayes models g is

replaced with g

n;k;k

1

;:::;k

n

. We have implemented the

algorithm in Mathematica and used it to �nd the di-

mension of several graphical models with hidden vari-

ables. Here we summarize the results for g

n;k;k

1

;:::;k

n

.

(Implementation details can be found in Geiger, Heck-

erman, and Meek, 1996).

For k = 2, the maximal rank of g

n;k

computed by the

algorithm was full, namely, all results were consistent

with the formula min(2n+1; 2

n

�1). In the appendix,

among other results, we prove that the maximal rank is

indeed full for every n. For k > 2, the maximal rank of

g

n;k

found by the algorithm was min(nk + k� 1; 2

n

�

1), except when (n = 4; k = 3), where the maximal

rank is 13 rather than 14. This drop in dimension

has also been observed by Goodman (1974, pp. 221).

When n = 2, the maximal rank of g

n;k;k

1

;k

2

can be

far from full. Settimi and Smith (1998) show that

for k < min(k

1

; k

2

) the dimension drops by k(k � 1).

The algorithm con�rms this dimension drop. Other

examples are discussed in Geiger et al. (1996).

5 Discussion

An obvious challenge remains open: Is BIC a valid

asymptotic expansion for the marginal likelihood

P (Datajmodel) when the model is a strati�ed expo-

nential family ?

One solution to this problem may be as follows. Ex-

clude from the strati�ed model all points aside of the

highest stratum. As a result, only a measure zero

set (with respect to the volume element of the high-

est stratum) of points is excluded. The remaining set

is a smooth manifold and so BIC is a correct asymp-

totic expansion, under the appropriate regularity con-

ditions, as long as the MAP point converges to a point

that has not been excluded.



This requirement about convergence is not always sat-

is�ed. To be concrete, suppose points in R

2

are gen-

erated from a standard two dimensional normal dis-

tribution N((m

x

;m

y

); I). Suppose also that we have,

a priori, two equally likely models. The �rst model

consists of all standard two dimensional normal distri-

butions for which f(m

x

;m

y

)jm

2

x

= m

3

y

g and the sec-

ond model consists of all those distributions for which

f(0;m

y

)jm

y

< �1g. The �rst model has one singu-

larity at (0,0). Although this singularity has measure

zero with respect to the �rst model, we cannot ex-

clude it from the model. In particular, the MAP value

for the �rst model will converge to (0,0) whenever the

second model contains the true distribution, an event

that will happen with probability 1/2 according to our

prior. A more careful asymptotic analysis of the be-

havior at singular points is needed.

There are other obstacles in applying Haughton's re-

sults to graphical models with hidden variables. These

consist of Haughton's (1988) technical assumptions, as

well as the assumptions that the prior is bounded and

bounded away from zero in a local coordinate system

on the natural parameter space. Priors are usually de-

�ned on the network parameters and when the prior is

transformed to the natural parameter space, it is not

necessarily bounded. In particular, for a DAG model

with a hidden variable, the prior on the natural param-

eter space is usually not bounded whenever the prior

on the network parameters is bounded and bounded

away from zero.
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Appendix

In this appendix we study the image M of a binary

naive Bayes model with n binary features. In partic-

ular, we characterize the set of points S for which the

image is not a topological manifold, show that M n S

is a smooth manifold, show that every point in M n S

has exactly two sources and provide an explicit for-

mula that computes these source points. In addition

we resolve a conjecture made in Geiger et al. (1996)

by showing that the dimension of these models is full,

namely, 2n+1when n � 3. For n = 1; 2, the dimension

is 2

n

� 1.

These results are facilitated by a sequence of di�eo-

morphisms some of which are applied to the source

coordinates and some to the target coordinates. Such

transformations are valid because they preserve the

properties we study herein. Our starting point is Eq. 3

with k = 2, a

i1

= a

i

, a

i2

= b

i

, t

1

= t, and t

2

= 1� t.

Using a non-singular linear transformation on the tar-

get coordinates we obtain the following mapping:

z

ij:::r

= ta

i

a

j

� � � a

r

+ (1� t)b

i

b

j

� � � b

r

where z

i

stands for the probability of the i-th feature

being true, z

ij

stands for the probability that the i-th

and j-th features are both true, etc.

We now apply a di�eomorphism on the source coordi-

nates where s, x

1

, x

2

, ... x

n

, and u

1

, ..., u

n

are the

new coordinates as given by,

t = (s+1)=2; a

i

= x

i

+(1� s)u

i

; b

i

= x

i

� (1+ s)u

i

:

The mapping in the new source coordinates becomes:

z

i

= x

i

z

ij

= x

i

x

j

+ (1� s

2

)u

i

u

j

z

ijk

= x

i

x

j

x

k

+ (1� s

2

)(x

i

u

j

u

k

+ u

i

x

j

u

k

+u

i

u

j

x

k

) + u

i

x

j

u

k

+ u

i

u

j

x

k

)

�2s(1� s

2

)u

i

u

j

u

k

z

12:::r

= x

1

x

2

� � �x

r

+

r

X

i=2

p

i

(s)

X

(products of i u's and r-i x's)

where p

i

(s) = 1=2(1 � s

2

)((1 � s)

i�1

� (�1)

i�1

(1 +

s)

i�1

), and, in particular, p

2

(s) = 1 � s

2

and p

3

(s) =

�2s(1� s

2

).

Now we subtract products of the �rst n coordinates to

get rid of the leading terms. So, we do z

ij

 z

ij

�z

i

z

j

.

Then we subtract products of the �rst n coordinates

with one of the next n choose 2 coordinates to get

rid of the second terms, namely, z

ijr

 z

ijr

� z

ij

z

r

�

z

ir

z

j

� z

jr

z

i

� z

i

z

j

z

r

. And so forth. We end up with

the mapping:

z

i

= x

i

; z

ij

= p

2

(s)u

i

u

j

; : : : ; z

ij���r

= p

r

(s)u

i

u

i

� � �u

r

Let us denote this mapping with F

n

: U � R

2n+1

!

R

2

n

�1

, where U is the set of (x; u; s) 2 R

n

� R

n

� R

such that:

0 < x

i

< 1; �1 < s < 1

�x

i

< (1� s)u

i

< 1� x

i

x

i

� 1 < (1 + s)u

i

< x

i

:

We denote the coordinates of F

n

with F

n

i

(x; u; s) =

x

i

, F

n

ij

(x; u; s) = p

2

(s)u

i

u

j

, F

n

ij���r

(x; u; s) =

p

r

(s)u

i

u

j

� � �u

r

, etc.

We are now ready to analize the image of U under F

n

.

LetM = F

n

(U) be the image of U . Let S be the set of

points in M for which at most one of the coordinates

z

ij

is nonzero. Let S

0

be the set of points in M for

which all coordinates z

ij

are 0. Note that S

0

� S.

Theorem 8 The dimension of the image of a naive

Bayes model with n � 3 binary features is 2n+ 1.

Proof. The dimension of the image of a naive Bayes

model is equal to the maximal rank of F

n

because F

n

is obtained from g

n

by composition with di�eomor-

phisms. Thus one just needs to compute the maximal

rank of the Jacobian matrix of F

n

. Let J

n

denote this

Jacobian matrix. We show that the maximal rank of

J

n

is 2n+ 1 for n � 3.

The matrix J

n

has two blocks along the main diagonal

where the �rst block of size n is an identity matrix. It

remains to argue that the second block has a maximal

rank of n + 1. We establish this claim by selecting

n + 1 rows and showing that this submatrix has full

rank. The rows selected, among many other valid pos-

sibilities, are those that correspond to the target co-

ordinates z

1;i

, 2 � i � n, z

23

and z

123

. Assuming the

columns of the second block are organized according

to the order, u

2

; : : : ; u

n

; u

1

; s, then this submatrix of

J

n

is given in Figure 5 where p(s) = 1 � s

2

. Using

two row operations, we get a diagonal matrix with a

maximal rank of n+ 1 as claimed. 2

Theorem 9 Let S be the set of points in M for which

at most one of the coordinates z

ij

is nonzero. The

set M � S is a smooth manifold and this set is double

covered by F

n

.

Proof. Take any point z 2 M � S. Then we have

z

ij

6= 0 and z

k`

6= 0 with ij 6= k`. So if F

n

(x; u; s) = z,

we must have u

a

6= 0 for a = i; j; k; `. So u must have

at least three nonzero coordinates. Without loss of

generality, we may suppose that u

i

6= 0 for i = 1; 2; 3.

Consequently, z

12

, z

13

, z

23

, and z

123

are all nonzero.
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Figure 2: A submatrix of J

n

Then we can solve for (x; u; s) = F

n

�1

(z) as follows:

x

i

= z

i

u

1

= �

p

z

12

z

13

z

23

+ (z

123

)

2

=4=z

23

s = �z

123

=(2u

1

z

23

)

u

i

= z

1i

=(p

2

(s)u

1

) for i > 1

In particular, there are exactly two points in the in-

verse image, and if we choose one of these points (by

choosing the � sign) we have a smooth local inverse

for F

n

. Consequently, M � S is a smooth manifold

and it is double covered by F

n

. 2

Theorem 10 Let S be the set of points in M for

which at most one of the coordinates z

ij

is nonzero.

The set M is not a topological manifold at points of S.

Proof. A topological manifold is locally compact. (A

space is locally compact if each point has a compact

neighborhood. Since each point in a topological mani-

fold has a neighborhood homeomorphic to closed disc,

any topological manifold is locally compact.) We will

show that M is not locally compact at points of S nS

0

.

Recall that S

0

is the set of points in M for which all

coordinates z

ij

are 0. Loosely stated, the reason M is

not locally compact at points of S n S

0

is that points

arbitrarily close to the edge of U are mapped arbitrar-

ily close to any point of S�S

0

. Finally, we argue that

M is also not locally compact at points of S

0

.

To be precise, pick any z

0

2 S �S

0

and suppose it has

a compact neighborhood N in M . Pick � > 0 small

enough that N contains the intersection of M with

the ball of radius � around z. Pick a large constant

b. We may as well suppose that z

0

12

6= 0, but all other

z

ij

are 0. Consequently the only nonzero coordinates

of z

0

are z

0

i

and z

0

12

. Pick any (x

0

; u

0

; s

0

) 2 U so that

F

n

(x

0

; u

0

; s

0

) = z

0

. after applaying �, we may as well

assume that u

0

1

> 0. For small enough � > 0, consider

the point (x

0

; u

�

; s

�

) in U where:

s

�

= 2z

0

1

� 1

u

�

1

= 1=2� �

u

�

2

= z

0

12

=((1=2� �)p

2

(s

�

))

u

�

3

= �=b

u

�

i

= 0 for i > 3

We show here that (x

0

; u

�

; s

�

) 2 U if � is small enough.

Since x

0

i

2 (0; 1) and s

�

2 (�1; 1), by the above de-

scription of U , we must only show that:

�x

i

< (1� s)u

i

< 1� x

i

x

i

� 1 < (1 + s)u

i

< x

i

These are trivially true if i > 3, and true for large

enough b if i = 3. We also have:

�x

1

< 0 < (1� s

�

)u

�

1

= (1� 2�)(1� x

1

) < 1� x

1

x

1

� 1 < 0 < (1 + s

�

)u

�

1

= (1� 2�)x

1

< x

1

If z

0

12

> 0 then since (x

0

; u

0

; s

0

) 2 U we have

x

0

1

> (1 + s

0

)u

0

1

= z

0

12

=((1� s

0

)u

0

2

) > z

0

12

=(1� x

2

)

so z

0

12

=x

0

1

< 1� x

0

2

. Likewise z

0

12

=(1� x

0

1

) < x

0

2

. So if

� is small enough, we have the remaining inequalities

�x

2

< 0 < (1� s

�

)u

�

2

= z

0

12

=((1� 2�)x

0

1

) < 1� x

0

2

x

2

� 1 < 0 < (1 + s

�

)u

�

2

= z

0

12

=((1� 2�)(1� x

0

1

)) < x

0

2

Similarly, if z

0

12

< 0 then u

0

2

< 0 and we have

x

0

1

> (1 + s

0

)u

0

1

= z

0

12

=((1� s

0

)u

0

2

) > �z

0

12

=x

0

2

1� x

0

1

> (1� s

0

)u

0

1

= z

0

12

=((1 + s

0

)u

0

2

) > z

0

12

=(x

0

2

� 1)

and so for small enough �,

�x

2

< z

0

12

=((1� 2�)x

0

1

) = (1� s

�

)u

�

2

< 0 < 1� x

1

x

2

� 1 < z

0

12

=((1� 2�)(1� x

0

1

)) = (1 + s

�

)u

�

2

< 0 < x

1

Now we have



F

n

i

(x

0

; u

�

; s

�

) = z

0

i

F

n

12

(x

0

; u

�

; s

�

) = z

0

12

F

n

13

(x

0

; u

�

; s

�

) = p

2

(s

�

)�(1=2� �)=b

F

n

23

(x

0

; u

�

; s

�

) = �z

0

12

=(b(1=2� �))

F

n

123

(x

0

; u

�

; s

�

) = �2s

�

z

0

12

�=b

and all other coordinates of F

n

(x

0

; u

�

; s

�

) are 0. So if

b is large enough (for example b > 2 � 1=2 + 6jz

0

12

j)

we see that F

n

(x

0

; u

�

; s

�

) is within � of z

0

, so it is in

the compact N . Letting � approach 0, compactness

of N gives us a limit point z

00

2 N . We see that

z

00

i

= z

0

i

, z

00

12

= z

0

12

, z

00

23

= 2�z

0

12

=b, z

00

13

= p

2

(z

0

1

)�=(2b),

z

00

123

= �2s

�

z

0

12

�=b, and all other coordinates are 0.

Note that z

00

is in M � S so we have an explicit

formula above for its inverse image. In particular,

if F

n

(x

00

; u

00

; s

00

) = z

00

then x

00

= x

0

, s

00

= s

�

,

u

00

1

= 1=2, u

00

2

= z

0

12

=p

2

(s

�

), u

00

3

= �=b, and all other

u

00

i

are 0. But this point is not in U which can be

seen by converting back to the original coordinates:

a

00

1

= x

00

1

+ (1� s

00

)u

00

1

= z

0

1

+ (2� 2z

0

1

)(1=2) = 1 which

is outside the allowed range.

So we have a contradiction. Consequently, M is not

locally compact at S � S

0

and hence is not a manifold

there. Note also that M cannot be locally compact at

S

0

since any point of S

0

has arbitrarily close points in

S � S

0

so any compact neighborhood of a point in S

0

is also a compact neighborhood of a point in S � S

0

,

which we have just shown cannot exist. 2

At this point one might argue that perhapsM is not a

topological manifold for a mere technical reason. Sup-

pose we consideredM

0

= F

n

(

�

U) where

�

U is the closure

of U . Since

�

U is closed and bounded, it is compact, so

its image M

0

is also compact, and hence locally com-

pact. Hence, there is still the possibility thatM

0

could

be a topological manifold. Moreover, taking

�

U is not

unreasonable, we are just allowing our probabilities to

be 0 or 1. Nevertheless M

0

is not a topological man-

ifold. In fact, we can show that at points of S � S

0

,

M

0

is locally homeomorphic to R

n+1

� c(D

2

� S

n�3

)

where c(D

2

� S

n�3

) is the cone on a 2-disc D

2

cross

the n�3 sphere (A cone on a set A is the set of points

lying on some straight line between a point in A and

the origin). We can also show that at points of S nS

0

,

M is locally homeomorphic to R

n+1

� c(R

2

� S

n�3

).


