
Hierarchical Mixtures-of-Experts for Generalized Linear Models:Some Results on Denseness and Consistency
Wenxin Jiang and Martin A. TannerDepartment of Statistics, Northwestern UniversityEvanston, IL 60208, USAAbstractWe investigate a class of hierarchicalmixtures-of-experts (HME) models where ex-ponential family regression models with gen-eralized linear mean functions of the form (� + xT�) are mixed. Here  (�) is theinverse link function. Suppose the true re-sponse y follows an exponential family regres-sion model with mean function belonging to aclass of smooth functions of the form  (h(x))where h(�) 2 W12;K0 (a Sobolev class over[0; 1]s). It is shown that the HME mean func-tions can approximate the true mean func-tion, at a rate of O(m�2=s) in Lp norm.Moreover, the HME probability density func-tions can approximate the true density, at arate of O(m�2=s) in Hellinger distance, andat a rate of O(m�4=s) in Kullback-Leibler di-vergence. These rates can be achieved withinthe family of HME structures with a tree ofbinary splits, or within the family of struc-tures with a single layer of experts. Here s isthe dimension of the predictor x. It is alsoshown that likelihood-based inference basedon HME is consistent in recovering the truth,in the sense that as the sample size n and thenumber of experts m both increase, the meansquare error of the estimated mean responsegoes to zero. Conditions for such results tohold are stated and discussed.1 IntroductionBoth the Mixtures-of-Experts (ME) model, introducedby Jacobs, Jordan, Nowlan and Hinton (1991), and theHierarchical Mixtures-of-Experts (HME) model, intro-duced by Jordan and Jacobs (1994), provide impor-tant paradigms for learning from data, and are of mu-tual interest to researchers in arti�cial intelligence and

in statistics. The fundamental problem is to learn amapping in which the structure of the mapping variesfor di�erent regions of the input space. The ME andHME approach is to assign an \expert" network toeach of these di�erent regions and to then use a \gat-ing" network to decide which experts should be usedto determine the output. As part of the learning pro-cess, one needs to discover how to assign experts tothe various regions and how to train the experts toadapt to their assigned task. The HME model has atree-structure and can summarize the data at multi-ple scales of resolution due to its use of nested inputregions. An introduction and application of mixingexperts for generalized linear models (GLMs) are pre-sented in Jordan and Jacobs (1994) and Peng, Jacobsand Tanner (1996).Both ME and HME have been empirically shown to bepowerful and general frameworks for examining rela-tionships among variables in a variety of settings [Cac-ciatore and Nowlan (1994), Meil�a and Jordan (1995),Ghahramani and Hinton (1996), Tipping and Bishop(1997) and Jaakkola and Jordan (1998)]. Despitethe fact that ME and HME have been incorporatedinto neural network textbooks [e.g., Bishop (1995) andHaykin (1994) which features an HME design on thecover], there has been very little formal statistical jus-ti�cation [see Zeevi, Meir and Maiorov (1998)] of themethodology. In this paper we consider a fundamen-tal question regarding ME and HME: Given that wetrain an ME or HME network using noisy data, un-der what conditions are the inferences and predictionsbased on this system valid? To answer this question weconsider the denseness and consistency of the ME andHME networks. Before proceeding we present somenotation regarding mixtures and hierarchical mixturesof generalized linear models and one-parameter expo-nential family regression models.Generalized linear models, which are natural exten-sions of the usual linear model, are widely used in sta-tistical practice [McCullagh and Nelder (1989)]. One-



parameter exponential family regression models [seeBickel and Doksum (1977), page 67] with generalizedlinear mean functions (GLM1) are special examplesof the generalized linear models, where the proba-bility distribution is totally determined by the meanfunction. In the regression context, a GLM1 modelproposes that the conditional expectation �(x) of areal response variable y (the output) is related to avector of predictors (or inputs) x 2 <s via a gen-eralized linear function �(x) =  (� + �Tx), with� 2 < and � 2 <s being the regression parametersand  �1(�) being the link function. Examples includethe log link where  (�) = exp(�), the logit link where (�) = exp(�)=f1+exp(�)g, and the identity link whichrecovers the usual linear model. The inverse link func-tion  (�) is used to map the entire real axis to a re-stricted region which contains the mean response. Forexample, when y follows a Poisson distribution condi-tional on x, a log link is often used so that the mean isnon-negative. In general, the GLM1 probability den-sity function of y conditional on x is totally deter-mined by the conditional mean function �(x), havingthe form p(y;x) = expfa�(�)y+ b�(�) + c�(y)g, where� = �(x) =  (�+ �Tx), and a�(�), b�(�) and c�(�) aresome �xed functions. Such models include Poisson, bi-nomial and exponential regression models, as well asthe normal and gamma regression models with disper-sion parameters regarded as known. In Section 4, wewill discuss the situation when the dispersion parame-ter is also estimated. Before then, we focus on GLM1exclusively.A Mixtures-of-Experts model assumes that the totaloutput is a locally-weighted average of the output ofseveral GLM1 experts. It is important to note thatsuch a model di�ers from standard mixture models[e.g., Titterington, Smith and Makov (1985)] in thatthe weights depend on the input. A generic expertlabeled by an index J , proposes that the responsey, conditional on the input x, follows a probabilitydistribution with density pJ(y;x) = �(hJ(x); y) =expfa�(�J )y + b�(�J ) + c�(y)g, where �J =  (hJ (x))and hJ(x) = �J + �TJx. The total probability den-sity of y, after combining several experts, has the formp(y;x) = PJ gJ(x)pJ (y;x), where the local weightgJ(x) depends on the input x, and is often referred toas a gating function. The total mean response thenbecomes �(x) = PJ gJ(x)�J (x). A simple Mixtures-of-Experts model takes J to be an integer. An HMEmodel takes J as an integer vector, with dimensionequal to the number of layers in the expert network.An example of the HME model with two layers is givenin Jordan and Jacobs (1994), as illustrated in Figure 1.Note that the HME is a graphical model with a prob-abilistic decision tree, where the weights of experts

re
ect a recursive stochastic decision process. In Fig-ure 1, adapted from Jordan and Jacobs (1994), theexpert label J is a two-component vector with eachcomponent taking either value 1 or 2. The total meanresponse � is recursively de�ned by � = P2i=1 gi�i and�i = P2j=1 gjji�ij , where gi and gjji are logistic-typelocal weights associated with the \gating networks" forthe choice of experts or expert groups at each stage ofthe decision tree, conditional on the previous history ofdecisions. Note that the product gigjji gives a weightgJ(x) = gigjji for the entire decision history J = (i; j).At the top of the tree is the mean response �, whichis dependent on the entire history of probabilistic de-cisions and also on the input x.
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Figure 1: A Two-Layer Hierarchical Mixtures-of-Experts ModelOne important issue is the approximation power ofthe HME models. Is the family of mean functionsof the form PJ gJ(x)�J (x) proposed by HME richenough to approximate an arbitrary smooth meanfunction of a certain family to any degree of accuracy?What precision, in a certain norm, can the approxi-mation based on a speci�c number of experts achieve?Such problems of denseness and complexity are well-described and studied in the neural network literature[see Mhaskar (1996)]. A di�erent question is the con-sistent learning property of HME with respect to aspeci�c learning procedure. An HME model, as wewill see later, is characterized by a parameter vector,which can be estimated based on a training data setconsisting of n pairs of (x; y)'s, following a learningprocedure (or �tting method) such as least-squares ormaximum likelihood approach. The consistency prob-lem centers on whether the learning procedure will pro-duce an estimated mean function which is close to the



true mean function, when the size of the training dataset is su�ciently large. Various methods of measuringthe closeness include the convergence in probabilityand the convergence in mean square error of the esti-mated mean function. The latter is a stronger mode ofconvergence due to Chebyshev's inequality [see Bickeland Doksum (1977), page 463] and is the mode of con-vergence we will consider in this paper.Regarding these important theoretical questions, it isdemonstrated by Zeevi, Meir and Maiorov (1998) thatone-layer mixtures of linear model experts can be usedto approximate a class of smooth functions as the num-ber of experts increases, and the least-squares methodcan be used to estimate the mean response consistentlywhen the sample size increases. One goal of this paperis to extend this result to HME for GLM1s with non-linear link functions, and to consider the consistency ofmaximum likelihood estimation. The maximum likeli-hood (ML) approach has two advantages over the con-ventional least-squares approach. (i) The maximumlikelihood approach gives the smallest asymptotic vari-ance for the estimator of the mean response, in the caseof correct model speci�cation. (ii) The convenient EMalgorithm can be used naturally for maximizing thelikelihood, just as in the case of ordinary mixture mod-els. However there are two di�culties for studying theconsistency properties of a likelihood-based approach.(i) The maximum likelihood method deals with densityfunctions rather than with mean functions. A result onthe denseness of mean functions, such as the one statedin Zeevi, Meir and Maiorov (1998), is not enough. Weneed to establish a similar result for the density func-tions. We show that HME for GLM1 density func-tions can be used to approximate density functions ofthe form �(h(x); y), where h(�) is an arbitrary smoothfunction in a Sobolev class. (ii) The maximum like-lihood method minimizes the Kullback-Leibler (KL)divergence, while the consistency properties for the es-timates of mean responses are usually investigated byshowing that the mean square error (MSE) of the esti-mated mean responses converge to zero in some fash-ion. We need to establish a relationship between theKL divergence of the density functions and the MSE,or the L2 distance of the mean functions.We also note that the parameterization of the HME, asshown in the next section, is not identi�able. Care isneeded for statements about the parameter estimates,which are not unique.2 Notation and De�nitionsIn the following, we brie
y review the one-parameterexponential family regression model with a generalizedlinear mean function (GLM1).

2.1 GLM1We �rst describe the one-parameter exponential fam-ily. Let (A;FA; �) be a general measure space. A prob-ability density function �(h; �) in the one-parameterexponential family is labeled by one real parameter h,and has the form�(h; y) = expfa(h)y + b(h) + c(y)g for y 2 A, (1)such that RA �(h; y)d�(y) = 1 for each h 2 <. Thefunctions a(�), b(�) and c(�) all have known forms; a(�)and b(�) are analytic and have nonzero derivatives on<; and c(�) is measurable -FA.Note that the one-parameter exponential models havesome well-known properties. For example:(i) The moment generating function exists in someneighborhood of the origin, and thus momentsof all orders exist{see Theorem 1.4.2, Lehmann(1991, p.31).(ii) For each positive integer k, �(k)(h) =RA yk�(h; y)d� is di�erentiable in h up to any or-ders, due to the analyticity of a, b and Theorem1.4.1 of Lehmann (1991, p.29). In particular, wedenote �(1)(h) =  (h) = � and �(2)(h) = �(h) asthe �rst two moments.(iii) The �rst moment can be expressed as � = (h) � RA y�(h; y)d� = �b0(h)=a0(h) for all realh and is analytic.  : < 7!  (<) forms a C1-di�eomorphism. The inverse of  (�) is called thelink function (McCullagh and Nelder 1989).Some examples are:Poisson: P(�) where � = eh, y 2 A = f0; 1; 2; : : :g.Then�(h; y) = e��y! �y = expfhy � eh � log(y!)g:Here we can take a(h) = h, b(h) = �eh, c(y) =� log(y!).Normal (�2 known, > 0): N(�; �2) where � = h, y 2A = <. Then�(h; y) = 1p2��2 e� 12�2 (y��)2= exp�� h�2� y � h22�2 � y22�2 � 12 log(2��2)� :Here we can take a(h) = h=�2, b(h) = �h2=(2�2),c(y) = �y2=(2�2)� (1=2) log(2��2).Gamma (
 known, > 0): �(
; 
��1)where � = eh, y 2 A = <+ = (0;1). Then
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 � log �(
) + (
 � 1) logy.Binomial: Bin(�; p) where p = ��1� = eh=(1 + eh),y 2 A = f0; 1; 2; : : : ; �g. Then�(h; y) = ��y� py(1� p)��y = ��y� ehy(1 + eh)�= expnhy � � log(1 + eh) + log��y�o ;where ��y� = �!y!(��y)! :Here we can take a(h) = h, b(h) = �� log(1 + eh),c(y) = log��y�.The GLM1 assumes that h = � + �Tx, which intro-duces the dependence of y on an s-dimensional pre-dictor x through the density function �(h; y). Notethat the functions a, b and c in (1) correspond, respec-tively, to the functions a� � , b� � and c� in notationof Section 1, where � stands for composition.Now we introduce a target family of regression modelswhich is more 
exible than the family of GLM1s, byallowing h(�) to be an arbitrary smooth function (ofx) in a Sobolev class.2.2 The Family of Target FunctionsLet 
 = [0; 1]s = 
sq=1[0; 1], the space of the pre-dictor x, where 
 stands for the direct product. LetA � < be the space of the response y. Let (A;FA; �)be a general measure space, (
;F
; �) be a prob-ability space such that � has a positive continuousdensity with respect to the Lebesgue measure on 
,and (
 
 A;F
 
 FA; � 
 �) be the product mea-sure space. Consider a random predictor-response pair(X(s�1); Y(1�1)). Suppose X has a probability measure�, and (X; Y ) has a probability density function (pdf)' with respect to � 
 �, where ' is a target functionof the form '(x; y) = �(h(x); y): (2)Here �(�; �) : < 
 A 7! < has the one-parameter ex-ponential form (1). In contrast to a GLM1 model,we allow a more 
exible h(x) in (2). Here h : 
 7!< is assumed to have continuous second derivatives,Pk:0�jkj�2 jjDkhjj1 � K0, where k = (k1; : : : ; ks)is an s-dimensional vector of nonnegative integers be-tween 0 and 2, jkj = Psj=1 kj , jjhjj1 � supx2
 jh(x)j,and Dkh � @jkjh@xk11 :::@xkss . In other words, h 2 W12;K0 ,where W12;K0 is a ball with radius K0 in a Sobolevspace with sup-norm and second-order continuous dif-

ferentiability. The conditional mean function �(�), cor-responding to '(�; �), is obviously�(x) = ZA y'(x; y)d�(y) =  (h(x)) (3)for all x in 
. Sobolev classes of mean functions similarto W12;K0 are also considered in Mhaskar (1996) andZeevi et al: (1998). Our family of mean functions isa transformed class  (W12;K0) where  �1 is the linkfunction. We have restricted the predictor x to 
 =[0; 1]s to simplify the exposition. The theorems of thispaper actually hold for 
 being any compact subset of<s. The compactness of 
 is needed in the techniquesof our proofs. We also note that in the situation when
 is the direct product of s closed intervals, suitablere-centering and re-scaling of each of the s componentsof x can transform 
 into [0; 1]s.Denote the set of all pdfs '(�; �) = �(h(�); �) de�nedthis way as �. This is the set of target functions thatwe wish to approximate.Now we de�ne the hierarchical mixtures-of-experts(HME) for GLM1s. They are the functions which weuse for approximating a function in �.2.3 The Family of HME of GLM1sAn approximator f in the HME family is assumed tohave the following form:f = f�(x; y; �) = XJ2� gJ(x;v)�(hJ (x); y); (4)where hJ(x) = �J + �TJ x, and �(�; �) is as de�nedin Section 2.1. The parameters of this model include�J 2 �� � < and �J 2 �� � <s with �� and�� being some compact sets, as well as v which issome parameter for the gating function gJ 's. For con-venience, we assume that hJ 2 W12;K1 with a boundK1, parallel to the assumption of h 2 W12;K0 for thetarget functions. We use the symbol � to represent thegrand vector of parameters containing all the compo-nents of the parameters v, �J and �J for all J 2 �.In (4), � is the set of labels of all the experts ina network, referred to as a structure. Two quanti-ties are associated with a structure: the dimension` = dim(�), which is the number of layers; and thecardinality m = card(�), which is the number of ex-perts. An HME of `-layers has a structure of the form� = 
k̀=1Ak where Ak = f1; : : : ; wkg, wk 2 N , andk = 1; : : : ; `. (We use N to denote the set of all posi-tive integers.) We call wk = card(Ak) as the numberof expert branches, or the number of choice-legs atlayer k, k = 1; : : : ; `. Note that in this paper we re-strict attention to \rectangular-shaped" structures. A



generic expert label J in � can then be expressed asJ = (j1; : : : ; j`) where jk 2 Ak for each k.To characterize a structure �, we often claim that itbelongs to a certain set of structures. We now in-troduce three such sets of structures, J , Jm and S,which will be used later when formulating the results.The set of all possible HME structures under con-sideration is J = f� : � = 
k̀=1f1; : : : ; wkg; wk 2N ; k = 1; : : : ; `; ` 2 Ng. The set of all HME struc-tures containing no more than m experts is denotedas Jm = f� : � 2 J ; card(�) � mg. We also in-troduce a symbol S to denote a generic subset of J .This is introduced in order to formulate a major con-dition for some results of this paper to hold. Thiscondition, to be formulated in the next section, willbe speci�c to a generic subset S of HME structures.A trivial example of S is J . Another example of Sis SL = f� : � 2 J ; dim(�) � Lg, which includesall structures with L or less layers. In particular, S1represents the set of single-layer structures. A thirdexample of S is SB = f� : � = 
k̀=1f1; 2g; ` 2 Ng,which represents the set of trees with binary splits.Associated with a structure � is a family of vec-tors of gating functions. Each member is called agating vector and is labeled by a parameter vectorv 2 V�, V� being some parameter space speci�c tothe structure �. Denote a generic gating vector asGv;� � (gJ(�;v))J2�. We assume the gJ(x;v)'s to benonnegative, with sum equal to unity, and continuousin x and v. Note that RA f�(x; y; �)d�(y) = 1 is en-sured. Let G = fGv;� : v 2 V�;� 2 Sg be the familyof gating vectors de�ned on the set of structures S,which will be referred to as a gating class de�ned onS.In the following, we de�ne the logistic gating classG = L on the set of all structures J . This class hasbeen commonly used in the literature [see Jordan andJacobs (1994)]. Here, for each structure � in J andeach label J in �, a gating function gJ = gJ(�;v) isde�ned recursively. Suppose J is an `-dimensional in-teger (j1; j2; : : : ; j`). Then,gJ � gj1j2:::j` = gj1gj2jj1 : : : gj`jj1j2:::j`�1 : (5)Here, for each q, the factor gjq jj1:::jq�1 takes a multi-nomial logit form:gjq jj1:::jq�1 = exp(�jq jj1:::jq�1 )Pwqk=1 exp(�kjj1 :::jq�1 ) ; (6)where �kjj1:::jq�1 = �kjj1:::jq�1 + 
Tkjj1:::jq�1x,(�kjj1 :::jq�1 ;
Tkjj1 :::jq�1 ) 2 <s+1, k = 1; : : : ; wq . Usu-ally it is assumed that�wq jj1:::jq�1 = 
wq jj1:::jq�1 = �wq jj1:::jq�1 = 0;

since otherwise a transformation� �kjj1 :::jq�1 ! �kjj1 :::jq�1 + �0
kjj1:::jq�1 ! 
kjj1:::jq�1 + 
0 all k = 1; : : : ; wqwould leave the probability density function f�(x; y; �)unchanged. Note that the grand vector of \gat-ing parameters" v includes all components of(�jq jj1:::jq�1 ; 
Tjq jj1:::jq�1), where jr take over all val-ues f1; : : : ; wrg for r = 1; : : : ; q� 1 and over all valuesf1; : : : ; wr�1g for r = q; for all q = 1; : : : ; `. It is easyto see that dim(v) = (s+1)(m�1); and the parameterspace V� for v is <(s+1)(m�1), where m = w1 : : : w` =card(�). Note that the gating functions constructed inthis way are analytic for (vT ;xT ) 2 <(s+1)(m�1)
<s.The space of regression parameters (or \expert pa-rameters") (�J ;�TJ )'s, corresponding to structure �, is(�� 
��)
m, which is a compact subset of <(s+1)m.The space of grand parameters �'s, corresponding tostructure �, is~�� = (�� 
��)
m 
<(s+1)(m�1): (7)Here the (2m�1)(s+1) dimensional grand parameter �includes all components of the gating parameters fromv and the expert parameters from (�J ;�TJ )J2�.Now we are ready to de�ne the family of approxima-tor functions. Let �� be the set of all function f�'s ofthe form (4), speci�c to a structure �, which can bedenoted as �� = ff�(�; �; �) : � 2 ~��g. This set �� isthe set of HME functions from which an optimal func-tion is chosen by the maximum likelihood method toapproximate the truth. It is assumed that a structure� is chosen a priori. In practice, people often analyzedata using di�erent choices of structures and select thebest �tting model. We consider in this paper choosingamong the set of structures Jm \ S. Denote�m;S = ff : f 2 ��; � 2 Jm \ Sg: (8)This set, �m;S , is the family of HME functions forwhich we examine the approximation rate in �, asm ! 1. Note that this family of HME functions isspeci�c to m, the maximum number of experts, as wellas to some subset S of HME structures, which will bespeci�ed later. We do not explicitly require that �m;Sbe a subset of � in this paper.Each HME density function f�(x; y; �) generates amean function ��(x; �) by��(x; �) = ZA yf�(x; y; �)d�(y)= XJ2� gJ(x;v) (�J + xT�J); (9)where  (�) = RA y�(�; y)d�(y).



The parameterization of the HME functions is notidenti�able, in the sense that two di�erent parameters� in ~�� can represent the same density function f in�m;S . For example,, the density functions are invari-ant under permutation of the expert label J 's. Also, iftwo experts J and J 0 propose the same output, i.e., if�J = �J0 and �J = �J0 , then the mixing proportionsfor these two experts can be arbitrary, as long as thesum of the two weights are unchanged. This can leadto the non-identi�ability of some components of theparameter v. Our description of the estimation pro-cedure and the statement of the results will take theseidenti�ability issues into account. The identi�abilityissues also suggest that it makes more sense to formu-late the consistency problem in terms of the estimatedmean response, rather than to look at the consistencyof the parameter estimates.2.4 The Method of EstimationWe will use the maximum likelihood method to trainthe architecture. Suppose we estimate the mean re-sponse �(x) based on a data set of n predictor-responsepairs (Xi; Yi), Xi 2 
, Yi 2 A, i = 1; : : : ; n. Letthe measure spaces (
;F
; �) and (A;FA; �) be as in-troduced in Section 2.1. Assume that (Xi; Yi), i =1; : : : ; n are independent and identically distributed(i.i.d.) random vectors. The probability measure forXi is �. The probability measure of Yi conditionalon Xi = x has a density '(x; �) [de�ned in (2)] withrespect to the measure �, for all x 2 
.The log-likelihood function based on the HME modelis Ln;�(�;!) = n�1 nXi=1 logff�(Xi; Yi; �)='0(Xi; Yi)g;(10)where f�(�; �; �) 2 �� is de�ned in Section 2.3, � 2~��, ! is the stochastic sequence of events (Xi; Yi),i = 1; : : :, and '0(Xi; Yi) can be any positive mea-surable function of the observed data that does notdepend on the parameter �. In this paper, we choose'0(Xi; Yi) = ec(Yi), where c(�) is de�ned in (1). Itturns out that such a choice makes the log-likelihoodfunction uniformly convergent to its expectation, foralmost all !, in any compact subset of parameters, asn ! 1. De�ne the maximum likelihood estimator(MLE) �̂n;�(!) to be a maximizer (can be one out ofmany) of  Ln;�(�;!) over a compact set ~B� � ~��, i.e.,�̂n;�(!) = arg max�2 ~B�f Ln;�(�;!)g: (11)The maximum likelihood method, in the large sam-ple size limit, essentially searches for � which min-imizes the KL divergence KL(f�; ') between f� =

f�(�; �; �) 2 �� and ' = '(�; �) 2 �, whereKL(f; g) � Z

A g(x; y) log� g(x; y)f(x; y)� d�(x)d�(y):(12)It turns out that the KL divergence KL(f�; ') is al-ways well de�ned (see Corollary 1 later). Due to thenon-identi�ability of the parameterization, there is aset of �'s in ~B� that minimize the KL divergence.Denote this set as ��, which could be expressed as�� = f� 2 ~B� : � = arg min��2 ~B� KL(f�(�; �; ��); ')g:(13)Based on any MLE �̂n;� = �̂n;�(!), an estimated meanresponse can be constructed as ��(x; �̂n;�). We do notexplicitly require that for two di�erent global MLEsthe estimated mean responses be the same. The MSEof an estimated mean response is de�ned by(MSE)n;� = E Z f��(x; �̂n;�)� �(x)g2d�(x); (14)where E is the expectation taken on the MLE �̂n;�, ��and � are de�ned in (9) and (3), respectively.2.5 Technical De�nitionsSome technical de�nitions are introduced below. Wewill use these de�nitions to formulate a major condi-tion for our results to hold.De�nition 1 (Fine Partition). For � = 1; 2; : : :, letQ(�) = fQ(�)J gJ2�(�) , �(�) 2 J , be a partition of
 � <s. (This means that for �xed �, the Q(�)J 's aremutually disjoint subsets of <s whose union is 
.) Letp� = card(�(�)), (p� 2 N ).If p� ! 1, and if for all �; � 2 Q(�)J , �(�; �) �max1�q�s j(� � �)q j � c0=p1=s� for some constant c0independent of �, J , �, �, then �Q(�) : � = 1; 2; : : :	is called a sequence of �ne partitions with structure se-quence f�(�)g, cardinality sequence fp�g, and bound-ing constant c0.De�nition 2 (Sub-Geometric). A sequence fa�g issub-geometric with rate bounded by M2, if a� 2 N ,a� ! 1 as � ! 1, and 1 < ja�+1=a� j < M2 for all� = 1; 2; : : :, for some �nite constant M2.In the following we introduce some measures of thediscrepancies between a pdf f in �� [of the form (4)]and a pdf ' in � [of the form (2)]. One of them isthe KL distance KL(f; ') [see (12)]. Another is theHellinger distancedH (f; ') = fZ (pf �p')2d�d�g1=2: (15)



This is a true distance, which is invariant under rescal-ing of the measures � and �. A third description is theL2 distance between the means:d2(�f ; �') = jj��(�; �)��(�)jj2;� = fZ (�f��')2d�g1=2;(16)where �f = R yfd� and �' = R y'd�, for f in �� and' in �. This measure is used since it is closely relatedto the MSE de�ned in Section 2.4.The fourth measure of discrepancy between f in ��and ' in � is called the \upper divergence". Forf = PJ2� gJ�(hJ ; y) and ' = �(h; y), the upper di-vergence is de�ned asQ(f; ') = Z XJ2� gJ(x;v)fhJ (x)� h(x)g2d�; (17)where hJ(x) = �J + �TJ x. Note that the idea ofHME approximation is to partition the input space\softly" according to the gJ 's, and use a linear func-tion hJ(x) to approximate h(x) in each partition, so asto approximate the (conditional) pdf �(h(x); �) for allx. The upper divergence measures how good is thissoftly-partitioned linear approximation. The name\upper divergence" is due to the following lemma,stated without proof, which implies that Q is strongerthan the other divergence measures, i.e., KL, dH andd2(�f ; �').Lemma 1 (Strengths of Divergence Measures.) Forany structure �, any f in �� and any ' in �, wehave(a) d22(�f ; �') � 4MId2H(f; ').(b) 1 d2H(f; ') � KL(f; ').(c) KL(f; ') �MIIQ(f; ').Here, MI = supjhj�KfR y2�(h; y)d�g, K =minfK0;K1g where K0 and K1 are bounds of h(�)and hJ(�) in the Sobolev class W12;K0 and W12;K1 ,respectively. MII = 12fsupjhj�K j R y�(h; y)d�j �supjhj�K ja00(h)j + supjhj�K jb00(h)jg; where a(�) andb(�) are de�ned as in (1).Remark 1 MI and MII are �nite constants, due tothe continuity of a00, b00, and R yk�(h; y)d� (k = 1; 2),as functions of h.Corollary 1 All the divergence measures d2(�f ; �'),dH , KL and Q are positive and �nite.1This lemma appeared in, for example, Haussler andOpper (1995), and Zeevi and Meir (1997).

Proof: This is obvious since Q involves an integrationof a continuous function over the compact space 
 ofinput x. 2In the next section (Lemma 2), we will see that theHME functions related to a set of structures S aredense in � in upper divergence, under a condition onthe gating class de�ned on S (Condition AS;1). Thisimplies, in turn, the \denseness" in KL and dH .3 Results and ConditionsIn the following, we state some regularity conditions,as well as some results which hold under these condi-tions.Condition 1 (AS;p). For a subset S � J , there is a�ne partition sequence ffQ(�)J gJ2�(�)0 : �(�)0 2 S; � =1; 2; : : :g with a bounding constant c0 and a cardinalitysequence fp� : � = 1; 2; : : :g, such that fp1=s� g is sub-geometric with rate bounded by a constant M2; and forall �, for all " > 0, there exists v" 2 V�(�)0 and a gatingvectorGv";�(�)0 = fgJ(x; v")gJ2�(�)0 2 G; �(�)0 2 S; such thatsupJ2�(�)0 kgJ(�; v")� �Q(�)J (�)kp;� � ": (18)Here, kf(�)kp;� � �R
 jf(x)jpd�(x)	1=p, where p 2 N ;� is any probability measure on 
 which has a positivecontinuous density with respect to the Lebesgue mea-sure; �B(�) is the characteristic function for a subsetB of 
, i.e., �B(x) = 1 if x 2 B, 0 otherwise.This condition is a restriction on the gating class Gde�ned on a set of structures S. Loosely speaking, itindicates that the vectors of local gating functions inthe parametric family should arbitrarily approximatethe vector of characteristic functions for a partition ofthe predictor space 
, as the cells of the partition be-come �ner. Under this condition, the soft partitionsare 
exible enough to approximate a hard partition ofthe input space 
, with the size of each cell havingorder (1=m)1=s, m being the number of experts in thestructure, s = dim(x). In each of these m small cells,a linear approximation hJ(x) = �J + �TJx for a sec-ond order continuously di�erentiable function h(x) hasan error bound of order (1=m)2=s, by a second orderTaylor expansion. It is not surprising that the HMEmean functions, using the  (hJ(x))'s as the buildingblocks, can approximate the mean functions in the tar-get family of the form  (h(x)), with an error bound ofthe same order. (Here  is the inverse link function.)This is summarized in Theorem 1 below.



Theorem 1 (Approximation Rate of the Mean Func-tions.) Under the condition AS;p,sup�2 (W12;K0 ) inff2�m;S k�f � �kp;� � cm2=sfor some constant c > 0 independent of m. Here s =dim(x), m is the maximal number of experts in theHME family �m;S , �f = R yfd�, �m;S is de�ned inSection 2.3,  (W12;K0) is the set of all functions of theform (3), and k(�)kp;� is as de�ned in Condition AS;p.In the following we go one step further to discuss thedenseness and approximation properties of the densityfunctions of the HME of GLM1s, which is useful in in-vestigating the consistency property of the maximumlikelihood approach. From the discussions followingCondition AS;p, we also conclude that the upper di-vergence, consisting of the squares of the di�erencesbetween hJ and h, should have an error bound of or-der (1=m)4=s. This is summarized in Lemma 2.Lemma 2 (Approximation Rate in Upper Diver-gence.) If Condition AS;1 holds, then we havesup'2� inff2�m;S Q(f; ') � cm4=s ;where s = dim(x), m is the maximal number of expertsin the HME family �m;S , and c is a positive constantindependent of m.From this lemma and Lemma 1, the following theo-rems on the approximation rates of the HME densityfunctions in Hellinger distance and in KL divergenceare obvious.Theorem 2 (Approximation Rate in Hellinger Dis-tance.) Under the condition AS;1,sup'2� inff2�m;S dH(f; ') � cm2=s ;for some positive constant c independent of m. HeredH is the Hellinger distance de�ned in (15).Theorem 3 (Approximation Rate in KL Diver-gence.) Under Condition AS;1,sup'2� inff2�m;S KL(f; ') � c=m4=s;for some positive constant c independent of m. HereKL is the KL divergence de�ned in(12).The constant c's in the above theorems or lemmas canbe di�erent.All these results depend on a major condition AS;p.The following remark claims that it is satis�ed by cer-tain gating functions de�ned on certain structures.

Remark 2 (a). Condition AS;p is satis�ed (for anyp 2 N ) by the logistic gating class G = L de-�ned on the set of structures S = SB for treeswith binary splits (Section 2.3). This is because,roughly speaking, a logistic function from a bi-nary split has the form (1 + e��(z�z0))�1, whichcan approximate a step function S(z � z0) as �increases, for any location of jump z0. The gatingfunctions in a binary tree involves products of thelogistic functions (and their complements), whichcan approximate products of step functions whichform the characteristic functions of a �ne parti-tion. In this way Condition AS;p can be proved.This implies that the approximation rates in thetheorems stated above apply to HME of GLM1swith binary trees.(b). Jiang and Tanner (1999) [Section 5 Remark (i)]show that Condition AS;p is also satis�ed (for anyp 2 N ) by the logistic gating class L de�ned onthe set of single-layer structures S1, which corre-spond to the MEs. This implies that the approx-imation rates in the theorems stated above applyto ME of GLM1s.(c). Another class of gating functions can be de�nedonly on the binary trees (in SB). There, the lo-gistic gating functions in (6) are replaced by con-tinuous cumulative distribution functions (cdfs).One example is to use the normal cdf. In thisway, the gating factor gjq jj1:::jq�1 of (6) becomes�(�j1:::jq�1) if jq = 1, or 1��(�j1:::jq�1 ) if jq = 2;where �j1:::jq�1 = �j1:::jq�1 + 
Tj1:::jq�1x. A simi-lar argument as in part (a) of this remark showsthat ConditionAS;p is satis�ed for this new gatingclass for any p 2 N .The next condition is useful for proving the consistencyof the maximum (ML) likelihood learning method.Condition 2 (Scope of Maximum Likelihood Search-ing) The scope of the maximum likelihood (ML) search-ing, ~B�, is a compact set which is so large that itcontains a point �Q� which minimizes the upper diver-gence Q(f�; ') between f�(�; �; �) 2 �� and '(�; �) 2 �among all choices of � in ~��, whereQ(f�(�; �; �Q� ); '(�; �))= inf�2~��Q(f�(�; �; �); '(�; �)) = inff2��Q(f; '):This condition is similar to a usual condition undercorrect model speci�cation, requiring that the scopeof ML search should contain the true parameter so asto make the MLE consistent. The di�erence here isthat there is no \true parameter", since the likelihood



functions are constructed based on the HME densi-ties, which can only be used to approximate the truepdf in �. Condition 2 ensures that the ML searchingarea is big enough to contain an \optimal point" (in-stead of the true parameter) which minimizes the up-per divergence between the true density and the HMEdensity. This feature will be useful when proving theconsistency result of the ML approach under modelmisspeci�cation, when the likelihood function is con-structed from the HME approximations, instead of apdf from the true family �. Note that Condition 2 ishard to check in practice, although it looks plausibleif a su�ciently large scope of ML search is used.The next theorem states that the maximum likelihoodmethod based on the HME of GLM1 models is consis-tent in estimating the mean functions in  (W12;K0).Theorem 4 (Consistency of the Maximum LikelihoodMethod). Let (MSE)n;� be as de�ned in (14). Underregularity conditions AS;2 and 2,limm!1 lim supn!1 inf�2S\Jm(MSE)n;� = 0:Here s = dim(x), n is the sample size, m =sup�2S\Jmfcard(�)g, and Jm = f� : � 2J ; card(�) � mg is the set of all HME structures con-taining no more than m experts. Actuallylim supn!1 inf�2S\Jm(MSE)n;� � cm4=s ;where c is a positive constant independent of n, m andthe structure �.The proof of this theorem starts with the decomposi-tion of the MSE into two parts. One part character-izes the discrepancy between the estimated mean func-tion and its large sample limit, which can be shown toconverge to zero as the sample size increases. Thesecond part comes from the discrepancy between thelarge sample limit of the estimated mean function andthe true mean function, which is bounded by an ap-proximation error by applying Lemmas 1 and 2, andconverges to zero as the number of expertsm increases.Combining these two parts leads to the proof for con-sistency. The details are included elsewhere.4 Unknown Shape ParameterUp to now, we have been assuming that the shape pa-rameter u of a GLM1 expert is known, or �xed at avalue which is equal to the shape parameter in the truepdf '. An example of the shape parameter is u = 1=�2for a normal expert. Now suppose the shape param-eter is unknown and needs to be estimated also. Weassume that the parameter space U of u is a compact

subset of the positive real line. Lemma 1 (c) needs alittle modi�cation. A bound of the KL distance nowrequires an additional term proportional to the dis-crepancy between the true shape parameter in ' andthe \proposed" shape parameter in f . Condition 2needs to be modi�ed. In addition to the condition onthe scope ~B� for �, we assume that the scope of theML search in the u direction contains the true shapeparameter. Using techniques similar to before, it isstraightforward to show that, with this modi�cationon Condition 2, all theorems on denseness and consis-tency are still valid.5 DiscussionWe investigated the power of the HME networks of oneparameter exponential family regression models withgeneralized linear mean functions (GLM1 experts) interms of approximating a certain class of relatively ar-bitrary density functions, namely, the density func-tions of one-parameter exponential family regressionmodels with conditional mean functions belonging toa transformed Sobolev class. We demonstrated thatthe approximation rate of the HME mean functions isof order O(m�2=s) in Lp norm. We also showed thatthe approximation rate of HME density functions isof order O(m�2=s) in Hellinger distance, and of orderO(m�4=s) in KL divergence. Here s is the dimensionof the predictor, and m is the maximal number of ex-perts in the network. We also showed that the max-imum likelihood (ML) approach, which is associatedwith some optimal statistical properties and a conve-nient maximization algorithm, is consistent in estimat-ing the mean response from data, as the sample sizeand the number of experts both increase. Moreover,the approximation rates and the consistency result canbe achieved within the family of HME structures withbinary trees, or within the family of HME structureswith one layer of experts (the MEs). We do not claimthat the approximation rates obtained in this paperis optimal. In fact, for the special case of mixing lin-ear model experts in a single layer, Zeevi et al: (1998)have shown that a better rate for approximation ofmean functions can be achieved if higher-than second-order continuous di�erentiability of the target func-tions is assumed. Our work is di�erent from Zeeviet al. (1998) regarding the following aspects: (i) Wedeal with mixtures of generalized linear models in-stead of the mixtures of ordinary linear models. (ii)We consider the set-up of the HME networks instead ofthe single-layer mixtures of experts. (iii) We considerthe maximum likelihood method instead of the least-squares approach for model �tting. (iv) Related to theuse of the maximum likelihood method, we obtainedthe approximation rate in terms of probability density
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