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Abstract
In clinical trials with significant noncompliance
the standard intention-to-treat analyses
sometimes mislead. Rubin’s causal model
provides an alternative method of analysis that
can shed extra light on clinical trial data.
Formulating the Rubin Causal Model as a
graphical model facilitates model
communication and computation.

1 INTRODUCTION
The clinical trials literature distinguishes between two
types of objectives. “Use-effectiveness” or “pragmatic”
trials seek to provide valid estimates and tests for the
effect on outcome of assignment to therapy. “Method-
effectiveness” or “explanatory” trials on the other hand
seek to assess the effect of the actually administered
therapy (Fisher et al., 1990). Intention-to-treat (ITT) is the
standard analytic technique for estimating use-
effectiveness. This approach compares the outcomes for
subjects on the basis of assigned treatment and ignores the
actual treatment received. ITT has a key and useful role in
clinical trial analysis. However, in many cases, ITT
analysis may produce erroneous inferences about the
effectiveness of treatment. In such situations, we argue
that an alternative analytic procedure should supplement
the ITT analysis.

We begin with a motivating example. Cytomegalovirus
(CMV) retinitis is a major cause of morbidity in patients
with AIDS. Autopsy and clinical data indicate that up to
40% of AIDS patients experience sight-threatening or
life-threatening CMV disease (Drew, 1992). The drug
ganciclovir is the standard treatment approach for CMV
and the oral form of the drug received FDA approval in
1994 for CMV treatment (Fisher and Barton, 1996).

In September 1995, the National Institute of Allergy and
Infectious Diseases’ Community Programs for Clinical
Research on AIDS (CPCRA) issued the results of a study
that considered the use of oral ganciclovir as a

prophylactic intervention.  This was a double-blind,
placebo-controlled randomized trial involving 994
patients. A news article in The Lancet reported the
disappointing news that “Oral ganciclovir fails to prevent
CMV in HIV trial” (September 30, 1995, p.895.). The
article went on to state that “oral ganciclovir did not
prevent symptomatic CMV disease to a clinically or
statistically significant degree” (McCarthy, 1995).

The CPCRA data analysis used an “intention-to-treat”
method; that is, the analysis ignored the actual drugs used
by the study participants and instead compared the
outcomes of the subjects assigned to placebo with the
outcomes of the subjects assigned to oral ganciclovir
irrespective of the actual treatment received. However,
after the CPCRA study began, the results of a different
study involving 725 subjects became available. This study
showed a 49% decrease in the number of clinical CMV
infections in the group that received prophylactic oral
ganciclovir (Drew et al., 1995, Spector et al., 1996).
Consequently, for ethical reasons the CPCRA allowed the
subjects in its placebo arm to take oral ganciclovir. The
intention-to-treat analysis ignored this fact, and as a result
was biased in favor of the no-treatment effect hypothesis
(the degree of bias is unclear because subject exposure to
ganciclovir in the placebo arm averaged only 2.1 months
as compared with 9.3 months in the treatment arm). The
Lancet report did not mention this problem.

Despite many examples like the preceding one (see also
Pocock and Abdalla, 1998), intention-to-treat (ITT)
analyses have become a mainstay of the clinical trialist
dealing with non-compliance, often to the exclusion of
other analyses. The FDA guideline (FDA, 1988), the
European Union’s Guidance from the Commission for
Proprietary Medical Products, and a number of similar
documents, as well as numerous publications in the
medical literature, support ITT analysis. Some authors go
so far as to issue broad recommendations that “the
primary analysis of a randomized clinical trial should
compare patients in their randomly assigned treatment
groups” and that the validity of statistical analyses that



consider the actual treatment received “will be
undermined” (Lee et al., 1991). Other authors have called
for a more cautious attitude towards ITT - see for example
Feinstein (1991, p.361), Jones et al. (1996), Lewis (1995),
Lewis and Machin (1993), Salsburg (1994), and Sheiner
and Rubin (1995) - but their advice often goes unheeded.
The “Rubin Causal Model” (Rubin, 1974, Holland, 1986)
as applied to randomized trials with non-compliance by
Imbens and Rubin (1997) provides an alternative to ITT.
This approach combines Bayesian analysis with the
counterfactual perspective introduced to statistics by
Neyman (1923). We emphasize that we are not suggesting
that Imbens-Rubin Causal (IRC) models replace ITT
analyses, but rather that they be used in a supplemental
manner to shed extra light on trial data. We agree that
with the suggestion of Spiegelhalter et al. (1994) that
clinical trialists should present the results of a Bayesian
analysis separately from the conventional “results”
section in an additional formal section on “interpretation.”

2 INTENTION-TO-TREAT
Sheiner and Rubin (1995) argue that method-effectiveness
is more relevant to medical decision making than use-
effectiveness, and it is clear that ITT analysis can be
highly inappropriate for estimating and testing method-
effectiveness (e.g., the ganciclovir trial described above).
Sheiner and Rubin (1995) also argue that, faced with
substantial non-compliance, ITT analyses can be
misleading even for use-effectiveness trials since
compliance patterns in the clinical trial context may be
quite different from compliance patterns in normal
practice. Recent results on the effectiveness of protease
inhibitors in HIV/AIDS care provide a troubling example
of this problem. Early clinical trials showed that upwards
of 90% of HIV/AIDS patients responded to treatment
with multiple protease inhibitors with viral loads dropping
to undetectable levels. However, data presented by Deeks
at a September 1997 infectious disease conference
(ICAAC-97) suggested that response rates in routine care
settings may be much lower. Of 136 HIV-infected people
using protease inhibitors and reviewed by Deeks and
colleagues, 53% had detectable levels of the virus.

Peduzzi et al. (1993) and Sheiner and Rubin (1995)
provide a detailed critique of other simplistic forms of
analyses such as “as-treated”, “per-protocol”, “censored
method”, and “transition method” which result in biased
estimates of causal effects. Unlike ITT analyses, “as-
treated” and “per-protocol” biases tend to be in the anti-
conservative direction (that is, tend to support the
alternative hypothesis. The direction of the conservative-
ness is reversed in equivalence trials).

So, if the standard methods of analysis fail to adequately
address method-effectiveness, do more satisfactory

methods exist? The next section describes the IRC model,
which, we argue yields valid estimates of method-
effectiveness even in the face of confounding non-
compliance. The IRC approach does require that the
trialist adopt a relatively elaborate model - simple data
summaries will not suffice - and, compared to ITT, this
involves increased subjectivity and uncertainty.
However, the price that ITT pays for greater objectivity
and certainty is a failure to estimate method-effectiveness
(Sheiner and Rubin, 1995). The IRC model, at the very
least, enables trialists to explore the potential usefulness
and impact of more accurate estimates of treatment
effects.

3 THE IRC MODEL FOR NON-
COMPLIANCE IN RANDOMIZED
TRIALS

3.1 INTRODUCTION AND NOTATION
A statistical study for causal effects compares the results
of two or more treatments on a population of units (e.g.,
plots of land, animals, people), each of which in principle
could be exposed to any of the treatments (Rubin, 1990).
In what follows we shall refer to the units as “subjects”
and we shall assume that the trial comprises two
treatments which we label “E” or “1” for an experimental
new therapy and “C” or “0” for an existing or placebo
therapy (“C” for Control).  The trial follows N subjects
for a specified time period (e.g. one year) and measures
some health outcome Y (e.g. survival) at the end of that
period.  Our goal is to estimate the causal effect of E
relative to C. Intuitively, this causal effect for a particular
subject is the difference between the result if the subject
had been exposed to E and the result if, instead, the
subject had been exposed to C (Rubin, 1978).

Let Yi(j) be the health outcome (e.g. survival) for subject i
if all subjects were assigned to treatment j (i=1,…,N,
j=0,1). We define the ITT causal effect of assignment for
subject i to be Yi(1)-Yi(0). This definition does not make
much sense without the Stable-Unit-Treatment-Value-
Assumption (SUTVA). This assumption says that Yi(j) is
stable in the sense that it would take the same value for all
other treatment allocations such that subject i receives
treatment j. This assumption is not innocuous - the health
outcome for Subject A could depend on Subject B’s
treatment assignment if, for example, A and B were in the
same household and the treatment had a psychological
component. However, SUTVA is generally not
contentious in the sorts of randomized studies considered
here. With SUTVA we can consider Yi(j) to be the
outcome for subject i if subject i were assigned to
treatment j. We note also that other causal effect



definitions are possible, e.g. Yi(1)/Yi(0), but we do not
pursue this further here.

Population-level causal effects are usually of more
interest than subject-level effects and we adopt the
common approach of simply averaging the subject-level
causal effects. In what follows we will be especially
interested in sub-population average causal effects, such
as: ave(Yi(1)-Yi(0) | i-th subject is male).

Similar to the definition of Yi(j), we define Di(j) to be an
indicator for the treatment that subject i would receive
given the assignment j, j=0,1 (the “treatment status.”) For
now, we shall assume that Di(j) is binary. Thus we can
now define a 4-vector of “semi-latent” variables for i-th
subject:

(Di(0), Di(1), Yi(0), Yi(1)).

These variables are semi-latent in the sense that for any
one subject, we will generally observe at most two of the
four variables, i.e., either Di(0) and Yi(0), or Di(1) and
Yi(1). For any particular subject, either or both potentially
observable variables may be missing.

For each subject, Di=(Di(0), Di(1)) describes the
compliance behavior. Imbens and Rubin distinguish four
categories of subjects. Subject i is a:

Complier, if Di(0)=0 and Di(1)=1,

Never-taker, if Di(0)=0 and Di(1)=0,

Always-taker, if Di(0)=1 and Di(1)=1,

Defier, if Di(0)=1 and Di(1)=0.

(In Section 4.2 we will extend this framework to include
partial compliance.) Now we are ready to define some
sub-population causal effects of interest. The complier
average causal effect (CACE) is given by:

CACE = ave(Yi(1)-Yi(0) | Di(0)=0 and Di(1)=1).
Similarly we can define the defier average causal effect
(DACE), the always-taker causal effect (AACE), and the
never-taker causal effect (NACE). Of the four sub-
population causal effects, two, AACE and NACE, do not
address causal effects of the receipt of treatment since the
former compares outcomes both with treatment, and the
latter compares outcomes both without treatment. For
compliers, assignment to treatment agrees with receipt of
treatment and CACE compares outcomes with drug to
outcomes without drug. For such complier subjects,
following Imbens and Rubin (1997), we will attribute the
effect on Y of assignment to treatment to the effect of
receipt of treatment. This attribution is what trialists
typically do in randomized trials with full compliance.
The DACE is also of some interest although in what
follows, we will focus on the CACE as the primary
estimand of interest.

3.2 BAYESIAN INFERENCE WITHOUT
COVARIATES

Recent developments in Bayesian computation render the
estimation of the CACE straightforward, at least in
principle. Imbens and Rubin (1997) present a detailed
description of a particular approach to estimation. Here
we frame the task in the context of Bayesian graphical
models (Spiegelhalter and Lauritzen, 1990, Madigan and
York, 1995) which simplifies the procedures and makes
extensions to models involving covariates, multiple
compliance indicators, and missing data direct and
transparent, at least in principle. We emphasize that we
are not departing from the conceptual framework of
Imbens and Rubin and indeed our analysis of their
examples produces similar results to theirs.

In the first instance, consider a situation in which the
response variables Y(0) and Y(1) are binary. Our goal is to
model the joint posterior distribution of D(0), D(1), Y(0),
and Y(1), and thence the posterior distribution of the
CACE. In this instance, the data, if complete, would
comprise a 2X2X2X2 contingency table. If we confine
ourselves to either decomposable log-linear models or
acyclic directed graphical models (often called “Bayesian
networks”) and adopt conjugate prior distributions on the
model parameters, then prior-to-posterior analysis with
complete data is available in closed form. Thus we can
select from a variety of available Monte Carlo algorithms
to compute the requisite posterior distribution in a
straightforward fashion. The essence of these algorithms
is to alternately sample from the conditional distribution
of the missing data given values for the parameters and
the conditional distribution of the parameters given values
for the missing data. Madigan and York (1995) and York
et al. (1995) provide a detailed description of the
application of such Monte Carlo methods to graphical
models with missing data and/or latent variables, and
describe a series of applications.

Several different graphical models might be plausible for
a given analysis and Figure 1 presents three possibilities.
Figure 1(a) presents an unrestricted model and is
equivalent to the saturated log-linear model. This model
imposes no restrictions on the joint distribution of D(0),
D(1), Y(0), and Y(1) and has as many parameters as there
are configurations of the four variables (i.e., 16 in this
binary case). Figure 1(b) has just two edges and embodies
the assumption that D(0) and Y(0) are independent of
D(1) and Y(1). In other words, knowing the value of D(0)
and/or Y(0) for a particular subject provides no extra
information about likely values of D(1) and Y(1) for that
subject, and vice versa. Figure 1(c) relaxes the model of
Figure 1(b) by allowing for a dependence between D(0)
and D(1). This model says that, in general, knowing the
value of D(0) for a particular subject is informative about
the value of D(1) for that subject, and vice versa.



However the model also implies that Y(0) and Y(1) are
conditionally independent given either D(0) or D(1).

Figure 1: Graphical Models for the IRC with No
Covariates

We wish to highlight four particular points. First, without
further restrictions on the model parameters, the CACE is
“unidentifiable” in these models. This presents problems
for a frequentist analysis, but a Bayesian analysis with
proper priors does result in proper posteriors. Second, the
posterior inference about the CACE in these models may
be sensitive to the choice of prior distributions on the
model parameters. Third, we rely extensively on Markov
Chain Monte Carlo methods to carry out the
computations. Because of the potentially large amounts of
missing data, numerical and convergence problems may
arise. Fourth, somewhat ironically, the edges in our
graphical model formulation of the IRC model do not
necessarily have a causal interpretation. We are using
graphical models merely to encode conditional
independencies and provide a convenient and transparent
framework for the requisite multivariate analysis.

3.3 BAYESIAN INFERENCE WITH COVARIATES
The benefits of the graphical model approach become
apparent when we extend the models to include
covariates. Imbens and Rubin (1997) suggest this
development in their concluding remarks and the
graphical model framework both facilitates the extension
and highlights a potential pitfall. Imbens and Rubin
(1997) argue that including covariates makes inference
conditional and therefore more precise, and covariates
allow a more precise partitioning of the sample into
compliers, always-takers, never-takers, and defiers when
covariates are good predictors of compliance status.

Including covariates (possibly with missing values) in the
graphical models of Figure 1 is, in principle, a simple
extension and Madigan and York (1995) provide a
detailed description. The pitfall that presents itself is that
inference about the CACE can be very sensitive to the
modeling assumptions concerning the covariates. For
example, the two models of Figure 2 can lead to quite
different posterior distributions for the CACE. In model

(a) both potential health outcomes, Y(0) and Y(1), are
conditionally independent of Sex given the potential
treatment statuses, D(0) and D(1). Model (b) does not
imply this independence. Essentially model (a) says that
Sex is directly related to compliance behavior but only
indirectly related to health outcome. Model (b) says that
Sex is directly related to both compliance behavior and
health outcome.

Figure 2: Graphical Models for the IRC Model with Sex
Covariate.

3.4 MODEL SELECTION AND MODEL
AVERAGING

Calculation of Bayes factors is central to both model
selection and model averaging for IRC models. Kass and
Raftery (1995, Section 4.3) review various approaches to
calculation, including several methods which directly
utilize posterior simulations.

We applied the models of Figures 1 and 2 to the example
in Section 4.1 below and the resultant causal inferences
differ substantially. The standard approach to statistical
modeling is to select a single model that maximizes some
criterion (e.g. the model with the highest posterior
probability). The resulting inferences will, however, be
over-precise since they fail to account for model
uncertainty (Draper, 1995, Madigan and Raftery, 1994).
Bayesian model averaging provides a particular solution
to this problem and York et al. (1995) describe a Markov
Chain Monte Carlo algorithm that allows for incomplete
data and is directly applicable to IRC models.

3.5 RELATIONSHIP TO INSTRUMENTAL
VARIABLE MODELS

Glickman and Normand (1995) summarize the four
assumptions routinely adopted in the instrumental
variables literature. The first is the SUTVA assumption
mentioned above. This is the only one of the assumptions
we adopt by default. The second assumption is the
“exclusion restriction.” Different versions of the

(a)

Y(0) Y(1)

D(0) D(1)

(b)

Y(0) Y(1)

Sex

D(0) D(1)

Sex

(a)

Y(0) Y(1)

D(0) D(1)

(b) (c)

Y(0) Y(1)

D(0) D(1)

Y(0) Y(1)

D(0) D(1)



Figure 3: Histogram of the CACE and Scatterplot of NACE Versus CACE in the Vitamin A Example. No Covariate

exclusion restriction exist in the literature. The “weak
exclusion principle” of Imbens and Rubin (1997), for
instance, states that Yi(1) = Yi(0) for all i such that Di(1)
= Di(0). That is, if for subject i, treatment assignment Zi
has no effect on treatment status, Di, it also has no
effect on health outcome Yi, so that NACE = AACE =
0. Stronger variants of this assumption appear in the
econometrics literature. The third assumption,
“monotonicity”, states that Di(1) ! Di(0) for all i, with
inequality for at least one subject. These three
assumptions are sufficient to ensure the identifiability
of the CACE.
Finally, in order to make causal inferences, it is
necessary to assume that the mechanism that generates
Zi is “ignorable” (Rubin, 1978).  If no covariate data are
recorded, then the mechanism that generates the Zi is
ignorable if the Zi can be viewed as being randomized
to subjects. Given observed covariate data, the
mechanism that generates Zi is ignorable if the
distribution of the Zi does not depend on unobserved
data, but possibly on observed covariate data. Since we
only consider randomized studies here, this assumption
is trivially satisfied.

4 TWO EXAMPLES
This section presents two examples. The first addresses
the Indonesian Vitamin A trial data analyzed by Imbens
and Rubin (1997) and involves a binary outcome
variable. We introduce an artificial covariate and
investigate the modeling consequences. The second
example concerns the educational experiment of
Schaffner et al. (1997.) This involves a continuous
outcome, multiple compliance measures, and
covariates.

4.1 THE INDONESIAN VITAMIN A TRIAL
Sommer and Zeger (1991) report results from a trial
that randomly assigned villages in Northern Sumatra to
receive or not to receive vitamin supplements for a one-
year period. No subjects in villages not assigned to
receive the supplements in fact received them, but some
subjects in villages assigned to the supplements did not
receive them.  As in the Imbens and Rubin description,
we have Di(0)=0, but Di(1)=1 or 0 for all i (this is an
example where the monotonicity assumption holds).
We note that a correct analysis of these data would
account for the within-village dependence, but we were
unable to secure the original data from the authors.
Table 1 shows the available data.

A Markov Chain Monte Carlo analysis of these data
using uniform priors on all the parameters and using
model (c) of Figure 1 (albeit with D(0)"0), produces
inferences similar to those of Imbens and Rubin (1997).
The posterior mean and standard deviation of the
CACE are 0.0025 and 0.0024 respectively. (A C
program to compute these results is available from the
author). This corresponds to an increase in survival rate
of 2.5 per 1,000 subjects. The overall survival rate in
the sample is 994.9 per 1,000. Figure 3 shows a
histogram of the CACE draws which is essentially flat
in the region -0.001 to 0.007. Note that there is a non-
negligible posterior probability that the CACE is in fact
negative. Imbens and Rubin (1997) also show the joint
posterior distribution of the CACE and the NACE -
Figure 3 shows essentially the same plot. Despite the
inherent under-identification of the
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Table 1: Sommer-Zeger Vitamin Supplement Data

Type Assig-
nment

Z

Vitamin
?

D

Surv-
ival?

Y

Number

(Total=

23,682)

Complier or
Never-Taker

0 0 0 74

Complier or
Never-Taker

0 0 1 11,514

Never-Taker 1 0 0 34

Never-Taker 1 0 1 2,385

Complier 1 1 0 12

Complier 1 1 1 9,663

models, the analysis suggests that if the CACE is
negative, then the NACE would have to be positive. So, if
you believe that the CACE is negative, this necessitates
that you also believe that the effect of treatment
assignment is positive. Imbens and Rubin (1997) go on to
demonstrate the sharper inferences that result from
imposing the exclusion restriction.

Sommer et al. (1986) in the original report of this trial
noted that “The impact of vitamin A supplementation
seemed to be greater in boys than in girls.” We simulated
several versions of a sex covariate to investigate the
potential impact of such a covariate on the causal

inferences. In the first instance, we simulated a sex
covariate that was marginally independent of the other
four variables. Not surprisingly, this has little impact on
the causal inferences irrespective of the model chosen.
Next we simulated a sex covariate that was highly
correlated with treatment status (i.e., D) but which was
almost conditionally independent of health outcome (i.e.,
Y) given treatment status. Figure 4 shows the results using
this covariate and model (a) of Figure 2 and Figure 5
shows the results with the same covariate and model (b)
of Figure 2.

Since the covariate here is fictitious, we cannot make
substantive points about the causal effects. However, we
wish to highlight the sensitivity of the analysis both to the
covariate and to the particular selected model. In the
analysis without the covariate (Figure 3) there is
uncertainty about whether or not the CACE is positive,
but the negative correlation with NACE provides useful
insights. In the analysis with covariate and model (a), we
are now essentially certain that the CACE is positive, the
NACE is negative, and the correlation between NACE
and CACE has almost disappeared. Using model (b)
however, we draw inferences that are more similar to the
model without the covariate, although the posterior
variability of the CACE has increased substantially. The
point here is that causal inferences can be highly sensitive
to the treatment of covariates.

All the results are based on runs of length 100,000 with
burn-in of 10,000. This exceeds the run lengths suggested

Figure 4: Histogram of the CACE and Scatterplot of NACE Versus CACE in the Vitamin A Example. Sex Covariate
Related to Treatment Status. This Analysis uses Model (a) of Figure 2 with D(0)"0.
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Figure 5: Histogram of the CACE and Scatterplot of NACE Versus CACE in the Vitamin A Example. Sex Covariate
Related to Treatment Status. This Analysis Uses Model (b) of Figure 2 with D(0)"0.

by Raftery-Lewis diagnistics by a factor of four. The
scatterplots present a random sample from the MCMC
output for display purposes.

4.2 EDUCATIONAL EXPERIMENT
This section presents an example concerning the
educational experiment of Schaffner et al. (1997). This
involves a continuous outcome, multiple compliance
measures, and covariates. We carried out the calculations
using the program BUGS (Spiegelhalter et al., 1995) and
the corresponding BUGS code is available from the
author.

Schaffner et al. (1997) describe a randomized experiment
to evaluate a set of educational interventions in the
context of undergraduate introductory statistics. The
experiment took place during a three-week period of a
ten-week course. 70 students (34 female, 36 male)
participated in the experiment. During the first week of
the quarter, the students completed an in-class multiple-
choice pre-test. During the third week of the quarter each
student was randomly assigned to either a treatment group
(n=38) or a control group (n=32). The randomization
blocked on section time (8:30 or 12:30) and gender. The
two groups (treatment and control) met in separate
classrooms with instructors alternating between the
classrooms. Both groups were assigned the same
homework problems and both were assigned to carry out
exercises online (discussed in more detail below).

The lecture portions of the two classes systematically
differed.  The control group followed a traditional

didactic lecture style whereas the cooperative/constructive
(treatment) group used the same overhead notes, but the
instructor encouraged the class to generate many of the
ideas on the notes before they were displayed. In addition
to the different styles of lectures, the students in the two
groups participated in different online activities.  Each
Monday, the experiment assigned the groups a new
“DIANA” assignment and a new “Web” assignment.
DIANA is a simple intelligent tutoring system. Control
group students received a reduced version of DIANA with
simple correct-incorrect feedback, whereas treatment
group students received elaborate student-specific
feedback. For the Web assignment, control group students
simply filled out a form describing their action plans for a
particular statistical problem. The treatment group
students worked in subgroups of 6-8 students to solve the
same problem, but with discussion via the Web extending
over a week, and with instructor intervention.

All students (treatment and control) were graded on a
participation-only basis for both the DIANA and Web
assignments, receiving a separate score of zero, one, two,
or three for the DIANA component and for the Web
component. At the conclusion of the three-week
experiment, the groups reconvened in one classroom to
take a post-test.

Since Schaffner et al. (1997) found the pre-test was
essentially independent of the post-test, we ignore it in
our analysis. Table 2 describes the random variables for
student i.
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Table 2: Random variables for the educational experiment

Variable Name Possible Values

Zi 0,1 Random assignment

Di(j) 0,1,2,3 Number of completed DIANA assignments, all students assigned
to treatment j

Wi(j) 0,1,2,3 Number of completed Web assignments, all students assigned to
treatment j

Yi(j) 0-11 Score on the post-test, all students assigned to treatment j

Gi Male, Female Gender

Si 8:30 or 12:30 Section

Both W and D are measures of compliance, but since
the intervention also included some special classroom
activities, the exclusion assumption would not be
reasonable a priori. Several causal effects are of
interest here. Denote by CACE(i,j) the average causal
effect for students who complete i DIANA assignments
and j Web assignments. So, CACE(0,0) measures the
causal effect due to classroom component of the
intervention. CACE(3,3) measures the causal effect for
students who fully comply with all aspects of the
intervention. CACE(3,0) measures the causal effect
without the Web component. CACE(0,3) measures the
causal effect without the DIANA component. Figure 6
shows a particular model for these data.

Figure 6: Graphical Model for the Educational
Experiment. This Model Implies that Section and

Gender are Independent of DIANA and Web
Compliance.

Specifically, this model assumes that the covariates and
compliance variables enter linearly as follows:

Yi(j) ~ N(µi(j),#), i=1,…,n, j=1,2.

µi(j) ~ $i(j) + %i(j)Di(j) + &i(j)Wi(j) + a(j)Gi + b(j)Si

At the next level in the model’s hierarchy we have:

$i(j) ~ N(µ$(j),#$(j))

%i(j) ~ N(µ%(j),#%(j))

&i(j) ~ N(µ&(j),#&(j))

Di(j) ~ Bin(pD(j), 3)

Wi(j) ~ Bin(pW(D(j)), 3)

Finally, µ$(j), µ%(j), µ&(j), a(j), b(j) are normally
distributed a priori with mean zero and precision
0.0001, #$(j), #%(j), #&(j), and # are gamma(0.001,0.001)
a priori, and the binomial probabilities are uniformly
distributed a priori. These prior distributions are
intended to be reasonably flat in the regions where the
likelihood is non-negligible. Figure 7 shows the
corresponding causal effect histograms and Table 3
shows the posterior means and standard deviations.

Table 3: Posterior Means and Standard Deviations for
the Educational Example

Causal
Effect

No. of
DIANA

Assignments

No. of Web
Assignment

s Mean SD

CACE(0,0) 0 0 -0.06 1.5

CACE(0,3) 0 3 +1.41 1.4
CACE(3,0) 3 0 -0.44 1.9
CACE(3,3) 3 3 +1.03 0.7

There is considerable uncertainty associated with each
of the causal effects and posterior 95% intervals include
zero for all four effects. Focusing on the posterior
means, this analysis suggests that the causal effect of
the Web assignments is positive, but that the causal
effect of the DIANA assignments is actually negative.
The causal effect associated with the classroom

Y(0) Y(1)

µ(0) µ(1)

S

#

D(0) D(1)

W(0) W(1)

G



Figure 7: Samples from the Posterior Densities of Various Causal Effects in the Educational Example.

activities alone seems to be negligible. Overall, the
point estimate of the causal effect for the complete
intervention (i.e., CACE(3,3)) is about 9%, a result
consistent with that of Schaffner et al. (1997).

Clearly, there is an arbitrariness concerning the model
we have used for this analysis, and variants on the
model do lead to somewhat different inferences
(although less dramatically different than the previous
example).
Again we used run lengths of 100,000 with a burn-in of
10,000. This exceeded the run lengths suggested by
Raftery-Lewis diagnostics by a factor of between two
and four.

5 CONCLUSIONS
We have described a Bayesian graphical modeling
approach to the Rubin causal model. The analysis of the
Educational Experiment in particular shows how the
graphical model framework greatly facilitates
generalizations of the original IRC model and
highlights the important role of model uncertainty in
causal inferences.

Noncompliance in the “real world” is a complex
phenomenon and there are many issues we have not

addressed. These include unobserved or partially
observed compliance, mixed randomized/non-
randomized studies, and longitudinal studies.  Robbins
(1998) surveys an extensive and important body of
work that deals with many of these issues, albeit from a
classical perspective.
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