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Abstract

We investigate a class of hierarchical
mixtures-of-experts (HME) models where ex-
ponential family regression models with gen-
eralized linear mean functions of the form
(o + xT3) are mixed. Here ¢(-) is the
inverse link function. Suppose the true re-
sponse y follows an exponential family regres-
sion model with mean function belonging to a
class of smooth functions of the form ¢ (h(x))
where h(-) € W3%, (a Sobolev class over
[0,1]%). It is shown that the HME mean func-
tions can approximate the true mean func-
tion, at a rate of O(m~?/*) in L, norm.
Moreover, the HME probability density func-
tions can approximate the true density, at a
rate of O(m~2/*) in Hellinger distance, and
at a rate of O(m~—*/*) in Kullback-Leibler di-
vergence. These rates can be achieved within
the family of HME structures with a tree of
binary splits, or within the family of struc-
tures with a single layer of experts. Here s is
the dimension of the predictor x. It is also
shown that likelihood-based inference based
on HME is consistent in recovering the truth,
in the sense that as the sample size n and the
number of experts m both increase, the mean
square error of the estimated mean response
goes to zero. Conditions for such results to
hold are stated and discussed.

1 Introduction

Both the Mixtures-of-Experts (ME) model, introduced
by Jacobs, Jordan, Nowlan and Hinton (1991), and the
Hierarchical Mixtures-of-Experts (HME) model, intro-
duced by Jordan and Jacobs (1994), provide impor-
tant paradigms for learning from data, and are of mu-
tual interest to researchers in artificial intelligence and

in statistics. The fundamental problem is to learn a
mapping in which the structure of the mapping varies
for different regions of the input space. The ME and
HME approach is to assign an “expert” network to
each of these different regions and to then use a “gat-
ing” network to decide which experts should be used
to determine the output. As part of the learning pro-
cess, one needs to discover how to assign experts to
the various regions and how to train the experts to
adapt to their assigned task. The HME model has a
tree-structure and can summarize the data at multi-
ple scales of resolution due to its use of nested input
regions. An introduction and application of mixing
experts for generalized linear models (GLMs) are pre-
sented in Jordan and Jacobs (1994) and Peng, Jacobs
and Tanner (1996).

Both ME and HME have been empirically shown to be
powerful and general frameworks for examining rela-
tionships among variables in a variety of settings [Cac-
ciatore and Nowlan (1994), Meild and Jordan (1995),
Ghahramani and Hinton (1996), Tipping and Bishop
(1997) and Jaakkola and Jordan (1998)]. Despite
the fact that ME and HME have been incorporated
into neural network textbooks [e.g., Bishop (1995) and
Haykin (1994) which features an HME design on the
cover|, there has been very little formal statistical jus-
tification [see Zeevi, Meir and Maiorov (1998)] of the
methodology. In this paper we consider a fundamen-
tal question regarding ME and HME: Given that we
train an ME or HMFE network using noisy data, un-
der what conditions are the inferences and predictions
based on this system valid? To answer this question we
consider the denseness and consistency of the ME and
HME networks. Before proceeding we present some
notation regarding mixtures and hierarchical mixtures
of generalized linear models and one-parameter expo-
nential family regression models.

Generalized linear models, which are natural exten-
sions of the usual linear model, are widely used in sta-
tistical practice [McCullagh and Nelder (1989)]. One-



parameter exponential family regression models [see
Bickel and Doksum (1977), page 67] with generalized
linear mean functions (GLM1) are special examples
of the generalized linear models, where the proba-
bility distribution is totally determined by the mean
function. In the regression context, a GLM1 model
proposes that the conditional expectation u(x) of a
real response variable y (the output) is related to a
vector of predictors (or inputs) x € R® via a gen-
eralized linear function u(x) = ¢(a + B7x), with
a € R and B € R° being the regression parameters
and ¥ ~!(-) being the link function. Examples include
the log link where ¢(-) = exp(-), the logit link where
¥(-) = exp(-)/{1+exp(-)}, and the identity link which
recovers the usual linear model. The inverse link func-
tion 1(-) is used to map the entire real axis to a re-
stricted region which contains the mean response. For
example, when y follows a Poisson distribution condi-
tional on x, a log link is often used so that the mean is
non-negative. In general, the GLM1 probability den-
sity function of y conditional on x is totally deter-
mined by the conditional mean function u(x), having
the form p(y;x) = exp{a.(u)y + b« (1) + c«(y)}, where
1= p(x) = ¥(a + B7x), and a. (), b.() and c,(-) are
some fixed functions. Such models include Poisson, bi-
nomial and exponential regression models, as well as
the normal and gamma regression models with disper-
sion parameters regarded as known. In Section 4, we
will discuss the situation when the dispersion parame-
ter is also estimated. Before then, we focus on GLM1
exclusively.

A Mixtures-of-Experts model assumes that the total
output is a locally-weighted average of the output of
several GLM1 experts. It is important to note that
such a model differs from standard mixture models
[e.g., Titterington, Smith and Makov (1985)] in that
the weights depend on the input. A generic expert
labeled by an index J, proposes that the response
y, conditional on the input x, follows a probability
distribution with density p;(y;x) = w(h;(x),y) =
exp{a. (pur)y + bu(ps) + cx(y)}, where py = p(hs(x))
and hj(x) = ay + B5x. The total probability den-
sity of y, after combining several experts, has the form
p(y;x) = > ;97(x)ps(y;x), where the local weight
9.7(x) depends on the input x, and is often referred to
as a gating function. The total mean response then
becomes p(x) = > ; gs(x)us(x). A simple Mixtures-
of-Experts model takes J to be an integer. An HME
model takes J as an integer vector, with dimension
equal to the number of layers in the expert network.

An example of the HME model with two layers is given
in Jordan and Jacobs (1994), as illustrated in Figure 1.
Note that the HME is a graphical model with a prob-
abilistic decision tree, where the weights of experts

reflect a recursive stochastic decision process. In Fig-
ure 1, adapted from Jordan and Jacobs (1994), the
expert label J is a two-component vector with each
component taking either value 1 or 2. The total mean
response y is recursively defined by u = Zle g;u; and
Wi = Z?:1 g;litij; where g; and g;|; are logistic-type
local weights associated with the “gating networks” for
the choice of experts or expert groups at each stage of
the decision tree, conditional on the previous history of
decisions. Note that the product g;g;; gives a weight
g7(x) = gig;); for the entire decision history J = (4, j).
At the top of the tree is the mean response u, which
is dependent on the entire history of probabilistic de-
cisions and also on the input x.
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Figure 1: A Two-Layer Hierarchical Mixtures-of-

Experts Model

One important issue is the approximation power of
the HME models. Is the family of mean functions
of the form ), gs(x)us(x) proposed by HME rich
enough to approximate an arbitrary smooth mean
function of a certain family to any degree of accuracy?
What precision, in a certain norm, can the approxi-
mation based on a specific number of experts achieve?
Such problems of denseness and complexity are well-
described and studied in the neural network literature
[see Mhaskar (1996)]. A different question is the con-
sistent learning property of HME with respect to a
specific learning procedure. An HME model, as we
will see later, is characterized by a parameter vector,
which can be estimated based on a training data set
consisting of n pairs of (x,y)’s, following a learning
procedure (or fitting method) such as least-squares or
maximum likelihood approach. The consistency prob-
lem centers on whether the learning procedure will pro-
duce an estimated mean function which is close to the



true mean function, when the size of the training data
set is sufficiently large. Various methods of measuring
the closeness include the convergence in probability
and the convergence in mean square error of the esti-
mated mean function. The latter is a stronger mode of
convergence due to Chebyshev’s inequality [see Bickel
and Doksum (1977), page 463] and is the mode of con-
vergence we will consider in this paper.

Regarding these important theoretical questions, it is
demonstrated by Zeevi, Meir and Maiorov (1998) that
one-layer mixtures of linear model experts can be used
to approximate a class of smooth functions as the num-
ber of experts increases, and the least-squares method
can be used to estimate the mean response consistently
when the sample size increases. One goal of this paper
is to extend this result to HME for GLM1s with non-
linear link functions, and to consider the consistency of
maximum likelihood estimation. The maximum likeli-
hood (ML) approach has two advantages over the con-
ventional least-squares approach. (i) The maximum
likelihood approach gives the smallest asymptotic vari-
ance for the estimator of the mean response, in the case
of correct model specification. (ii) The convenient EM
algorithm can be used naturally for maximizing the
likelihood, just as in the case of ordinary mixture mod-
els. However there are two difficulties for studying the
consistency properties of a likelihood-based approach.
(i) The maximum likelihood method deals with density
functions rather than with mean functions. A result on
the denseness of mean functions, such as the one stated
in Zeevi, Meir and Maiorov (1998), is not enough. We
need to establish a similar result for the density func-
tions. We show that HME for GLM1 density func-
tions can be used to approximate density functions of
the form 7(h(x),y), where h(-) is an arbitrary smooth
function in a Sobolev class. (ii) The maximum like-
lihood method minimizes the Kullback-Leibler (KL)
divergence, while the consistency properties for the es-
timates of mean responses are usually investigated by
showing that the mean square error (MSE) of the esti-
mated mean responses converge to zero in some fash-
ion. We need to establish a relationship between the
KL divergence of the density functions and the MSE,
or the Lo distance of the mean functions.

We also note that the parameterization of the HME, as
shown in the next section, is not identifiable. Care is
needed for statements about the parameter estimates,
which are not unique.

2 Notation and Definitions

In the following, we briefly review the one-parameter
exponential family regression model with a generalized
linear mean function (GLM1).

2.1 GLM1

We first describe the one-parameter exponential fam-
ily. Let (A, Fa, A) be a general measure space. A prob-
ability density function 7(h,-) in the one-parameter
exponential family is labeled by one real parameter h,
and has the form

w(h,y) = exp{a(h)y + b(h) + c(y)} fory € A, (1)

such that [, w(h,y)dA(y) = 1 for each h € R. The
functions a(-), b(-) and ¢(-) all have known forms; a(-)
and b(-) are analytic and have nonzero derivatives on
R; and c¢(-) is measurable -F 4.

Note that the one-parameter exponential models have
some well-known properties. For example:

(i) The moment generating function exists in some
neighborhood of the origin, and thus moments
of all orders exist—see Theorem 1.4.2, Lehmann
(1991, p.31).

(ii) For ,u(k)(h) =
J4y*m(h,y)dX is differentiable in h up to any or-
ders, due to the analyticity of a, b and Theorem
1.4.1 of Lehmann (1991, p.29). In particular, we
denote p(1)(h) = ¥(h) = p and (o) (h) = v(h) as
the first two moments.

each positive integer £,

(iii) The first moment can be expressed as u =
Y(h) = [,yn(h,y)d\ = —b'(h)/a’(h) for all real
h and is analytic. ¢ : R — ¢¥(R) forms a C*-
diffeomorphism. The inverse of ¢(-) is called the
link function (McCullagh and Nelder 1989).

Some examples are:

Poisson: P(u) where p = e y € A = {0,1,2,...}.
Then

e—H
w(h,y) = ?uy = exp{hy — e" —log(y!)}.
Here we can take a(h) = h, b(h) = —e”, c(y) =

— log(y!).

Normal (02 known, > 0): N(u,0?) where y = h, y €
A =®R. Then

5 (y—n)?

e

1
w(h,y) =
(hy) = ——
h h? y? 1 9

Here we can take a(h) = h/o?, b(h) = —h*/(20?),
c(y) = —y?/(20°) — (1/2) log(2m0?).
Gamma (7y known, > 0): 7 (y,yu 1)
where p = e, y € A = R" = (0,00). Then



eyl -
ﬂ'(hay) = (’Y F()fy)y e’ hy =
exp {—ye "y —yh + ylogy —log?(y) + (y — 1) logy} .

Here we can take a(h) = —ye ", b(h) = —h, c(y) =
vlogy —log?(7) + (v — 1) logy.

Binomial: Bin(v,p) where p = v 1p = e"/(1 + €"),
ye A={0,1,2,...,v}. Then

m(h,y) = (5) p'(1—p)" " = (-’3) %

= exp {hy —vlog(l +e") +log (?Ij)} ,

where (?J) = y!(:iy)!-
Here we can take a(h) = h, b(h) = —vlog(1 + e"),

c(y) = log (ZZ)

The GLM1 assumes that h = a + BT x, which intro-
duces the dependence of y on an s-dimensional pre-
dictor x through the density function = (h,y). Note
that the functions a, b and ¢ in (1) correspond, respec-
tively, to the functions a, o, b, 09 and ¢, in notation
of Section 1, where o stands for composition.

Now we introduce a target family of regression models
which is more flexible than the family of GLMI1s, by
allowing h(-) to be an arbitrary smooth function (of
x) in a Sobolev class.

2.2 The Family of Target Functions

Let Q@ = [0,1]° = ®;_,[0,1], the space of the pre-
dictor x, where ® stands for the direct product. Let
A C R be the space of the response y. Let (A4, Fa, )
be a general measure space, (2, Fq,k) be a prob-
ability space such that « has a positive continuous
density with respect to the Lebesgue measure on (2,
and (2 ® A, Fq ® Fa,k ® A) be the product mea-
sure space. Consider a random predictor-response pair
(X(sx1)» Y(1x1))- Suppose X has a probability measure
k, and (X,Y) has a probability density function (pdf)
@ with respect to kK ® A, where ¢ is a target function
of the form

p(x,y) = n(h(x),y). (2)

Here m(-,-) : # ® A — R has the one-parameter ex-
ponential form (1). In contrast to a GLM1 model,
we allow a more flexible A(x) in (2). Here h : Q —
R is assumed to have continuous second derivatives,
Zk:og\k\gzﬂthHoc < Ko, where k = (k1,...,k;)
is an s-dimensional vector of nonnegative integers be-
tween 0 and 2, |k| = 377, k;, [|hlloc = supyeq [h(x)],

K — alkly
and D*h = 8?0’:1...8?0);5 ’
where W35~ is a ball with radius Ko in a Sobolev

space with sup-norm and second-order continuous dif-

In other words, h € W35, ,

ferentiability. The conditional mean function p(-), cor-
responding to ¢(-,-), is obviously

u(x) = /A vo(xy)dAm) = v(h(x)  (3)

for all x in Q. Sobolev classes of mean functions similar
to W%, are also considered in Mhaskar (1996) and
Zeevi et al. (1998). Our family of mean functions is
a transformed class ¢(W5%,) where ¢y~" is the link
function. We have restricted the predictor x to Q =
[0,1]® to simplify the exposition. The theorems of this
paper actually hold for €2 being any compact subset of
R#. The compactness of 2 is needed in the techniques
of our proofs. We also note that in the situation when
Q is the direct product of s closed intervals, suitable
re-centering and re-scaling of each of the s components
of x can transform 2 into [0, 1]°.

Denote the set of all pdfs ¢(-,-) = 7w(h(-),-) defined
this way as ®. This is the set of target functions that
we wish to approximate.

Now we define the hierarchical mixtures-of-experts
(HME) for GLM1s. They are the functions which we
use for approximating a function in ®.

2.3 The Family of HME of GLM1s

An approximator f in the HME family is assumed to
have the following form:

f= fA(va;e) = Z gJ(X;V)TF(hJ(X)a y)a (4)

JeA

where hj(x) = ay + B%x, and 7(-,-) is as defined
in Section 2.1. The parameters of this model include
ay € O, C R and B; € @,3 C R* with ©, and
6,5 being some compact sets, as well as v which is

some parameter for the gating function g;’s. For con-
venience, we assume that hy € W3k, with a bound
K1, parallel to the assumption of h € W35 for the
target functions. We use the symbol 6 to represent the
grand vector of parameters containing all the compo-
nents of the parameters v, oy and 3, for all J € A.
In (4), A is the set of labels of all the experts in
a network, referred to as a structure. Two quanti-
ties are associated with a structure: the dimension
¢ = dim(A), which is the number of layers; and the
cardinality m = card(A), which is the number of ex-
perts. An HME of /-layers has a structure of the form
A = ®%_, A where Ay = {1,...,w;}, wy € N, and
k=1,...,£. (We use N to denote the set of all posi-
tive integers.) We call wy, = card(Aj) as the number
of expert branches, or the number of choice-legs at
layer k, k = 1,...,¢. Note that in this paper we re-
strict attention to “rectangular-shaped” structures. A



generic expert label J in A can then be expressed as
J = (j1,.-.,J¢) where j, € Ay for each k.

To characterize a structure A, we often claim that it
belongs to a certain set of structures. We now in-
troduce three such sets of structures, J, J,, and S,
which will be used later when formulating the results.
The set of all possible HME structures under con-
sideration is J = {A : A = ®{_ {1,...,w;}; wy, €
N;k=1,...,¢; £ € N}. The set of all HME struc-
tures containing no more than m experts is denoted
as Jm = {A : A € J,card(A) < m}. We also in-
troduce a symbol S to denote a generic subset of 7.
This is introduced in order to formulate a major con-
dition for some results of this paper to hold. This
condition, to be formulated in the next section, will
be specific to a generic subset S of HME structures.
A trivial example of S is J. Another example of S
is S = {A: A € J,dim(A) < L}, which includes
all structures with L or less layers. In particular, &;
represents the set of single-layer structures. A third
example of S is Sp = {A : A = ®4_ {1,2}; £ € N},
which represents the set of trees with binary splits.

Associated with a structure A is a family of vec-
tors of gating functions. Each member is called a
gating vector and is labeled by a parameter vector
v € Vi, V) being some parameter space specific to
the structure A. Denote a generic gating vector as
Gua = (95(55V)) jep- We assume the g(x;v)’s to be
nonnegative, with sum equal to unity, and continuous
in x and v. Note that [, fa(x,y;0)dA(y) = 1 is en-
sured. Let G = {Gv.a : v € Vi, A € S} be the family
of gating vectors defined on the set of structures S,
which will be referred to as a gating class defined on

S.

In the following, we define the logistic gating class
G = L on the set of all structures J. This class has
been commonly used in the literature [see Jordan and
Jacobs (1994)]. Here, for each structure A in J and
each label J in A, a gating function g; = g(-,v) is
defined recursively. Suppose J is an /-dimensional in-
teger (jlaj?a v 7j€)' Thena

97 = Gj1jo...de = 951952151 - - - Djeljrge...de—1- (5)

Here, for each g, the factor g; ;. takes a multi-

nomial logit form:

--jqfl

g ‘ ) ) _ exp(gjq‘jl-..jq—l)
q e Jg— - w b
Jaldteda Zkil eXP(fk\jl...jq,l)

(6)

T
where &5, 5., Phljrodar + Vifjrdy 2 %
(¢k\j1...jq,1771{‘]‘1___]‘(171) S §RS+1, k= ].,...,’I.Uq. Usu-
ally it is assumed that

Pugljreda—r = Ywglin.door = Swaljrdo-1 = 05

since otherwise a transformation
{ Pkl

Ykljr.Gor
would leave the probability density function fa(x,y;6)
unchanged. Note that the grand vector of “gat-

ing parameters” v includes all components of
T .
(Bjolg1.edgr 7jq\j1...jq71)’ where j, take over all val-

- ¢k‘j1---]’q71 + ¢o
= Vkjregen T Y0 AllE=1,... w,

ues {1,...,w,} forr =1,...,¢g — 1 and over all values
{1,...,w, —1}forr = g;forallg =1,...,¢. It is easy
to see that dim(v) = (s+1)(m—1), and the parameter
space Vi for v is RtV where m = wy ... wy =
card(A). Note that the gating functions constructed in
this way are analytic for (v7,x7) € R+ m=1) g Rs,
The space of regression parameters (or “expert pa-
rameters”) (ay,87)’s, corresponding to structure A, is
(04 ® ©g)®™, which is a compact subset of Rs+1)m,
The space of grand parameters 8’s, corresponding to
structure A, is

Or=(0,®03)%" ® R+ (m=1) (7)

Here the (2m—1)(s+1) dimensional grand parameter 6
includes all components of the gating parameters from
v and the expert parameters from (aJ,ﬁg‘)JeA.

Now we are ready to define the family of approxima-
tor functions. Let II5 be the set of all function f’s of
the form (4), specific to a structure A, which can be
denoted as IIp = {fa(-,;6): 0 € (:)A}. This set II, is
the set of HME functions from which an optimal func-
tion is chosen by the maximum likelihood method to
approximate the truth. It is assumed that a structure
A is chosen a priori. In practice, people often analyze
data using different choices of structures and select the
best fitting model. We consider in this paper choosing
among the set of structures J,,, N'S. Denote

Hm7S:{fZ fellpy;A e T, NS (8)

This set, Il,, s, is the family of HME functions for
which we examine the approximation rate in ®, as
m — oo. Note that this family of HME functions is
specific to m, the maximum number of experts, as well
as to some subset S of HME structures, which will be
specified later. We do not explicitly require that IT,, s
be a subset of ® in this paper.

Each HME density function fa(x,y;6) generates a
mean function pa(x;6) by

a (x:6) = /A yfa(x,: 6)dA(y)

= Z gt](X; V)'(/)(OZJ + XT:BJ)a (9)

JeA

where (-) = [, ym(-,y)dA(y).



The parameterization of the HME functions is not
identifiable, in the sense that two different parameters
6 in O can represent the same density function f in
II,, s. For example,, the density functions are invari-
ant under permutation of the expert label J’s. Also, if
two experts J and J' propose the same output, i.e., if
ay = ay and B; = B, then the mixing proportions
for these two experts can be arbitrary, as long as the
sum of the two weights are unchanged. This can lead
to the non-identifiability of some components of the
parameter v. Our description of the estimation pro-
cedure and the statement of the results will take these
identifiability issues into account. The identifiability
issues also suggest that it makes more sense to formu-
late the consistency problem in terms of the estimated
mean response, rather than to look at the consistency
of the parameter estimates.

2.4 The Method of Estimation

We will use the maximum likelihood method to train
the architecture. Suppose we estimate the mean re-
sponse u(x) based on a data set of n predictor-response
pairs (X;,Y;), X; € Q, Y; € A, i = 1,...,n. Let
the measure spaces ({2, Fq, k) and (A, Fa,\) be as in-
troduced in Section 2.1. Assume that (X;,Y;), i =
1,...,n are independent and identically distributed
(i.i.d.) random vectors. The probability measure for
X, is k. The probability measure of Y; conditional
on X; = x has a density ¢(x,-) [defined in (2)] with
respect to the measure ), for all x € Q.

The log-likelihood function based on the HME model
is

Loa(Bw) =n 1> log{fa(X;, Yi;60) /0o (X, Y3)},
i=1

(10)
where f(-,-;0) € Il is defined in Section 2.3, 6 €
On, w is the stochastic sequence of events (X;,Y;),
i =1,..., and ¢o(X;,Y;) can be any positive mea-
surable function of the observed data that does not
depend on the parameter #. In this paper, we choose
0o(X;,Y;) = e where c(-) is defined in (1). It
turns out that such a choice makes the log-likelihood
function uniformly convergent to its expectation, for
almost all w, in any compact subset of parameters, as
n — . Define the maximum likelihood estimator

(MLE) 6,4 (w) to be a maximizer (can be one out of
many) of L, A (#;w) over a compact set By C ©,, i.e.,

Ona(w) = arg ;E%X{Ln,A(G;W)}- (11)

The maximum likelihood method, in the large sam-
ple size limit, essentially searches for 6 which min-
imizes the KL divergence KL(fa,p) between fy =

fa(e,50) € Ia and ¢ = ¢(+,-) € ®, where

_ 9(%,9)
Kif.o)= [ ateo)os{ 2201 dﬁ(X)dMﬁ;)

It turns out that the KL divergence KL(fa, ) is al-
ways well defined (see Corollary 1 later). Due to the
non-identifiability of the parameterization, there is a
set of @’s in B, that minimize the KL divergence.
Denote this set as ©4, which could be expressed as

Or={0€ Bpr: 6= arg min KL(fA(+,56%), ©)}.
0*€ B
(13)

Based on any MLE én,A = én,A(w), an estimated mean
response can be constructed as pa (x; én,\) We do not
explicitly require that for two different global MLEs
the estimated mean responses be the same. The MSE
of an estimated mean response is defined by

(MSE), 4 = E / (i (x:600) — p(0)}odr(x),  (14)

where E is the expectation taken on the MLE GAnyA, LA
and u are defined in (9) and (3), respectively.

2.5 Technical Definitions

Some technical definitions are introduced below. We
will use these definitions to formulate a major condi-
tion for our results to hold.

Definition 1 (Fine Partition). For v = 1,2,..., let
QW = {QSV)}.IEA(")’ AW € J, be a partition of
Q C R5. (This means that for fized v, the QSV) ’s are

mutually disjoint subsets of R° whose union is Q.) Let
p, = card(A™)), (p, € N).

If p, — oo, and if for all £, n € QSV), o€, n) =
maxi<g<s |(§ — N)q| < cO/p,l,/s for some constant ¢
independent of v, J, &, n, then {Q(") v = 1,2,...}
is called a sequence of fine partitions with structure se-
quence {A()}, cardinality sequence {p,}, and bound-
ing constant cy.

Definition 2 (Sub-Geometric). A sequence {a,} is
sub-geometric with rate bounded by Ms, if a, € N,
a, = 00 as v — 0o, and 1 < |a,y1/a,| < My for all
v=12,..., for some finite constant M>.

In the following we introduce some measures of the
discrepancies between a pdf f in I [of the form (4)]
and a pdf ¢ in @ [of the form (2)]. One of them is
the KL distance KL(f, ) [see (12)]. Another is the
Hellinger distance

du(f0) = { [ (V- oy dds) 2 (15)



This is a true distance, which is invariant under rescal-
ing of the measures A and k. A third description is the
L distance between the means:

da gy o) = |lpa(, 0)—p()ll2n =

(16)
where puy = [yfdX and p, = [ yed, for f in I and
@ in ®. This measure is used since it is closely related
to the MSE defined in Section 2.4.

The fourth measure of discrepancy between f in IIp
and ¢ in ® is called the “upper divergence”. For

f =2 sen9sm(hs,y) and ¢ = 7w(h,y), the upper di-
vergence is defined as

Qt9) = [ X asbsv){hs 0 - hix) s, (17

JeA

where hj(x) = aj + ﬁ?x. Note that the idea of
HME approximation is to partition the input space
“softly” according to the g;’s, and use a linear func-
tion hj(x) to approximate h(x) in each partition, so as
to approximate the (conditional) pdf 7 (h(x),-) for all
x. The upper divergence measures how good is this
softly-partitioned linear approximation. The name
“upper divergence” is due to the following lemma,
stated without proof, which implies that @ is stronger
than the other divergence measures, i.e., KL, dg and

dQ(qua N‘P)'

Lemma 1 (Strengths of Divergence Measures.) For
any structure A, any f in IIy and any ¢ in ®, we
have

(a) d3(pg, po) < 4Mid3, (f, ).
(b) ' d3(f,¢) < KL(f, ).

(C) KL(fa (10) S MIIQ(fa (10)

Here, M; = sup‘h‘SK{nyW(h,y)d/\}, K =
min{ Ko, K1} where Ky and K; are bounds of h()
and h;(:) in the Sobolev class W35, and W3 ,
respectively. My = %{sup‘h‘SK|fy7r(h,y)d)\| :
SUP\h\gK|a”(h)\ + Sup\h\SK‘b”(h”}a where a(-) and
b(-) are defined as in (1).

Remark 1 M; and Mj; are finite constants, due to
the continuity of a”’, b”, and [ y*r(h,y)d) (k = 1,2),
as functions of h.

Corollary 1 All the divergence measures da(fif, the),
dg, KL and Q are positive and finite.

!This lemma appeared in, for example, Haussler and
Opper (1995), and Zeevi and Meir (1997).

{/(:uf*/iw)zd””}l/zv

Proof. This is obvious since @) involves an integration
of a continuous function over the compact space € of
input x. |

In the next section (Lemma 2), we will see that the
HME functions related to a set of structures S are
dense in ® in upper divergence, under a condition on
the gating class defined on S (Condition As ;). This
implies, in turn, the “denseness” in KL and dg.

3 Results and Conditions

In the following, we state some regularity conditions,
as well as some results which hold under these condi-
tions.

Condition 1 (As,). For a subset S C J, there is a

fine partition sequence {{QS")}JGA(V) : Aéy) eSS, v=
0

1,2,...} with a bounding constant cq and a cardinality
sequence {p, : v =1,2,...}, such that {p,l,/s} is sub-
geometric with rate bounded by a constant Ms; and for
all v, for alle > 0, there exists v, € VABV) and a gating
vector

_ . (v)
GVE’ABV) = {g(x; vg)}JeAgu) €G, Ay’ €S8, such that

sup [lgs(5 ve) = xow ()llpe <& (18)
JeA 7

Here, ||f(Vlpo = { fyo 1F () Pdo(x)} /", where p € N;
o s any probability measure on ) which has a positive
continuous density with respect to the Lebesgue mea-
sure; xB(-) is the characteristic function for a subset
B of Q, ie., xp(x) =1 if x € B, 0 otherwise.

This condition is a restriction on the gating class G
defined on a set of structures S. Loosely speaking, it
indicates that the vectors of local gating functions in
the parametric family should arbitrarily approximate
the vector of characteristic functions for a partition of
the predictor space €, as the cells of the partition be-
come finer. Under this condition, the soft partitions
are flexible enough to approximate a hard partition of
the input space €2, with the size of each cell having
order (1/m)'/*, m being the number of experts in the
structure, s = dim(x). In each of these m small cells,
a linear approximation hy(x) = ay + B85 x for a sec-
ond order continuously differentiable function h(x) has
an error bound of order (1/m)?/*, by a second order
Taylor expansion. It is not surprising that the HME
mean functions, using the ¢ (h;(x))’s as the building
blocks, can approximate the mean functions in the tar-
get family of the form ¢ (h(x)), with an error bound of
the same order. (Here ¢ is the inverse link function.)
This is summarized in Theorem 1 below.



Theorem 1 (Approzimation Rate of the Mean Func-
tions.) Under the condition As ,,

sup inf

c
s = pllpo < —7
HEY(Wise, ) TETTm.s ! P7 = m2/s

for some constant ¢ > 0 independent of m. Here s =
dim(x), m is the maximal number of experts in the
HME family Iy, s, py = [yfd\, Iy, s is defined in
Section 2.3, Y(Wy3,) is the set of all functions of the
form (3), and ||(")||p.s is as defined in Condition Ag ,.

In the following we go one step further to discuss the
denseness and approximation properties of the density
functions of the HME of GLM1s, which is useful in in-
vestigating the consistency property of the maximum
likelihood approach. From the discussions following
Condition Ags ,, we also conclude that the upper di-
vergence, consisting of the squares of the differences
between hj and h, should have an error bound of or-
der (1/m)*/*. This is summarized in Lemma 2.

Lemma 2 (Approzimation Rate in Upper Diver-
gence.) If Condition As 1 holds, then we have

C
ma/s’

Q(f,p) <

sup inf

pe® fE€ln,s
where s = dim(x), m is the maximal number of experts
in the HME family I1,, s, and c is a positive constant
independent of m.

From this lemma and Lemma 1, the following theo-
rems on the approximation rates of the HME density
functions in Hellinger distance and in KL divergence
are obvious.

Theorem 2 (Approzimation Rate in Hellinger Dis-
tance.) Under the condition As 1,

sup inf
ped fE€Em s

¢
du(f,e) < yPE

for some positive constant ¢ independent of m. Here
dp is the Hellinger distance defined in (15).

Theorem 3 (Approzimation Rate in KL Diver-
gence.) Under Condition Ag 1,

sup inf KL(f,¢) < ¢/m*/*,
ped fel,, s

for some positive constant ¢ independent of m. Here
KL is the KL divergence defined in(12).

The constant ¢’s in the above theorems or lemmas can
be different.

All these results depend on a major condition Ag p.
The following remark claims that it is satisfied by cer-
tain gating functions defined on certain structures.

Remark 2 (a). Condition Ag, is satisfied (for any
p € N) by the logistic gating class G = £ de-
fined on the set of structures S = Sp for trees
with binary splits (Section 2.3). This is because,
roughly speaking, a logistic function from a bi-
nary split has the form (1 4+ e=#(*=%0))=1 which
can approximate a step function S(z — z¢) as 8
increases, for any location of jump zy. The gating
functions in a binary tree involves products of the
logistic functions (and their complements), which
can approximate products of step functions which
form the characteristic functions of a fine parti-
tion. In this way Condition Ag , can be proved.
This implies that the approximation rates in the
theorems stated above apply to HME of GLM1s
with binary trees.

(b). Jiang and Tanner (1999) [Section 5 Remark (i)]
show that Condition As , is also satisfied (for any
p € N) by the logistic gating class £ defined on
the set of single-layer structures S;, which corre-
spond to the MEs. This implies that the approx-
imation rates in the theorems stated above apply
to ME of GLM1s.

(c). Another class of gating functions can be defined
only on the binary trees (in Sg). There, the lo-
gistic gating functions in (6) are replaced by con-
tinuous cumulative distribution functions (cdfs).
One example is to use the normal cdf. In this
way, the gating factor g; |;,...;,_, of (6) becomes
(&) j,on) i g =1, 00 1= @&, 5, ) if g = 2
where fjl---jq—l = ¢j1---jq71 + ’7j7;...jq71x' A simi-
lar argument as in part (a) of this remark shows
that Condition Ags ), is satisfied for this new gating
class for any p € V.

The next condition is useful for proving the consistency
of the maximum (ML) likelihood learning method.

Condition 2 (Scope of Mazimum Likelihood Search-
ing) The scope of the mazimum likelihood (ML) search-
ing, Ba, is a compact set which is so large that it
contains a point 95‘8 which minimizes the upper diver-
gence Q(fa,p) between fa(-,-;0) € ) and ¢(-,-) € ®

among all choices of 6 in Op, where

Q(fA(‘v‘velc\?)a 90("'))
= inf Q(.fl\('a'ae)a (p('v')) = inf Q(.fa‘p)

TN JASIEN

This condition is similar to a usual condition under
correct model specification, requiring that the scope
of ML search should contain the true parameter so as
to make the MLE consistent. The difference here is
that there is no “true parameter”, since the likelihood



functions are constructed based on the HME densi-
ties, which can only be used to approrimate the true
pdf in @. Condition 2 ensures that the ML searching
area is big enough to contain an “optimal point” (in-
stead of the true parameter) which minimizes the up-
per divergence between the true density and the HME
density. This feature will be useful when proving the
consistency result of the ML approach under model
misspecification, when the likelihood function is con-
structed from the HME approximations, instead of a
pdf from the true family ®. Note that Condition 2 is
hard to check in practice, although it looks plausible
if a sufficiently large scope of ML search is used.

The next theorem states that the maximum likelihood
method based on the HME of GLM1 models is consis-
tent in estimating the mean functions in (W35, ).

Theorem 4 (Consistency of the Mazimum Likelihood
Method). Let (MSE), a be as defined in (14). Under
reqularity conditions As 2 and 2,

lim limsup inf
m—o00 p_yo0 AESNTm

(MSE),,.z = 0.

Here s = dim(x), n is the sample size, m =
Suppcsng, tcard(A)}, and Jn, = {A A €
J,card(A) < m} is the set of all HME structures con-
taining no more than m experts. Actually

limsup inf (MSE),a <

oo AESNTm m4/s’

where ¢ is a positive constant independent of n, m and
the structure A.

The proof of this theorem starts with the decomposi-
tion of the MSE into two parts. One part character-
izes the discrepancy between the estimated mean func-
tion and its large sample limit, which can be shown to
converge to zero as the sample size increases. The
second part comes from the discrepancy between the
large sample limit of the estimated mean function and
the true mean function, which is bounded by an ap-
proximation error by applying Lemmas 1 and 2, and
converges to zero as the number of experts m increases.
Combining these two parts leads to the proof for con-
sistency. The details are included elsewhere.

4 Unknown Shape Parameter

Up to now, we have been assuming that the shape pa-
rameter u of a GLM1 expert is known, or fixed at a
value which is equal to the shape parameter in the true
pdf ¢. An example of the shape parameter is u = 1/0>
for a normal expert. Now suppose the shape param-
eter is unknown and needs to be estimated also. We
assume that the parameter space U of u is a compact

subset of the positive real line. Lemma 1 (c) needs a
little modification. A bound of the KL distance now
requires an additional term proportional to the dis-
crepancy between the true shape parameter in ¢ and
the “proposed” shape parameter in f. Condition 2
needs to be modified. In addition to the condition on
the scope By for §, we assume that the scope of the
ML search in the u direction contains the true shape
parameter. Using techniques similar to before, it is
straightforward to show that, with this modification
on Condition 2, all theorems on denseness and consis-
tency are still valid.

5 Discussion

We investigated the power of the HME networks of one
parameter exponential family regression models with
generalized linear mean functions (GLM1 experts) in
terms of approximating a certain class of relatively ar-
bitrary density functions, namely, the density func-
tions of one-parameter exponential family regression
models with conditional mean functions belonging to
a transformed Sobolev class. We demonstrated that
the approximation rate of the HME mean functions is
of order O(m~%/%) in L, norm. We also showed that
the approximation rate of HME density functions is
of order O(m~2/%) in Hellinger distance, and of order
O(m~*/%) in KL divergence. Here s is the dimension
of the predictor, and m is the maximal number of ex-
perts in the network. We also showed that the max-
imum likelihood (ML) approach, which is associated
with some optimal statistical properties and a conve-
nient maximization algorithm, is consistent in estimat-
ing the mean response from data, as the sample size
and the number of experts both increase. Moreover,
the approximation rates and the consistency result can
be achieved within the family of HME structures with
binary trees, or within the family of HME structures
with one layer of experts (the MEs). We do not claim
that the approximation rates obtained in this paper
is optimal. In fact, for the special case of mixing lin-
ear model experts in a single layer, Zeevi et al. (1998)
have shown that a better rate for approximation of
mean functions can be achieved if higher-than second-
order continuous differentiability of the target func-
tions is assumed. Our work is different from Zeevi
et al. (1998) regarding the following aspects: (i) We
deal with mixtures of generalized linear models in-
stead of the mixtures of ordinary linear models. (ii)
We consider the set-up of the HME networks instead of
the single-layer mixtures of experts. (iii) We consider
the maximum likelihood method instead of the least-
squares approach for model fitting. (iv) Related to the
use of the maximum likelihood method, we obtained
the approximation rate in terms of probability density



functions, as well as in terms of the mean response.
(v) We have formulated the conditions and proofs of
our results in a way that is protective of the inherent
non-identifiability problems of the parameterization.
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