
Stochastic Local Search for Bayesian Networks

Kalev Kask and Rina Dechter

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

Abstract

The paper evaluates empirically the suit-
ability of Stochastic Local Search algorithms
(SLS) for �nding most probable explana-
tions in Bayesian networks. SLS algo-
rithms (e.g., GSAT, WSAT [16]) have re-
cently proven to be highly e�ective in solv-
ing complex constraint-satisfaction and sat-
is�ability problems which cannot be solved
by traditional search schemes. Our exper-
iments investigate the applicability of this
scheme to probabilistic optimization prob-
lems. Speci�cally, we show that algorithms
combining hill-climbing steps with stochas-
tic steps (guided by the network's probability
distribution) called G+StS, outperform pure
hill-climbing search, pure stochastic simula-
tion search, as well as simulated annealing.
In addition, variants of G+StS that are aug-
mented on top of alternative approximation
methods are shown to be particularly e�ec-
tive.

1 Introduction and Motivation

TheMost Probable Explanation (MPE) task appears in
applications such as diagnosis, abduction, and expla-
nation. For example, given data on clinical �ndings,
MPE can postulate on a patient's probable a�iction.
In decoding, the task is to identify the most likely in-
put message transmitted over a noisy channel given
the observed output. Researchers in natural language
consider the understanding of text to consist of �nding
the most likely facts (in internal representation) that
explains the existence of the given text. In computer
vision and image understanding, researchers formulate
the problem in terms of �nding the most likely set of
objects that explains the image. Scienti�c theories are
models that attempt to �t the given observations, etc.

Belief networks provide a formalism for reasoning
about partial beliefs under conditions of uncertainty.
They are de�ned by a directed acyclic graph over nodes

representing random variables of interest (e.g., the
temperature of a device, the gender of a patient, a
feature of an object, the occurrence of an event.) The
arcs signify the existence of direct causal in
uences
between linked variables. The strength of these in
u-
ences are quanti�ed by conditional probabilities that
are attached to each cluster of parents-child nodes in
the network.

Definition 1.1 (Belief Networks) Given a set,
X = fX1; . . . ; Xng of random variables over multi-
valued domains D1; . . . ; Dn, a belief network is a pair
(G;P) where G is a directed acyclic graph and P =
fPig. Pi = fP (Xi j pa (Xi)) g are conditional proba-
bility matrices associated with Xi. The set pa (Xi) is
called the parent set of Xi. This network represents
the probability P (x1; . . . ; xn) =

Qn
k=0 P (Xk j pa (Xk)).

The moral graph of a belief network is obtained from
G by connecting the parents of each variable to each
other and removing the arrows.

Definition 1.2 (Most Probable Explanation)
Given a belief network, the Most Probable Explana-
tion (MPE) task is to �nd a complete assignment
(X1 = x1; . . . ; Xn = xn) which agrees with the avail-
able evidence, having the highest probability among all
such assignments: to �nd an assignment (x1; . . . ; xn)
such that

P (x1; . . . ; xn) = maxX1;...;Xn

nY

k=0

P (Xk j pa (Xk); e)

While the MPE task is NP-hard, there are tractable
subclasses that have e�cient algorithms. For example,
when the network is singly connected, there is a linear
algorithm for solving the MPE problem [9]. This al-
gorithm can be generalized to multiply connected net-
works by using either the cycle cutset (also called con-
ditioning) technique or the join-tree-clustering tech-
nique [9]. However, these methods work well only if
there are small cutsets or clusters in the network. The
complexity of algorithms based on the cycle cutset idea
is time exponential in the cutset size but requires only
linear space. The complexity of join-tree-clustering al-
gorithms is both time and space exponential in the

cluster size. It equals the induced width of the net-
work's moral graph.

A variation of the tree-clustering technique is the
bucket elimination algorithm [4]. This algorithmparti-
tions the problem's conditional probability tables into
buckets relative to the processing order. Each bucket
is processed once, computing a new function which is
added to the problem.

Approximating the MPE task is NP-hard [1], but there
are still cases when approximation algorithms are es-
sential, especially when exact algorithms are not feasi-
ble. Approximation algorithms trade completeness for
e�ciency in the hope that they can �nd a good solu-
tion in a reasonable amount of time for a substantial
number of instances.

One can envision two types of approximation algo-
rithms: those approximating the exact elimination
type algorithm such as mini-bucket approximation
[12], and those approximating search algorithms. This
paper focuses on approximating search algorithms
known as Stochastic Local Search algorithms (SLS).
An example of a SLS algorithm for probabilistic rea-
soning is Stochastic Simulation [14]. Typically, such
algorithms begin with a random complete assignment
to all variables. Guided by an objective function, it is
improved by changing the values of variables individu-
ally. Under certain idealistic conditions these stochas-
tic methods are guaranteed to converge to the optimal
solution [2]. However, as we will later show, in prac-
tice, the performance of these algorithms may be very
poor, unless they are augmented with various heuris-
tics. Unfortunately, once these heuristics are added,
the theoretical guarantees no longer hold.

In this paper, we investigate stochastic local search
heuristics for the MPE task. These algorithms do not
guarantee an optimal solution. They can still be very
useful, however, if they - return a close to optimal solu-
tion in a large percentage of cases, within a reasonable
amount of time and space. In section 3 we will focus
on two stochastic search algorithms, Stochastic Simu-
lation and a greedy algorithm. Stochastic Simulation
is a popular approximation algorithm for Bayesian net-
works, and randomized greedy local search algorithms
have been very successful in solving constraint satisfac-
tion problems. Whenever possible we compared these
algorithms to both the complete bucket elimination
algorithm and simulated annealing, which is another
popular stochastic local search algorithm used for op-
timization problems.

In section 4 we will describe the network classes used
for testing our algorithms: random uniform networks,
random networks having noisy OR gates, and random
coding networks. Section 5 presents the results. We
show that stochastic simulation is not as successful
as the greedy algorithm, although the combined al-
gorithm of greedy and stochastic simulation is better
than either greedy or stochastic simulation alone, and
superior to simulated annealing. Finally, we demon-

strate that our best variation of stochastic local search,
G + StS can be improved by augmenting the algo-
rithm with the mini-bucket approximation approach.
The algorithm begin with an assignment generated by
the mini-bucket algorithm. This version is shown to
enhance the approximation quality considerably. For
coding problems we commence all local search algo-
rithms with an assignment which equals the channel
output. This heuristic greatly improves the perfor-
mance of all SLS algorithms on this domain.

For reference we also compare the SLS algorithm
with the mini-bucket scheme. Although this approach
seems to be superior to all SLS algorithms in our ex-
periments, this conclusion is premature. Since, inten-
tionally most problems we experimented with were de-
signed to be good for elimination.

2 Related Work

The problem of �nding the most probable explana-
tion (MPE) in belief networks has been studied ex-
tensively during the past 15 years. Following Pearl's
propagation algorithm for singly connected networks
and its extension by conditioning and clustering, and
his stochastic simulation proposal [9], researchers have
investigated various approaches, especially in the con-
text of medical diagnosis. Our work on greedy algo-
rithms can be viewed as an extension of the line of
work presented in [10], [11], ranging from two layered
networks to general belief networks. More recently,
best �rst search algorithms were proposed [17] as well
as algorithms based on linear programming [15]. Var-
ious other authors have worked on extending some of
these algorithms to the task of �nding the k most-likely
explanations [7], [18].

3 Competing Algorithms

3.1 Bucket and Mini-Bucket Elimination

The Bucket Elimination (Elim-MPE) is a complete al-
gorithm for solving the MPE problem (for details see
[4].) It is described relative to an ordering of the vari-
ables. In the experiments reported in this paper we
used the min-width variable ordering, which is de�ned
on the moral graph and perceived to be a good heuris-
tic ordering. The algorithm orders the nodes in the
graph from last to �rst. At each step, it chooses the
variable having the smallest number of neighbors in
the remaining graph restricted to nodes not selected
thus far.

Bucket elimination (Elim-MPE) has one bucket for
each variable. It initially places each probability ma-
trix in the bucket of its variable. The algorithm (see
Figure 1) works in two phases. During the �rst, top-
down phase, it processes each variable's bucket indi-
vidually from the last variable to the �rst. It takes
the product of all probability matrices and creates

Bucket Elimination (Elim-MPE) for Finding MPE in Bayesian Networks :

Input: A Belief Network BN = fP1; :::; Png, an ordering of the variables d,
observations e.

Output: The most probable assignment.

1. Initialize: Generate an ordered partition of the conditional probability
matrices, bucket1, . . ., bucketn, where bucketi contains all matrices
whose highest variable is Xi. Put each observed variable in its bucket.
Let S1; :::; Sj be the subset of variables in the processed bucket on which
matrices (new or old) are de�ned.

2. Backward: For p n downto 1, for all the matrices h1; h2; :::; hj
in bucketp:

� (bucket with observed variable) if bucketp contains Xp = xp, assign
Xp = xp to each hi and put each in an appropriate bucket.

� else Up
Sj

i=1 Si � fXpg. Generate functions hp = maxXp
�j
i=1hi

and xop = argmaxXp
hp. Add hp to bucket of largest-index variable in Up.

3. Forward: Assign values in the ordering d using the recorded
functions xo in each bucket.

Figure 1: Bucket Elimination Algorithm for MPE

Greedy Algorithm for Finding MPE in Bayesian Networks :

Input : A Bayesian Network (G;P), a time bound T and a cuto� factor cf .
Output : An assignment u = (u1; . . . ; un) that is a local minima of E(X).

Perform numerous trial runs of the algorithm. Each trial run consists of the
following steps :

1. Check if the time bound T has been exceeded. If yes, quit.

2. Generate a random initial assignment x = (x1; . . . ; xn).

3. Perform a trial run of the algorithm :

(a) Determine if the run should be terminated by seeing if the total time used
exceeds cf � ttry, where ttry is the best assignment time in this run.
If yes, end the run and go to 1.

(b) Pick a variable Xi = ui that has a value vi 2 Di and maximizes the
reduction in the cost function when the value is changed from ui to vi.
Change the value. This is called a greedy
ip.
The change in the cost function when we change the value of
variable Xi from ui to vi is:

�EX;ui!vi = �LP (ui j pa (Xi)) + LP (vi j pa (Xi))�

�
X

A2Child(Xi)

[�LP (XA j ui; pa(XA) �Xi) + LP (XA j vi; pa(XA)�Xi)]

Figure 2: Greedy Algorithm for MPE

Stochastic Simulation for Finding MPE in Bayesian Networks :

Input : A Bayesian Network (G;P), a time bound T and a cuto� factor cf .
Output : An assignment u = (u1; . . . ; un).

Perform numerous trial runs of the algorithm. Each trial run consists of the
following steps :

1. Check if the time bound T has been exceeded. If yes, quit.

2. Generate a random initial assignment x = (x1; . . . ; xn).

3. Perform a trial run of the algorithm :

(a) Determine if the run should be terminated by seeing if the total time used
exceeds cf � ttry, where ttry is the best assignment time in this run.
If yes, end the run and go to 1.

(b) Pick a random variable Xi = ui. Compute the probability
distribution of Xi based on the current values of other variables:

P (Xi j X �Xi) = P (Xi j pa (Xi)) �
Y

A2Child(Xi)

P (XA j Xi; pa(XA))

Randomly pick a new value vi for Xi from this distribution.
We will call this a stochastic
ip.

Figure 3: Stochastic Simulation for MPE

Greedy Algorithm Combined with Stochastic Simulation for MPE :

Input : A Bayesian Network (G;P), a time bound T , a cuto� factor cf and
a probability Psf of stochastic
ip.

Output : An assignment u = (u1; . . . ; un) that is a local minima of E(X).

Perform numerous trial runs of the algorithm. Each trial run consists of the
following steps :

1. Check if the time bound T has been exceeded. If yes, quit.

2. Generate a random initial assignment x = (x1; . . . ; xn).

3. Perform a trial run of the algorithm :

(a) Determine if the run should be terminated by seeing if the total time used
exceeds cf � ttry, where ttry is the best assignment time in this run.
If yes, end the run and go to 1.

(b) Pick a variable Xi = ui. With probability Psf execute a stochastic
ip,
with probability 1� Psf execute a greedy
ip.

Figure 4: Greedy Algorithm Combined with Stochastic Simulation for MPE

a new function. The new function does not contain
the bucket's variable that is being eliminated by max-
imization. During the second, bottom-up phase, the
algorithm constructs a solution by assigning a value to
each variable along the ordering, consulting the func-
tions created during the top-down phase. The com-
plexity of the algorithm is characterized by the induced
width.

Definition 3.1 (Induced Width) Given an undi-
rected graph and an ordering d = X1; :::; Xn of its vari-
ables, the width of a node Xi is the number of its neigh-
bors that precede it in the ordering. The width of an
ordering d denoted w(d), is the maximum width over
all nodes. The induced width of the ordering, denoted
w�(d), is the width of the induced graph obtained with
respect to ordering d: nodes are processed from last
to �rst; when a node Xi is processed, all its preceding
neighbors are connected. The induced width of a graph
w� is the minimal induced width over all orderings. It
is also known as the tree-width.

Theorem [4] : The time and space complexity of the
algorithm Elim-MPE are exponential in the induced
width w� of the network's ordered moral graph.

The bucket elimination algorithm can be approxi-
mated by a Mini-Bucket Elimination algorithm as fol-
lows. During processing bucketp, all the functions in
this bucket are partitioned into smaller subsets called
mini-buckets and then each mini-bucket is processed
independently in the same manner. It can be shown
that the algorithm produces an upper bound on the
MPE value as well as an assignment (and a lower
bound) whose quality depends on the coarseness of
the partitioning into mini-buckets. The following crite-
ria for partitioning functions into mini-buckets is used.
Given a parameter i-bound, partition the functions in
bucketp into mini-buckets so that the number of vari-
ables in each mini-bucket does not exceed the i-bound.
For more details see [13, 12].

Finally, we would like to mention algorithm Iterative
Belief Propagation (IBP). The algorithm is identical to
Pearl's belief propagation on polytrees [9]. However, it
is applied to an arbitrary network in several iterations.
The most likely value for each variable is produced as
the output assignment.

3.2 Greedy Algorithm

The Greedy Local Search algorithm is a randomized
hill-climbing algorithm. It minimizes the cost func-
tion E(X) = �LP (x1; . . . ; xn) = �logP (x1; . . . ; xn).
A global minimumof this cost function is a solution to
the MPE problem. The greedy algorithm is not a com-
plete algorithm, it is guaranteed to converge only to a
local maximum. The algorithm is typical of algorithms
used in connectionist networks. Although greedy local
search algorithms are not guaranteed to �nd the op-
timal solution, in practice they may rapidly solve the
constraint satisfaction problem [8, 16, 5, 6].

The algorithm is broken into a series of independent
trial runs. Having more than 1 run is not technically
necessary, but experiments show that it is bene�cial
to restart the program every once in awhile. Each
run begins with a random initial complete assignment.
A basic operation during the execution of the greedy
algorithm is picking a variable Xi and changing its
value from ui to vi. This is called
ipping a variable
Xi. The variable Xi and its new value vi are chosen so
that the change (reduction) in the cost function �LP
is maximized. Greedy search algorithms are also called
local search algorithms because the change in the cost
function when the value of variableXi is changed from
ui to vi can be computed locally based on the current
values ofXi and its neighbors (Markov neighborhood.)
The greedy algorithmwe use for the MPE task is given
in �gure 2.

One of the issues with using randomized greedy al-
gorithms is that unlike constraint satisfaction prob-
lems, in belief networks there is no objective criteria
for termination, unless we know the optimal solution
in advance. We have designed a heuristic for termi-
nating the algorithm with the idea that if for a long
time no new improved assignment was found, search is
stopped. We have implemented this heuristic by spec-
ifying a cuto� factor cf . When the total time used
more than cf � t where t is the best assignment time,
the algorithm terminates.

3.3 Stochastic Simulation

Stochastic Simulation, also known as Gibbs Sampling,
is a simple randomized algorithm that can be used for
solving the MPE problem [9]. Stochastic simulation
starts from a random initial assignment. It then gen-
erates a random sample of assignments. Each sample
is computed from the previous sample by picking a
variable Xi and changing its value from ui to vi. Vari-
able Xi is picked either randomly or according to a
�xed schedule. The new value vi is picked randomly
from the current probability distribution of Xi based
on the current value of its neighbors. After computing
a sample, stochastic simulation picks the assignment
that was either generated most frequently or has the
highest probability. Studies show that eventually this
process converges to the optimal solution, although
convergence may be slow [9].

In our implementation of stochastic simulation, we
broke the execution of the algorithm into a number of
sets of samples. Instead of computing one set of ran-
dom samples, we compute a number of independent
sets.

Each sample starts with a completely random assign-
ment. When computing a sample we loop through the
variables according to an ordering. A value for a vari-
ables chosen by inspecting its neighboring variables
and computing its probability distribution according
to the current values of its neighbors. A formal de-
scription of the algorithm is given in Figure 3.

Notice that the structure of this algorithm is very simi-
lar to the greedy algorithm. There are two di�erences:

1. How a variable Xi is picked.

2. How the new value vi of Xi is computed.

In the greedy algorithm,Xi is picked in a greedy fash-
ion from all variables, while in stochastic simulation
it is picked randomly or according to a �xed schedule.
Once a variable is selected in the greedy algorithm, its
new value vi is picked in a greedy fashion. In stochas-
tic simulation it is picked randomly from the current
probability distribution of Xi.

3.4 A Greedy Algorithm Combined With
Stochastic Simulation

Since the greedy algorithm and the stochastic simula-
tion are both local search type algorithms, they can
be combined into one algorithm. A formal description
of this algorithm is given in Figure 4.

As before, a basic operation is
ipping a value of a
variable. A
ip can be done in two ways

1. A Stochastic Step. A variable is picked randomly
and its new value computed stochastically.

2. A Greedy Step. A variable that gives the best im-
provement is picked and its new value computed
greedily.

In order to implement this algorithm, we will use the
same basic control structure of trials as the greedy
algorithm does. A basic operation of this algorithm is
a
ip. The rules we used are as follows:

� When a greedy step is not possible (a local mini-
mum), a stochastic step will be executed.

� When a greedy step is possible, it will be executed
with probability q, otherwise, a stochastic step
will be executed.

3.5 Simulated Annealing

Simulated annealing is a general stochastic algorithm
for problem solving that combines both hill-climbing
and random selection.

� Let A be a random assignment of values to vari-
ables, T be a (high) temperature, and h =
�logP (x1; . . . ; xn) a cost function.

� Repeat

Select neighbor A
0

of A at random

If h(A
0

) � h(A)

then A = A
0

else A = A
0

with probability e(h(A)�h(A)
0

)=T

Reduce T

Until temperature T is 0.

4 Problem Format

We experimented with three types of networks: ran-
dom uniform networks, random noisy-OR networks
and coding networks. Random uniform networks and
noisy-OR networks use the same generator for net-
work's structure. In random uniform networks each
probability table is generated according to a uniform
random distribution. In random noisy-OR networks,
each conditional probability represents a Noisy OR
gate that is characterized by two parameters: noise
and leak probabilities. Noise probability is the proba-
bility of the child node having a value 0 when at least
one parent has a value 1. Leak probability is the prob-
ability of the child node having a value 1 when all
parent nodes have a value 0.

Coding networks are associated with probabilistic de-
coding problems. These are multi-layered networks
whose conditional probabilities are either parity func-
tions or Gaussian distributions. The following subsec-
tions provides more details.

4.1 Random Networks

The input parameters to our random problem genera-
tor are

� N , the number of variables,

� K, the number of values for each variable,

� C, the number of conditional probability tables,

� P , the number parents in every conditional prob-
ability table.

We create a random problem instance by �rst gener-
ating the network structure and then generating prob-
ability table. A structure of the problem is created by
constructing a complete order of variables (any order-
ing will do). This order is used to create C conditional
probability tables in the following way. A variable
Xi that has not been selected yet is randomly chosen.
Then we pick P variables that appear after Xi in the
ordering as parents of Xi. Notice that when P = 1,
the network that is a forest, i.e., there are no cycles.
For each variable Xi and its parents pa(Xi) we create
a conditional probability matrix P (Xi j pa(Xi)). For
uniform networks those tables are generated randomly,
for noisy-OR networks by noisy-OR gates. If the vari-
ables have parents, we will provide a prior probability.
When evidence variables are used, evidence variables
are randomly selected and assigned values.

4.2 Random Coding networks

It was recently shown that the task of probabilistic de-
coding can be formulated as �nding the most probable
assignment in Bayesian networks. The problem is de-
�ned by a pair (N;K), where N is the total number
of bits transmitted over a channel, of which K bits are
the original desired message for transmission. The rest

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4
x x x x x

Figure 5: Belief network for structured (10,5) block
code with parent set size P=3

of the N �K bits are used for redundancy purposes in
order to assist in the decoding task. Frequently, each
of these added bits are de�ned as parity functions over
a subset of the original K bits.

We experimented with several types of (N;K) ran-
domly generated linear block codes. We used only
the code rate R = 1=2, i.e. N = 2K. In our ran-
dom coding networks, each of the N � K bits is an
XOR function node has a �xed number of parents, P
amongst the original K bits. Therefore, when gener-
ating random coding networks, for each parity-check
bit xj, P parents are selected randomly from K infor-
mation bits.

Random codes for rate R=1/2 are similar to the low-
density generator matrix codes [3]. Note that the av-
erage number of children for each information bit is
(N �K)P=K, which equals P for N = 2K. Thus, our
random codes are very similar to low-density genera-
tor matrix codes [3], that have a �xed low number of
children per each information bit (but may have huge
parent sets if R > 1=2.

Our random codes can be represented as four-layer be-
lief networks havingK nodes in each layer (see Figure).
The two inner layers (channel input nodes) correspond
to the input information bits ui; 0 � i < K, and to the
parity-check bits, xi; 0 � i < K. The two outer layers
represent the channel output y = (yu; yx), where yu

and yx result from transmitting u and x, respectively
and are generated using Gaussian noise functions. The
input nodes are binary (0/1), while the output nodes
are real-valued.

Given K, P, and the channel noise variance �2, a sam-
ple coding network is generated as follows. First, the
appropriate belief network structure is created as de-
scribed above. Then, we simulate an input signal as-
suming uniform random distribution of information
bits, and the corresponding values of the parity-check
bits are computed. An assignment is generated to the
observed vector y by adding Gaussian noise to each
information and parity-check bit. Finally, we �x the
values of output bits as evidence. The decoding algo-
rithm takes the coding network as an input and the
observed channel output y (a real-valued assignment

to the yui and yj nodes) and computes the MPE as-
signment.

The performance of a decoding algorithm is usually
measured by the bit error rate (BER), which is simply
the observed fraction of information bit errors, i.e.,
the ratio of the incorrectly decoded bits to the total
number of information bits transmitted through the
channel.

One of the most popular coding algorithms is the Iter-
ative Belief Propagation algorithm which uses Pearl's
belief propagation algorithm for polytrees iteratively
[9]. The algorithm was shown to be extremely e�ec-
tive for coding problems inspite of their cyclic struc-
ture. For reference, we are comparing all our algo-
rithms against the IBP algorithm.

5 Experiments

We ran a series of experiments with random uni-
form networks, random noisy-OR networks and ran-
dom coding networks. In each experiment, we com-
pared the performance of the following algorithms :

� Stochastic Simulation (StS)

� Greedy (G)

� Greedy combined with Stochastic Simulation
(G+StS)

� Simulated Annealing (SA)

� Mini-bucket elimination (MB) with i-bound = 10

� Greedy combined with Stochastic Simulation on
mini-bucket assignment (G+StS w/ MB)

We evaluated the algorithms by comparing their so-
lution against the optimal solution whenever possible.
We ran Elim-MPE on the same problems and the re-
sults were recorded for reference. However, the w� of
the network was often too large and Elim-MPE ran out
of memory. So we also ran a combination of a mini-
bucket algorithm with a search algorithm that does
not have a memory problem, to guarantee an optimal
solution. These results are not reported here.

Speci�cally, we compare the probability of the assign-
ment found by each of the approximation algorithms
against the probability of the optimal solution. We di-
vided the results into 5 probability ranges depending
on the ratio of probabilities of the solution found by
the approximation to the optimal solution. The ranges
are: within a factor of 0.95 of the optimal, between
0.95 and 0.5 of the optimal, between 0.5 and 0.2 of
the optimal, between 0.2 and 0.01 of the optimal and
less than 0.01 times the optimal. Each SLS approxi-
mation algorithm had the same amount of CPU time
per problem. Once an algorithms used up its time, it
outputed the best assignment found.

For random uniform networks and random noisy-OR
networks, we chose a set of parameters N;C; P and K,

N
C Elim Sol G+ G+
P mpe Prob StS G StS SA IBP MB StS
K Range # # # # # # w/

MB

256 97 >0.95 0 0 0 0 0 73 89
95 >0.50 0 5 17 1 0 22 11
2 w

�

>0.20 0 81 81 16 0 5 0
2 12.6 >0.01 0 14 2 38 0 0 0

<0.01 100 0 0 0 100 0 0
256 81 >0.95 0 0 0 0 0 51 80
100 >0.50 0 7 20 0 0 38 19
2 w

�

>0.20 0 76 78 43 0 11 1
2 14.6 >0.01 0 17 2 57 0 0 0

<0.01 100 0 0 0 100 0 0
256 69 >0.95 0 0 0 0 0 58 82
105 >0.50 0 1 9 0 0 31 16
2 w

�

>0.20 0 73 84 34 0 10 2
2 15.8 >0.01 0 26 7 65 0 1 0

<0.01 100 0 0 1 100 0 0
256 35 >0.95 0 0 0 0 0 37 67
110 >0.50 0 1 6 0 0 40 29
2 w

�

>0.20 0 49 79 18 0 23 4
2 17.5 >0.01 0 50 15 82 0 0 0

<0.01 100 0 0 0 100 0 0

Table 2: Random MPE. SLS time 20 sec. 100 samples.

N
C Elim Sol G+ G+
P mpe Prob StS G StS SA MB StS
K Range # # # # # w/

MB

128 100 >0.95 0 0 2 0 99 100
45 >0.50 0 14 49 0 0 0
2 w

�

>0.20 0 86 49 3 1 0
3 6.5 >0.01 0 0 1 74 0 0

<0.01 100 0 0 23 0 0
128 97 >0.95 0 0 2 0 96 97
50 >0.50 0 1 30 0 3 3
2 w

�

>0.20 0 87 67 0 1 0
3 7.9 >0.01 0 12 1 42 0 0

<0.01 100 0 0 58 0 0
128 89 >0.95 0 0 0 0 86 92
55 >0.50 0 4 15 0 12 8
2 w

�

>0.20 0 78 84 0 2 0
3 9.3 >0.01 0 18 1 17 0 0

<0.01 100 0 0 83 0 0
128 61 >0.95 0 0 0 0 72 79
60 >0.50 0 0 12 0 23 21
2 w

�

>0.20 0 53 81 0 5 0
3 10.8 >0.01 0 47 7 2 0 0

<0.01 100 0 0 97 0 0

Table 1: RandomMPE. SLS time 20 sec. 100 samples.

N
C Elim Sol G+
P mpe Prob StS G StS SA IBP
K Range # # # # #

128 100 >0.95 0 0 0 0 0
40 >0.50 0 1 0 0 0
2 w

�

>0.20 0 74 66 1 0
2 5.2 >0.01 0 25 34 90 0

<0.01 100 0 0 9 100
128 100 >0.95 0 0 0 0 0
45 >0.50 0 0 0 0 0
2 w

�

>0.20 0 28 19 0 0
2 6.4 >0.01 0 72 81 55 0

<0.01 100 0 0 45 100
128 100 >0.95 0 0 0 0 0
50 >0.50 0 0 0 0 0
2 w

�

>0.20 0 6 13 0 0
2 8.0 >0.01 0 94 87 12 0

<0.01 100 0 0 88 100
128 100 >0.95 0 0 0 0 0
55 >0.50 0 0 0 0 0
2 w

�

>0.20 0 5 6 0 0
2 9.5 >0.01 0 79 82 2 0

<0.01 100 16 12 98 100

Table 3: Noisy-OR MPE. Noise 0.2, Leak 0.01. Time
20 sec. 100 samples.

Sol G+ G+
� Prob G StS SA IBP MB StS

Range # # # # # w/
MB

0.22 >0.95 126 195 56 200 182 193
>0.50 0 0 0 0 0 0
>0.20 0 0 0 0 0 0
>0.01 2 0 0 0 2 0
<0.01 72 5 144 0 16 7

0.28 >0.95 39 142 5 199 119 152
>0.50 0 1 0 0 2 1
>0.20 1 1 0 0 1 1
>0.01 1 3 0 0 2 2
<0.01 158 52 194 0 75 43

0.32 >0.95 14 99 1 192 86 114
>0.50 0 1 0 0 0 0
>0.20 1 6 0 0 4 2
>0.01 0 6 0 0 7 5
<0.01 180 83 194 3 97 74

0.40 >0.95 3 25 0 165 31 54
>0.50 0 3 0 0 3 7
>0.20 2 6 0 0 6 4
>0.01 1 12 0 0 5 8
<0.01 174 134 182 15 135 107

0.51 >0.95 0 3 0 41 3 5
>0.50 0 2 0 0 1 2
>0.20 0 2 0 0 1 3
>0.01 0 6 0 0 4 16
<0.01 94 81 94 53 85 68

Table 4: Random coding, N=100 K=50. SLS time 5
sec. 200 samples.

G+
G+ StS

� G StS SA IBP MB w/
MB

BER BER BER BER BER BER

0.22 0.003 0.0009 0.015 0.0004 0.003 0.0018
0.28 0.012 0.0108 0.039 0.0006 0.019 0.0135
0.32 0.028 0.0269 0.062 0.0031 0.042 0.0355
0.40 0.090 0.0891 0.107 0.0159 0.100 0.0932
0.51 0.195 0.1976 0.163 0.0875 0.194 0.1921

Table 5: Random coding, N=100 K=50. SLS time 5
sec. 200 samples.

for each we generated a number of instances and ran
all the algorithms on each of the problems. For each
algorithm, we counted the number of assignments it
output that fell in each probability range. For ran-
dom coding networks, we generated a number of net-
work instances for a �xed number of input bits K, and
ran each algorithm a �xed number of times on every
network instance, each time on a di�erent random se-
quence of input bits.

In the following, we present 5 tables with results that
are typical of the many experiments we ran. The �rst
two tables contain results of experiments with uni-
form random networks. Table 3 contains results of
experiments with noisy-OR networks. The fourth and
�fth tables contain results on random coding networks,
where Table 4 compares algorithms in terms of the
probability of the solution, while Table 5 compares al-
gorithms in terms of the Bit Error Rate.

In Tables 1 and 2, we report on speci�c combinations
of parameters N;C; P and K, in each the number of
conditional probability matrices C varies between sets
of problems. Networks with a larger value of C have
higher density and higher induced width w�. We also
report the number of problems solved by Elim-MPE,
and the average w� of the network. When successful
Elim-MPE solved the problem quickly - often in less
than 1 second.

We see that G outperformed StS considerably, and
both were outperformed by G+StS. Simulated anneal-
ing was better than StS but inferior to G and G+StS.
Finally, G+StS with mini-bucket assignment outper-
formed G+StS. In Table 2 we included the results of
Iterative Belief Propagation (IBP.) Unlike in coding
networks, the performance of IBP here was very poor.

Table 3 presents results of experiments with random
noisy-OR networks. We did not include experiments
involving the mini-bucket algorithm here because for
these instances having small w� the mini-bucket algo-
rithm (with i-bound = 10) is complete. Both G and
G+StS are superior here.

In Tables 4 and 5 we present results with random cod-
ing networks having 50 input bits. Table 4 compares
the algorithms using probability ranges. Table 5 com-
pares the algorithms using the Bit Error Rate. Each
set of problems has a di�erent level of channel noise.
Pure stochastic algorithms (StS, G, G+StS, SA) al-
ways start from an assignment obtained by round-
ing the real-valued output bits to the closest integer.
IBP computes a belief for each variable and then picks
the most likely value. G+StS with mini-bucket starts
from an assignment computed by the mini-bucket al-
gorithm.

Surprisingly, when the channel noise is small, G+StS
is able to beat the mini-bucket algorithm. When the
noise is large, the mini-bucket algorithms outperform
pure stochastic algorithms. When comparing algo-
rithms MB and M+G+StS we see one of the advan-

tages of the stochastic algorithms: they can start from
any initial assignment and improve an already good
assignment.

We note that the bucket elimination algorithm Elim-
MPE failed to solve any of the random coding prob-
lems tested. This highlights a disadvantage of the
bucket elimination algorithm. Although in the cases
of random networks reported, Elim-MPE worked well
(ran quickly), as we increased C, we would quickly
come to a point where Elim-MPE would always run
out of memory.

In coding networks (Tables 4 and 5) we were not al-
ways able to �nd an optimal solution. Therefore we
reported only cases where the comparison with an op-
timal solution was possible (which might be less than
the number of problems tried). In Table 5 we reported
the average Bit Error Rate for all the problems at-
tempted.

6 Summary and Conclusions

The paper compares several stochastic local search al-
gorithms for solving the Most Probable Explanation
in Bayesian networks. We focused on two variations
of approximation algorithms, Stochastic Simulation,
and Greedy algorithm and compared them to simu-
lated annealing. Stochastic Simulation is a popular
approximation algorithm used in Bayesian networks.
Randomized greedy algorithms have been very suc-
cessful recently in solving constraint satisfaction prob-
lems. Our test problems included randomly generated
networks, noisy-or networks and random coding net-
works.

Based on these experiments we conclude that, al-
though pure Stochastic Simulation has nice conver-
gence guarantees, it is by far the worst scheme for the
MPE task. The pure method that emerged as superior
is the Greedy approach. However, the combined algo-
rithm of stochastic simulation and greedy emerged as
better than stochastic simulation or greedy alone.

We subsequently examined the power of stochastic lo-
cal search for improving good solutions that were gen-
erated by alternative schemes. We found that when
G+StS was applied on top of mini-bucket approxima-
tion it improved its solution in almost all cases, even
though the mini-bucket solutions were already good.

For coding networks we applied all SLS methods from
an initial assignment provided by rounding the out-
put bits to the closest integer. With this heuristic
the G+StS outperformed even G+SLS+MB when the
noise level was low. Clearly, the superior algorithm for
coding networks was IBP, as is known for this domain.
Notice, however that IBP was very weak when applied
to the random network.

Our current standing is that SLS methods for MPE
should not start from a random initial assignment
whenever possible. They can be either applied to a

good assignment generated by an alternative approxi-
mation or use domain-dependent initial assignment.

References

[1] Dagum, P., Luby, M., 1993. Approximating Proba-
bilistic Inference in Bayesian Belief Networks is NP-
Hard, In Proc. of AAAI-93.

[2] Dagum, P., Luby, M., 1997. An Optimal Approxi-
mation Algorithm for Bayesian Inference, Arti�cial
Intelligence, 93:1 - 27.

[3] Cheng, J.-F., 1997. Iterative Decoding, Ph.D. The-
sis.

[4] Dechter, R., 1996. Bucket Elimination: A Unifying
Framework For Probabilistic Inference, In Proc. of
UAI-96.

[5] Kask, K., Dechter, R., 1995. GSAT and Local Con-
sistency, In Proc. of IJCAI-95.

[6] Kask, K., Dechter, R., 1996. A Graph Based
Method for Improving GSAT, In Proc. of AAAI-
96.

[7] Li, Z., D'Ambrosio, B., 1993. An E�cient Approach
for Finding the MPE in Belief Networks, In UAI-93,
pp. 342-349.

[8] Minton, S., Johnson, M.D., Phillips, A.B., 1990.
Solving Large Scale Constraint Satisfaction and
Scheduling Problems Using a Heuristic Repair
Method, In Proc. of AAAI-90.

[9] Pearl, J., 1988. Probabilistic Reasoning In Intelli-
gent Systems, Morgan Kaufmann.

[10] Peng, Y., Reggia, J. A., 1986. Plausability of Diag-
nostic Hypothesis, In Proc. of AAAI-86.

[11] Peng, Y., Reggia, J. A., 1989. A Connectionist
Model for Diagnostic Problem Solving, In IEEE
Transactions on Systems, Man and Cybernetics, Vol.
19, No. 2 March/April.

[12] Rish, I., Dechter, R., 1997. A Scheme For Approxi-
mating Probabilistic Inference, In Proc. of UAI-97.

[13] Dechter, R., 1997. Mini-Buckets: A general scheme
for generating approximations in automated reason-
ing, In IJCAI-97, pp. 1297-1302.

[14] Rubinstein, R., 1981. Simulation and the Monte
Carlo Method, John Wiley & Sons, New York.

[15] Santos, E., 1991. On the Generation of Alternative
Explanations with Implications for Belief Revision,
In UAI-91, pp. 339-347.

[16] Selman, B., Levesque, H., Mitchell, D., 1992. A New
Method for Solving Hard Satis�ability Problems, In
Proc. of AAAI-92.

[17] Shimony, S. E., Charniack, E., 1900. A New Algo-
rithm for Finding MAP Assignments to Belief Net-
works, In P. Bonissone, M. Henrion, L. Kanal, and
J. Lemmer (Eds.), Uncertainty in Arti�cial Intelli-
gence 6, pp. 185-193. Elsevier Science Publishers B.
V. (North Holland).

[18] Sy, B. K., 1992. Reasoning MPE to Multiply Con-
nected Belief Networks Using Message-Passing, In
AAAI-92, pp. 570-576.

10

