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Abstract

We present a systematic, model-independent
formulation of mean field theory (MFT) as
an inference method in probabilistic mod-
els.  “Model-independent” means that we
do not assume a particular type of depen-
dency among the variables of a domain but
instead work in a general probabilistic set-
ting. In a Bayesian network, for example,
you may use arbitrary tables to specify con-
ditional dependencies and thus run MFT in
any Bayesian network. Furthermore, the gen-
eral mean field equations derived here shed a
light on the essence of MFT. MFT can be
interpreted as a local iteration scheme which
relaxes in a consistent state (a solution of the
mean field equations). Iterating the mean
field equations means propagating informa-
tion through the network. In general, how-
ever, there are multiple solutions to the mean
field equations. We show that improved ap-
proximations can be obtained by forming a
weighted mixture of the multiple mean field
solutions. Simple approximate expressions
for the mixture weights are given. The bene-
fits of taking into account multiple solutions
are demonstrated by using MF'T for inference
in a small Bayesian network representing a
medical domain. Thereby it turns out that
every solution of the mean field equations can
be interpreted as a ‘disease scenario’.

1 Introduction

The benefits of using a probabilistic setting in many
applied fields where uncertainty plays a prominent role
such as image processing, neural networks and ar-
tificial intelligence have become increasingly appar-
ent [1]. Unfortunately, probabilistic solutions often re-

quire involved computation [2] and further progress
is closely related to the development of methods for
the efficient handling of probability distributions. The
goal of this paper is to extend the concept of using
mean field theory (MFT) as a systematic approach
for approximating probability distributions. MFT is
widely used in physics, in particular, in statistical me-
chanics [3, 4] and has found a number of applications
in other areas as well [5, 6, 7, 8]. We present MFT in a
generic way in the context of graphical models, which
are a general framework for dealing with uncertainty
in dependency models [1,9, 10, 11]. The use of MFT in
the context of graphical models was pioneered by Jor-
dan, Saul and Jaakola [12, 13]. In our paper we develop
this approach in two new directions. First, in contrast
to previous work we develop a systematic approach
to MFT without reference to a particular model but
instead work in a general probabilistic setting®. The
mean field equations based on our rigorous formalism
are new in their general form. They can be applied for
example to arbitrary graphical models, which include
Boltzmann machines as a special case. The main ad-
vantage of our mean field equations is that they pro-
vide local inference rules. No global operations are
needed when using MFT for propagating information
in large systems of interacting modules.

The second contribution of this paper is to address
the problem of multiple solutions of the mean field
equations. This problem has been originally discussed
in [14] and simultaneously in [15, 16, 17]. We show
that in the case of multiple solutions, a weighted mix-
ture of these solutions leads to reasonable estimates
of expected values. Approximate and very plausible

*In [12, 13] Jordan et al. use ‘sigmoid belief nets’, a
network of binary variables with a particular kind of de-
pendencies. The Boltzmann machines used in [6] are com-
pletely connected networks of binary variables with ‘two-
way interactions’. Here, we do not assume any particu-
lar kind of variables or a particular type of dependencies.
As a consequence we may run mean field inference in any
Bayesian network. At the moment we have implemented
an interface to the Hugin net-file format.



mixing parameters are derived. The general formal-
ism presented so far is applied to the special case of
Bayesian networks. In this case the mixing parame-
ters can be obtained in a consistent framework, that
is, by means of only local computations. The benefits
of taking into account multiple solutions of the mean
field equations are demonstrated by using MF'l for in-
ference in a small illustration network representing a
medical domain.

Finally, we comment on the relevance of MFT for hu-
man reasoning. Consistent propagation of informa-
tion in large networks of interacting modules is in gen-
eral a demanding task and requires global operations
[1]. MFT, on the other hand, suggests itself as a lo-
cal and very simple prescription for communication of
autonomous processors.

2 Mean Field Theory in a
Probabilistic Setting

2.1 The Cross Entropy as a Measure of
Distance

In the following, a set of N variables X =
{X1,..., Xy} with a finite number of discrete states
z; € H; is assumed. P(X) denotes a probability dis-
tribution on the domain X = H,; & --- @ Hny. We
further assume that any distribution is strictly posi-
tive. P(x) resp. P(z;) is the probability of the event
X = x resp. X; = #;. That is, P(2;) is a real number,
P(z;) €]0,1]. In many interesting domains, P(X) is
computationally intractable. For this reason we intro-
duce a distribution @(X) which is defined on the same
domain of variables and which incorporates some sim-
plifying constraints. The goal is to determine Q(X)
such that —obeying these constraints— it is ‘as close as
possible’ to the given untractable distribution P(X).
As a measure of distance between P(X) and Q(X) we
use the cross entropy (Kullback-Leibler distance) [18]
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Note, that this distance is not symmetric in P and @)
and that, with even more justification, we might have

used
P(X)
faX) >p(x) .

as a distance measure since here the expectation is
with respect to the ‘true’ distribution P. Any of
the above two measures of distance is zero only if
Q(X) = P(X). The reason to use the former measure
(1), however, is that it can be calculated more easily
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since the expectation is with respect to the less com-
plex, approximate distribution ). This finally leads to
the local concept of MFT.

2.2 The Mean Field Assumption

MFT is a concept from theoretical physics and is
used to describe systems of many interacting particles.
Many different facets of MF'T can be found in fields as
different as relativistic nuclear physics [19, 20], statis-
tical physics [3, 4, 21] and neural networks [22, 23, 24].
As a consequence, there exist a number of ways to de-
rive mean field equations. Following the above discus-
sion we define as mean field approximation the distri-
bution @(X) which is closest to P(X) using distance
measure D(Q||P). Furthermore —and this is really the
heart of the mean field approximation [3]- we assume
that the variables in the )-distribution are indepen-

dent variables X;. In this case we can write

) =Tl (3

At first sight this ansatz seems to be much too simple,
for obviously it is ignoring any interaction between the
variables X;. Nevertheless, one can take advantage of
this approach for approximate propagation of informa-
tion (evidence), as we will see later. To the hest of our
knowledge, Jordan et al. [12, 13] were the first ones to
define MFT in a general way as the ansatz (3) together
with D(Q||P) as a measure of distance.

Q(Xq,..., XN

2.3 General Mean Field Equations

Minimization of D(Q||P) can be done in an iterative
way. Suppose Q(Xi), k = 1,...,
estimates of the @-marginals. Our goal is to obtain
an improved approximation to P(X) by minimizing
D(Q]| P) with respect to Q(X;) thereby assuming fired
marginals Q(X;), j # . Let us denote the comple-
ment of X; be that is X; = {X;,7 # 1} = X\ X,.
When minimizing D(Q||P) with respect to Q(X;) we
have to take into account the normalization constraint
> e.en, @(xi) = 1. This can be done by using a La-

grange parameter A, i.e., we have to solve the equations

D(Q|IP) — <Z Q(z:) —1)} =0 (4)

T €H;

N, are our current
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with respect to the probabilities Q(#;), »; € Hi.
First, we split up D(Q|| P) using the relations P(X) =

P(X) (Xi|Xi) and Q(X) = Q(X:)Q(X;).

these relations in (1) we obtain
DIQIP) = (10 QX)) i, — (1o P(Xi)) o, (5)
+(log Q(Xi)) g (x,) — (log P(Xi|Xi)) o x(6)
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Only the terms in the last line (6) depend on Q(z;),
those in the first line (5) do not. Differentiating the
term (IogQ(Xi))Q(XI) we find

d
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= logQ(x;) + L
After differentiating both the second term

of line (6) and the constraint of

<10g P(X, |X7)>Q(X)
Eq. (4) we obtain

Q(xi) = exp (log P (X)) g ., (7)

1
exp(l —A)
The Lagrange parameter A or normalizing constant
exp(1 — A) can be calculated easily,

exp(l =) = Z exp (log P (xi‘ii»g)(i,) . (8)
T, €H,

This sum involves only |#H;| terms, i.e., for binary vari-
ables only two terms.

The result (7) is the unique solution to Eq. (4). It
corresponds to a global minimum of D(Q||P) with re-
spect to Q(X;) given our current estimates of Q(Xj;),
J # i. That means, updating Q(X;) according to (7)
decreases D(Q||P). Subsequently, we choose another
variable out of X; and solve the mean field equations
for this variable. Thus iterating repeatedly over all
variables X; we stepwise descend in D(Q||P). The
cross entropy D(Q||P) is always positive, and, hence,
this iteration ends up in a local minimum of D(Q||P).

The equations (7) may be viewed as mean field equa-
tions in their most general form since no model as-
sumptions were made. As a special case we now as-
sume that P(X) is the Boltzmann distribution of a
system of spins z; € {#1} defined by the Hamil-
tonian H(x) = —(1/2)x"Jx with a symmetric in-
teraction matrix J and diagonal elements J;; = 0.
For this system the conditional distribution P(aﬂfi)
reads P(:L,‘X,) X exp (ﬁx,], X,) , where J; is the ith
row of the interaction matrix .J and 3 is the inverse
temperature. Hence, for the mean field equations (7)
we obtain

Qi) o< exp (i (Xi) o ) - (9)

For binary variables the mean values {X;) completely
determine the marginals Q(X;). In our case 2; € {+1}
we have Q(z;) = (1/2)(1 4 2; {X;)). Using this fact it
can be shown easily that Eq. (9) leads to

{(Xi)g(x,) = tanh (5‘]" ' <ii>Q(ff)> - (10)

which is the well-known mean field equation for a sys-
tem of interacting spins [3], whereby the expected val-
ues <Xi>Q(X) are usually denoted as magnetizations

2.4 Locality of Mean Field Theory

The most appealing point of MFT is that only local
operations are needed for iteration of the mean field
equation (7). Given the Markov boundary! M; of the
variable X; the mean field equation (7) may be sim-
plified to

Q(ai) o exp(log P (z:i|Mi))gm,) - (11)

Tterating these mean field equations means recur-
sively estimating marginals Q(X;) based on the cur-
rent marginals Q(X;) of only the ‘neighboring’ vari-
ables X; € M; until the system relaxes into a consis-
tent state. For updating Q(X;) we only need the con-
ditional distribution P (X;|M;), which can be stored
‘locally at node 7°, and the current estimates of the
marginals Q(X;), X; € M;, which can be stored at the
corresponding ‘neighboring nodes’” of node 7. All in-
formation which is needed for the renewed estimation
of Q(X;) in equation (11) is thus available from node
i and the neighboring nodes of node i (the Markov
boundary M; of node ).

3 Mixing Mean Field Solutions

The iteration of the mean field equations (11) con-
verges to one of typically many local minima of
D(Q]|P). In many physical model systems, these local
solutions are of particular interest since they explain
phase transitions and the phenomenon of spontaneous
symmetry breaking [3]. The mean field dynamics in a
Hopfield network converges to a local minimum of the
‘free energy landscape’ and thus restores one of many
stored patterns. However, if we want to have a good
approximation of a global distribution P(X) and in
particular if we are interested in expected values with
respect to P(X) we have to care ahout all solutions of
the mean field equations (7). In the following we pur-
sue the idea that instead of selecting one particular
mean field solution, it might be more advantageous to
form a weighted average (a mixture) of several mean
field solutions. The mixture weights are derived in a
principled way and are shown to be optimal under cer-
tain assumption. An additional benefit is that we can

tThe Markov boundary M; of a variable X; is the min-
imal set of variables M; C X which makes X; independent
of the ‘rest’ given M, i.e., P(X;|M;, rest) = P(X;|M;).
In the above physical example the Markov boundary of X;
is the set of variables X; with Ji; # 0.



relax the assumption of independent units since a mix-
ture distribution can approximate a much larger class
of distributions than the components of the mixture.

We enumerate the different mean field solutions by
a ‘hidden variable’ a. That is, Q(X]|a) now denotes
a different mean field solutions for a different a. By
assigning mixture weights (J(a) to every solution we
form the mixture distribution

Q(X) =Y Q(X[a)Q(a). (12)

Again, the goal now is to determine the Q(a) under
the constraint Y, @Q(a) = 1, such that D(Q||P) is
minimized. It is an easy exercise to perform this opti-
mization via a Lagrange parameter A analogous to the
previous derivation. In a few lines we obtain for all a

(log Q(X»Q(x\a) = (log P(X)>Q(X|a) —1+A (13)

We have to solve Eq. (13) for Q(a), which implicitly
enters the above expression via Q(X) and Eq. (12).
However, the above Eq. (13) cannot be solved in a
straightforward way for @Q(a). With the aim of a sim-
ple expression we therefore use an additional approx-
imation. The left hand side of (13) may be expressed
as

(log Q(X)>Q(X|a) =

= <10g [Q(“)Q(Xlﬂ) +Y Q(ﬂ’)Q(X"’)} >

a'#a
~ log Q(a) + <10gQ(X\a)>Q(X‘a), (14)

where we have neglected the terms Q(a")Q(X|a’) for
a@’ # a in the argument of the logarithm. We may do
so if Q(x]a)Q(x|a’) & 0 for all a # ', that is, if there is
no or sufficiently small overlap between different mean
field solutions. By means of this ‘small-overlap’ ap-
proximation in (13) we obtain for the mixture weights

Q(X|“)>
P(X) [ gxja)

x exp | = D(Q(X[a)|[P(X))]. (15)

Qa) o exp [—<10g

This means, different mean field solutions @Q(X|a) con-
tribute to the global distribution Q(X) according to
their distance D (Q(Xla)||P(X)) to P(X). That is a
plausible result which we might have guessed. Note,
however, that this nice result relies on the small-
overlap approximation, i.e., on the assumption that
different minima of D(Q||P) are not ‘close’ to one an-
other.

4 Mean Field Theory for Bayesian
Networks

So far we did not make any assumptions about P(X),
and, hence, our results (the mean field equations (11)
and the mixture weights (15)) are very general. We
will now focus on a particular parameterization of a
probability distribution, namely, on Bayesian networks
[1, 25]. A Bayesian network has an expansion of the
form

P(X) = H P(Xi|X1,... Xi1) = H P(Xi|IL;),

(16)
where in a typical Bayesian network every variable X;
has only a small set of ‘parents’ IT; C {X1,...X;_1}.
The first equality is valid in general and follows by re-
peated application of the Bayes formula. For TI; C
{X1,...X;_1} in Eq. (16) the second equality corre-
sponds to the assertion of some conditional indepen-
dencies. Usually the structure of a Bayesian network
is depicted as an acyclic graph where arcs point from
all parent II; to their corresponding children X; (see
Fig. 1 later in the text as an example). The ‘tables’
P(X;|II;) associated with the nodes X; are the param-
eters of a Bayesian network.

For updating node X; according to Eq. (11) we need to
know the Markov boundary M; of X; and the condi-
tional distribution P(X;|M;). For a Bayesian network
the Markov boundary of a node is given by its parents,
its children and all ‘coparents’, that is, all parents of
all children [1]. Let C; be the index set of all children
of node X;. For the conditional distribution P(X;|M;)
we have

P(Xi|Mi) oc P(X|TL) [T P(XkITHe) (17)
keC;

which can be easily derived from (16). Using this result
in (11) we obtain

Q(:) o< exp | (logP (x| TL)) o+ Y (logP(Xx |TIx )| -

kecC;
(18)
On the right hand side any instantiation of X; is fixed
to X; = z;, and the expected values are evaluated

over the remaining variables. If compared to Eq. (11)
this result greatly economizes the mean field updat-
ing rule. For evaluation of the expectation in (11)
we have to perform a sum over the state space of the
Markov boundary M;. In (18) we have to calculate dif-
ferent expectations which, however, are less expensive
to evaluate for they only involve the table P(x;|II;)
and the tables P(Xy|Iy), k € C;.

Furthermore, note that given any table P(x;|II;) we
can exactly evaluate the expectation (log P (x;|II;))q



by just performing the corresponding sum. Thus we
may run mean field inference in any Bayesian network
without further approximations. For nodes X; with a
large number of parents II;, however, the evaluation
of the expectation (log P (xZ|HZ)>Q is expensive. In
practise large tables very often have a simple struc-
ture, e.g., by assuming a noisy-OR gate. Only rarely
all degrees of freedom of a large table are needed. One
should of course try to exploit the structure of a large
table to calculate the expectation <logP(mi|Hi)>Q
more efficiently.  FE.g. Saul et al. [12] use an addi-
tional approximation to evaluate corresponding terms
in their case of a sigmoid belief network.

It remains to be shown that in the case of a Bayesian
network even the mixture weights (15) can be calcu-
lated in an efficient way by means of only local com-
putations. 1f we use the expansion (16) we obtain

_ Q(Xila) >

P@IIP(R) = 3 (e e )

(19)
Every term in the sum on the right hand side requires
only local information, i.e., only the conditional distri-
bution P(X;|II;) and the distribution Q(X;, II;|a) =
Q(X;|a)Q(IL;]a). P(X;|IL;) and Q(X;|a) are proper-
ties of X;, i.e. , they can be stored locally at node
i. Q(Xjla), X; € II;, describes neighboring nodes of
node Xj;.

Thus, for Bayesian networks, for instance, we find a
very simple computational scheme. In many other
cases it might be computationally more expensive to
perform the expectation in the updating rule (11) and
to compute the distance D (Q(X|a)||P(X)) in (15) to
obtain the mixture weights Q(a). Mean field inference
as formulated in this section directly refers to the pa-
rameters of a Bayesian network (namely to the tables
P(X;|IL;); see the update equation (18) and the dis-
tance (19)). There is no intermediate redundant repre-
sentation of the Bayesian network, such as a junction

tree [25].

5 TIllustration of Mean Field Inference

Quite a bit of theory has been presented so far. It
is now time to show how things work in practice. In
particular, we want to demonstrate the benefits of mix-
ing multiple mean field solutions. A simple Bayesian
network for illustration purposes is depicted in Fig. 1.
The goal of this network is to support medical diag-
nosis. In our simple example we just want to discern
between measles, chickenpox and scarlet fever.

Suppose a patient complains about an eczema and a
weakly sore throat. We enter that piece of knowledge
into the corresponding nodes. Qur goal is to obtain

probabilities for the remaining nodes, in particular,
for the disease nodes. For that reason we use the dis-
cussed mean field ansatz for the remaining nodes, i.e.
we iterate the mean field equations for the remaining
nodes. For our illustration network we find two differ-
ent solutions of the mean field equations. These two
solutions, the corresponding mixture distribution and
the exact probabilities are compared in table 1.

Roughly speaking the first solution is the ‘measles
scenario’ the other solution is the ‘scarlet scenario’t.
There is no ‘chickenpox scenario’ since chickenpox
does not cause a sore throat. Thus, the mean field
method supplies us not only with beliefs for the un-
known nodes; we obtain additional information about
the character of the exact distribution P(X|evidence)
as well, namely that the joint distribution is approx-
imately a composition of two modes. Based on these
two modes we may easily calculate approximate joint
probabilities for any set of nodes; see for example ta-
ble 2. The two modes or disease scenarios mainly dif-
fer in the belief for the node ‘red eyes’. To obtain a
unique diagnosis a natural question therefore is: ‘Does
the patient have red eyes?’ Suppose his eyes are red.
Propagating that evidence by iterating the mean field
equations for all jet unknown nodes we find that there
is only one solution left, the measles scenario. Our
final belief for measles is 0.99, that for chickenpox is

0.03.

6 Discussion

In this article we have discussed MF'T in a model-
independent way as a method to approximate a given
probability distribution.
tended the conventional mean field approach by the
idea of mixing different mean field solutions. As illus-
trated in our toy experiment, our approach can be used
for approximate propagation of evidence (inference).
Thereby, first, evidence is entered into the model,
then the mean field approximation P(X|evidence) &
Q(Xlevidence) = T[], Q@(X;|evidence) is calculated.
The results clearly demonstrated that reasonable prob-
abilistic approximations can only be achieved if we
take into account multiple solutions of the mean field
equations. In doing so, we may even obtain easy in-
terpretable information about the joint distribution of
several variables.

Furthermore, we have ex-

YYou can compare these two solutions with the two so-
lutions ‘all spins up’ and ‘all spins down’ in a ferro magnet
below the Curie temperature.



chickenpox measles scarlet

no | yes no | yes no yes

eczema red eyes fever sore throat red tongue
no | yes no yes no |low |high n0|weak|str0ng no | yes

Figure 1: Our Bayesian network example for illustration of mean field inference. The network is modeling three
children’s diseases (chickenpox, measles and scarlet). The arcs are pointing from diseases to symptoms (eczema,
red eyes, fever, sore throat and red tongue), that is, from cause to effect. Note, that the variables are not just
binary. Plausible values for the conditional probabilities tables P(symptom|diseases) of that network have heen
estimated by consulting a text book on children’s diseases.

first MF-solution | second marginals of marginals of
‘measles MF-solution the the exact
scenario’ ‘scarlet scenario’ MF-mixture distribution
Q(a) = 0.68 Q(a) = 0.32 distribution
measles 0.996 0.008 0.679 0.641
scarlet 0.008 0.985 0.322 0.301
chickenpox 0.030 0.031 0.030 0.054
red eyes 0.903 0.052 0.630 0.598
red tongue 0.031 0.695 0.244 0.240
low fever 0.257 0.257 0.257 0.258
high fever 0.551 0.547 0.550 0.527

Table 1: Marginal probabilities of MFT as compared to the exact results. The first two columns show that any
single mean field solution on its own results in a very poor approximation of the exact marginals. Furthermore,
note that the two solutions have nearly no overlap, which can be seen from the first two rows ‘measles’ and
‘scarlet’.

scarlet
no | yes
no P: 0.067 P: 0.292
measles Q: 0.008 Q: 0.313
P: 0.623 P: 0.017
ves @ o671 Q: 0.008

Table 2: Joint probability table of the mean field mixture distribution (@) as compared to the exact results
(P). Plain MFT is based on the assumption of independent variables (3) and, hence, cannot easily explain joint
tables. This example shows, however, that the mixture distribution ) may give reasonable approximations to
joint tables as well.



The presented procedure (finding solutions of the
mean field equations (7) and mixing them) does not
optimize the parameters @(a) and Q(X]a) of the ap-
proximating distribution Q(X) simultaneously since
the different solutions (Xla) of the mean field equa-
tions (7) for different a are determined independently
and prior to determining the mixture weights Q(a). It
might be possible to derive a more refined simultane-
ous optimization of the parameters Q(a) and Q(X|a).
However, the resulting equations will not bhe as sim-
ple as (11) and (15). Their simplicity and locality (!)
justifies the above step by step procedure and the in-
troduced small-overlap approximation. When used for
inference in graphical models, MFT exploits the struc-
ture of a graphical model even in non tree-like graphs
since, as discussed previously, only ‘neighboring nodes’
have to communicate. This locality is the appealing
point of MFT. There is no necessity to compile the
original graph to a tree-like cover model as it is done
by the junction tree algorithm by means of moraliza-
tion and triangulation [9, 10]. In particular in the case
of Bayesian networks, mean field inference exhibits fur-
ther simplifications. An additional advantage is that
in many cases the existence of several mean field so-
lutions sheds a light on the structure of the exact dis-
tribution. In our example the exact distribution could
be interpreted as being composed of two ‘scenarios’.
Thus, MFT represents an interesting complement to
other inference methods.

Finally, a few words on human reasoning are appro-
priate. In his book ”Probabilistic Reasoning in In-
telligent Systems” Pearl argues that ‘... any viable
model of human reasoning should be able to perform
this task (consistent propagation of information) with
a self-activated propagation mechanism, i.e., with an
array of simple autonomous processors, communica-
tion locally via the links provided by the network itself.
The impact of each new piece of evidence is viewed as
a perturbation that propagates through the network via
message-passing between neighbouring variables, with
a minimal external supervision.” Mean field inference
exactly meets these demands. As a consequence mean
field inference permits a significant amount unsuper-
vized parallelism, which is ascribed to the human way
of information processing. Furthermore, arguing in
terms of ‘scenarios’ is much closer to the human way of
reasoning then global probabilistic calculations. Mean
field inference even reflects this way of arguing.
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