
Tractable Structure Search in the Presence of Latent VariablesThomas Richardson, Heiko Bailer, Moulinath BanerjeeDepartment of Statistics, University of Washingtonftsr, heiko, moulig @ stat.washington.eduAbstractThe problem of learning the structure of aDAGmodel in the presence of latent variablespresents many formidable challenges. In par-ticular there are an in�nite number of latentvariable models to consider, and these mod-els possess features which make them hard towork with. We describe a class of graphicalmodels which can represent the conditionalindependence structure induced by a latentvariable model over the observed margin. Wegive a parametrization of the set of Gaussiandistributions with conditional independencestructure given by a MAG model. The mod-els are illustrated via a simple example. Dif-ferent estimation techniques are discussed inthe context of Zellner's Seemingly UnrelatedRegression (SUR) models.Keywords: Multivariate Graphical Models; CausalModelling; Latent Variables; Ancestral Graphs; MAGModels.1 INTRODUCTIONThere has been signi�cant progress in the developmentof algorithms for learning the directed acyclic graph(DAG) part of a Bayesian network from complete dataand optional background knowledge (Cooper and Her-skovits, 1992; Spirtes, Glymour and Scheines, 1993;Heckerman, Geiger and Chickering, 1994). However,the problem of learning the DAG part of a Bayesiannetwork with latent (unmeasured) variables is moredi�cult: �rst the number of possible models is in-�nite, and second, calculating scores for latent vari-able (LV) models is generally much slower than cal-culating scores for models without LVs. In addition,general LV models have a number of other featureswhich make them hard to work with: LV models may

be overparametrized, e.g. containing edges or nodesthat are redundant, and as a consequence the parame-ters may be underidenti�ed, leading to multimodal or
at likelihood surfaces; further, as described by Geigerand Meek (1998), LV models are strati�ed exponen-tial families, rather than curved exponential families(like DAGs without LVs), and consequently the resultswhich guarantee the asymptotic consistency of scoressuch as BIC do not apply; �nally, LV models do nothave a well-de�ned dimension.This presents a dilemma: on the one hand, attempt-ing to search for causal structure without allowing forthe possibility of latent or missing variables is sub-stantively unreasonable in many contexts, and yeton the other hand, explicitly including latent vari-ables appears to make the search space intractable,and introduces models with features that make modelselection di�cult. To address this problem Spirtes,Meek and Richardson (1997) have introduced a classof graphical Gaussian models, called MAG models,which do not include latent variables, but do imposethe independence constraints given by latent variablemodels, and only these constraints. Thus for anygiven LV model there is a MAG model to which itis Markov equivalent. However, since LV models oftenimpose non-independence constraints, the correspond-ing MAG model will parametrize a set of distributionswhich form a superset of the distribution parametrizedby the LV model. In contrast to latent variable mod-els, MAG models are e�ciently parametrized, alwaysstatistically identi�able, and have a well-de�ned di-mension (they form curved exponential families).We describe a class of graphical models which can rep-resent the conditional independence structure inducedby a latent variable model over the observed mar-gin. We give a parametrization of the set of Gaussiandistributions with conditional independence structuregiven by a MAG model. The models are illustratedvia a simple example taken from Whittaker (1990).We discuss the relationship between Seemingly Unre-



lated Regression (SUR) models (Zellner, 1962). Fi-nally, estimation techniques for MAGs, based on SURmethods are described. The performance of two esti-mation methods are compared on the example takenfrom Whittaker.2 ANCESTRAL GRAPHSAmixedgraph is a graph containing three types of edgef ;!;$g, where at most one edge (of any type)may occur between each pair of vertices.We naturally extend Pearl's d-separation criterion tomixed graphs as follows: a pair of consecutive edgesmeeting at a vertex z on a path form a collider if bothedges have an arrowhead at z, i.e. ! z  , $ z $,$ z  , ! z $. Two consecutive edges which donot form a collider are said to form a non-collider. Avertex a is said to be an ancestor of a vertex b if eitherthere is a directed path a ! � � � ! b on which everyedge is of the form `!', and has the same orientation,or a = b.A path between vertices x and y in a mixed graph issaid to be d-connecting given a set Z if(i) every non-collider on the path is not in Z, and(ii) every collider on the path is an ancestor of Z,(note: each vertex is its own ancestor).If there is no path d-connecting x and y given Z, thenx and y are said to be d-separated given Z. Sets X andY are said to be d-separated given Z,if for every pairx, y, with x 2 X and y 2 Y, x and y are d-separatedgiven Z.An ancestral mixed graph, is a mixed graph satisfyingthe following conditions:(i) There are no directed cycles: if there is a directedpath from a to b, i.e. a ! : : : ! b, then there isno directed path from b to a.(ii) If there is an edge a$ b in the graph, then thereis no directed path from b to a, and there is nodirected path from a to b.(iii) If there is an edge a b in the graph, then thereis no edge with an arrowhead at a, i.e. there is noedge c! a, c$ a.A graph satisfying these properties is termed `ances-tral' because whenever there is an arrowhead at a, i.e.a  b or a $ b then a is not an ancestor of b inthe graph. The presence of a tail at a, i.e. a ! bor a b can also be given an ancestral interpretationin the context of a larger graph containing selectionvariables (see Section 3).

Figure 1 (a) shows two mixed graphs that are not an-cestral: in the �rst there is a directed path from b to awhile at the same time there is an edge a $ b; in thesecond there is an edge a c while at the same timethere is an edge a  b. Figure 1 (b) shows two an-cestral mixed graphs. Note that the class of ancestralmixed graphs contains the set of DAGs and undirectedgraphs. However, as the second graph in Figure 1(a)shows, the class of ancestral mixed graphs does notcontain the class of chain graphs.
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(a) (b) (c)Figure 1: (a) Two mixed graphs that are not ancestral;(b) two ancestral mixed graphs; (c) an ancestral mixedgraph that is not maximal.2.1 MAXIMAL MIXED ANCESTRALGRAPHS (MAGs).An ancestral mixed graph is said to be maximal if itsatis�es the following condition:(iv) If there is no edge between a and b, then there issome subset Z of the other vertices such that aand b are d-separated given Z.Figure 1(c) shows a simple example of an ancestralmixed graph which is not maximal: there is no edgebetween a and d in the graph, and yet a and d are d-connected by all four subsets of the other variablesfb; cg. The local Markov properties for DAGs andundirected graphs (see Lauritzen, 1996), imply thatevery graph in either of these classes is maximal, sincethere is some subset which d-separates each pair ofedges which are not joined by an edge.Spirtes and Richardson (1997) present an O(n4) algo-rithm for checking that a MAG is maximal. The algo-rithm is based on the following pairwise Markov prop-erty which holds in maximal ancestral mixed graphs.A vertex x is said to be anterior to y if there is a pathfrom x to y on which every edge hu; vi is either undi-rected, u v, or directed, u ! v, with orientationfrom x to y. It follows from condition (iii) in the de�-nition of an ancestral graph that if u! v is a directededge then no undirected edge occurs between v andy, so the path is of the form x � � � ! � � � ! y,x � � � y, or x ! � � � ! y. antM(x) is the set ofvertices anterior to x inM, and similarly antM(X) =fy j y 2 antM(x) for some x 2 Xg. Finally note thatfor a DAG G, x is an anterior to y if and only if x isan ancestor of y.



Pairwise Markov Property:If there is no edge between a and b in the maximalancestral graph M then:a is d-separated from b by (antM(a)[antM(b))nfa; bgExcept where otherwise noted, we will restrict our-selves to Maximal Ancestral mixed Graphs (MAGs).Given given a non-maximal ancestral mixed graph itcan be converted into a maximal ancestral graph byadding double-headed edges ($), between every pairof vertices for which no d-separating set exists. Fur-ther the resulting maximal ancestral graph will rep-resent exactly the same set of d-separation as held inthe original graph (see section 3). In addition, maxi-mal ancestral graphs lead to a natural parametrizationof the associated Markov model in the Gaussian case(see section 4).3 GRAPHS WITH LATENT ANDSELECTION VARIABLESCox and Wermuth (1996) and Spirtes et al. (1997)consider a DAG G with vertex set V, partitioned intoobserved (O), latent (L), and selection (S) subsets.The interpretation is that G represents a causal, ordata-generating mechanism; O represents the subsetof the variables that are observed; S represents a setof variables which, due to the nature of the mecha-nism selecting the sample, are conditioned on in thesubpopulation from which the sample is drawn; thevariables L are not observed and for this reason arecalled latent .Spirtes et al. show that given such a DAG G, withvertex set V, partitioned into (O;S;L) there is a cor-responding MAGM with vertex set O, such that fordisjoint sets X;Y;Z � O, X and Y are d-separatedgiven Z[S in G, if and only ifX andY are d-separatedgiven Z inM. Thus the MAG captures the indepen-dencies holding among the observed variables in theselected subpopulation.The algorithm for creating a MAGM from a DAG G.Requires only three steps:DAG to MAG Algorithm(i) Form an undirected graph M with vertex set Oin which there is an edge x y if and only if forevery subset Z � O, x and y are d-connectedgiven Z [ S in G.(ii) If there is an edge x y inM, and x =2 antG(fyg[S), and y =2 antG(fxg[S) then replace x y withx$ y.(iii) If there is an edge x y in M, and x 2antG(fyg[S), but y =2 antG(fxg[S) then replace

x y with x y.Step (i), together with the fact stated above, thatM captures all d-separation relations holding betweendisjoint subsets X;Y ofO given a third subset Z unionS, ensures that the resulting graphM is maximal.It is simple to check that the orientation rules givenin steps (ii) and (iii) result in a mixed graph that isancestral. If there is an edge x y inM, after steps(ii) and (iii) then both x and y are in antG(S). Sincein a DAG G there are no undirected edges antG(X) =anG(X), the set of ancestors of X in G, so both x andy are ancestors of vertices in S (in G).The algorithm can in fact be applied directly to anancestral graph (not simply a DAG) whose verticesare partitioned O;S;L, to generate a MAG encodingthe d-separation relations holding between vertices inO given S.3.1 EXAMPLEWe illustrate the operation of this algorithm with asimple example. Figure 2(a) shows an example of aDAG G, while (b) shows the corresponding MAG, un-der the partition O = fa; b; c; d; e; fg, S = fsg, andL = fl1; l2g.
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(b)Figure 2: (a) A DAG G with vertex set V =fa; b; c; d; e; f; l1; l2; sg; (b) the MAGM correspondingto G under the partition O = fa; b; c; d; e; fg, S = fsg,and L = fl1; l2g.3.2 DECOMPOSITION INTO DIRECTEDAND UNDIRECTED COMPONENTSIt follows from (i) and (iii) in the de�nition of an an-cestral graph, that it is always possible to constructa total order on the vertices in an ancestral graph insuch a way that if a is an ancestor of b then a precedesb in the ordering, and such that all vertices x whichare endpoints of undirected edges x y preceed allvertices which are not.It is thus always possible to partition the vertices ofa MAG into two sets 
;� such that the induced sub-graph on 
 is completely undirected, and the inducedsubgraph on � contains no undirected edges; further



if there is an edge connecting a vertex u 2 
 to avertex d 2 � then it is oriented as u ! d. (The in-duced subgraphs on 
 and � need not be connected.)A schematic of this decomposition is shown in Fig-ure 3. For the MAG in Figure2, such a partition is
 = fa; b; cg, � = fd; e; fg. This decomposition is
∆ΩFigure 3: Schematic showing the decomposition of anancestral mixed graph into an undirected componentand a directed component.signi�cant because it implies a corresponding factor-ization of the joint density:P(
;�) = P(
) �P(� j 
)Thus we may break down the problem of estimating aMAG, to the problem of �tting an undirected graphi-cal model, the induced subgraph over 
, and a MAGcontaining no undirected edges for the conditional dis-tribution P (� j 
).There are well-established methods such as the IPSalgorithm (See Lauritzen, 1996) for �tting undirectedgraphical models. For this reason, in this paper we willfocus on the problem of parametrizing, estimating andscoring MAGs containing no undirected edges. Thissubclass of MAG models is also interesting in its ownright since it follows directly from the MAG construc-tion algorithm given in section 3 that if there are noselection variables (S =) then there will be no undi-rected edges in the resulting MAG.3.3 RELATION TO SUMMARY GRAPHSMAGs are closely related to the Summary Graphs inCox and Wermuth (1996), though there are key dif-ferences. In particular it is possible to have no edgebetween a pair of vertices x and y and yet there is nosubset of the remaining variables which make x and yconditionally independent; it is also possible to havemore than one edge between a pair of vertices in asummary graph.Pearl and Verma (1991) prove that every latent vari-able model may be transformed into a Markov equiv-alent model in which every latent variable has onlytwo children. However, such latent variable models,

though simpler, are not in general characterized purelyin terms of conditional independence relations.4 GAUSSIAN MAG MODELSA Gaussian MAG model is a set of multivariate Gaus-sian distributions P , such that for all disjoint sets X,Yand Z, ifX is d-separated fromY given Z in the MAG,then X??Y j Z in P.A Gaussian MAG model (with means �xed at zero)can be parametrized as follows:(i) Associate with each vertex in the MAG a linearequation, expressing that variable as a linear func-tion of its parents plus an error term:y = Xxi2pa(y)�ixi + �ywhere pa(y) is the set of parents of y.(ii) Specify a multivariate Gaussian distribution overthe error terms (with mean zero) satisfying thecondition that if there is not a double-headed edgeX $ Y in the MAG, then Cov(�X ; �Y ) = 0, butotherwise unrestricted.The dimension of a MAG model is then equal to thenumber of vertices plus the number of edges (of eithertype) that are present in the graph.Note that the MAG model parametrizes all Gaussiandistributions in which the conditional independence re-lations corresponding to d-separation relations hold.For this to hold it is crucial that the ancestral mixedgraph be maximal: consider the graph in Figure 1(c).There are no d-separation relations holding in thisgraph, but under the parametrization given above thecorresponding Gaussian model would not be saturated.In particular it implies the following constraint:Cov( a� â(c); d� d̂(b) ) = 0where x̂(y) is the linear predictor of x from y.Since the set of distributions parametrized by a Gaus-sian MAG models is characterized purely in terms ofconditional independence it follows that two GaussianMAG models are Markov equivalent if and only if theyare statistically equivalent.Gaussian MAG models represent a generalization ofthe Seemingly Unrelated Regression (SUR) models in-troduced by Zellner (1962). SUR models and asso-ciated estimation techniques are discussed in sections8 & 9. Sewall Wright's path diagrams also containdouble headed arrows representing correlated errors(Wright, 1934).



5 EXAMPLE: COCHRAN'SNOCTUID MOTH DATATo illustrate the use of MAG models we consider thedata on moth trappings, which originally appeared inthe statistical literature in a paper of Cochran (1938),but which were subsequently analyzed by Dempster(1972) and Whittaker (1990). The data consist of oneresponse variable:moth = log(1 + no. of moths caughtin a light trap on one night)and �ve covariates,min: the minimum night temperature;max: the previous day's maximum temperature;wind: the average wind speed during the night;rain: the amount of rain during the night;cloud: the percentage of starlight obscured by clouds.Dempster (1972) �tted a model which corresponds tothe undirected graph shown in Figure 4(a), in whichconditional independence is encoded via separation.Dempster arrived at this model via a forward selec-tion procedure, which terminated with the �rst modelfor which the p-value > 0:05, based on a likelihood ra-tio test against the full model (with d.f. = 21� Dim.of model). We also give Deviance+ln(Sample Size) �Dimension, since this is equal to the BIC score + aconstant (note that lower scores correspond to 'better'models under this criterion).Whittaker (1990) presents an analysis based on a chaingraph with a division of the variables into two blocks,the �rst containing the �ve covariates, and the secondcontaining the response, see Figure 4(b).Applying the FCI search algorithm (described inSpirtes, Glymour and Scheines, 1993) resulted in theMAG shown in Figure 4(c), which imposes the follow-ing conditional independence constraints:max?? rain; cloud;moth;min??rain;moth j cloud;wind??max; cloud; rain j min;rain??max;min;wind;moth j cloud.The FCI algorithm is not designed to maximize theBIC score, but instead uses a sequence of conditionalindependence tests. However, a subsequent search in-dicates that there is no MAG model with a higherscore. In fact the MAG model is nested within Whit-taker's model. Since the two models di�er by 2 d.f.,and the di�erence in deviance is only 2.11, a likelihoodratio test �nds no evidence against the MAG model(p-value 0.348).

6 MARKOV EQUIVALENCEThe existence of equivalent, yet structurally distinct,DAG models is a central problem when attemptingto identify cause-e�ect relationships (Spirtes, Glymourand Scheines, 1993; Verma and Pearl, 1990). It is im-portant to identify statistically equivalent structures,since they may have di�erent causal interpretations.Data �tting a model M well can be regarded as evi-dence for some feature of the model only if that featureis common to all models equivalent to M.Equivalent models may also be important for modelsearch: it is ine�cient to score many di�erent struc-tures if it is inevitable that they will all receive thesame score. In the case of DAG models without la-tent variables a number of authors (Madigan et al.,1996; Chickering, 1995; Spirtes and Meek, 1995) haveperformed model searches which consider equivalenceclasses of models.Figure 5 shows three MAGs that are Markov equiva-lent (hence statistically equivalent) to the MAG in Fig-ure 4(c). In fact it is not hard to show that all MAGsthat are statistically equivalent possess the same set ofadjacencies. (There are 6 other MAGs in this class).
max min wind

rain cloud moth

max min wind

rain cloud moth

max min wind

rain cloud mothFigure 5: Three MAGs Markov equivalent to the MAGin Figure 4(c).DAG models with LVs present further problems in thisregard since there is no general characterization of theconstraints on the marginal distribution over the ob-served variables that are imposed by LV models. Sucha characterization would be needed in order to describestatistical equivalence classes of LV models.However, the independence constraints imposed by la-tent variable models correspond to the d-separation re-lations involving only observed variables. It is possibleto characterize Markov equivalence classes of LV mod-els in graphical terms (Spirtes, Glymour and Scheines,1993). A graphical characterization of Markov equiv-alence (and hence statistical equivalence) for MAGswithout undirected edges follows directly from this re-sult. Spirtes and Richardson, (1997) extends these re-sults to cover MAGs including undirected edges.This graphical characterization can then be exploitedto perform searches which consider Markov equiva-lence classes of MAGmodels and to identify structuralfeatures that are common to all latent variable models
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(c)Figure 4: Three graphical models for Cochran's moth data.within a given Markov equivalence class, parametrizedby a MAG. Spirtes, Richardson and Meek (1996)describe such a procedure for model selection thatsearches equivalence classes of MAGs.6.1 MARKOV EQUIVALENCE CLASSESON 3 AND 4 VERTICESWe brie
y describe the Markov equivalence classes ofMAGs that occur on 3 and 4 variables. This character-ization may be important for local search proceduresof the type considered by Spirtes and Cooper (1999),which look for models that describe well the relation-ships between small subsets of variables.Every MAG on 3 variables is Markov equivalent tosome DAG. Thus there are 11 Markov equivalenceclasses on 3 variables.Up to permutation of vertices there are 5 classes ofMAGs which are not Markov equivalent to any DAG.These are illustrated in Figure 6. Only models inclasses (a) and (b) can be decomposed into SUR mod-els, with unconstrained error covariance matrices.
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(f)Figure 6: MAGs that are not Markov equivalent toany DAG. The number of Markov equivalence classesof each type are: (a) 12; (b) 12; (c) 12; (d) 3; (e) 24;(f) 3.

Table 1: No. of Markov Equivalence ClassesClass of Graphs No. of Vertices3 4MAGs 11 251MAGs without 11 248undirected edgesDAGs 11 185Undirected Graphs 8 647 PROCEDURES FORESTIMATING GAUSSIAN MAGSClosed form maximum likelihood estimates do not ingeneral exist for MAGs. Thus iterative proceduresmust be used to �nd the Maximum Likelihood (ML)estimates. The use of an iterative procedure is unde-sirable since it will slow down a speci�cation search.However, consistent closed form estimates can be ob-tained by �rst regressing each variable on its par-ents to estimate the linear coe�cients, and then us-ing the covariance of the residuals as an estimate ofthe error covariances. There is also empirical evi-dence to suggest that these procedures are more robustwhen distributional assumptions are violated. A num-ber of other estimation techniques (Two Stage LeastSquares) have been proposed for Seemingly UnrelatedRegression models, which form a subclass of MAGs7.1 OLS ESTIMATION PROCEDURE FORMAGS/DAGSLet x1 : : :xp denote p variables with n observations oneach. Given a MAG (or as a special case a DAG)model for the p variables we consider the class ofmultivariate normal distributions Np(�;�), such thatthe conditional independencies corresponding to the d-separations in the model are satis�ed. This amounts toimposing certain constraints on the elements of � only,



with the mean vector playing no role. More speci�callya DAG or a MAG corresponds to a class of multinor-mal distributions with � unconstrained and � varyingin a subset B of the class of p � p positive de�nitematrices. Let X(p�n) denote the data matrix on thep variables and n observations. The centered sum ofsquares and product matrix for the data is then givenby S = X(In � 1n�nn )XT. If we now consider theproblem of maximising the log of the joint likelihoodover all � and � varying in B (this being precisely thesubclass for which the constraints imposed by the d-separation relations in the graph hold) it is easy to seethat the maximisation can be done by setting � to beequal to the sample mean vector �X (this is the max-imum likelihood estimate for �) and then maximizingthe resulting expression over �. More specifcally weneed to �nd:sup�2B (�np2 log(2�) � n2 log(j�j)� 12tr��1S)If we now think of having been originally provided withthe centered data (the data centered around the sam-ple mean vector) then the expression enclosed in brack-ets above is precisely the log of the joint likehihood forthe centered data under a multivariate Np(0;�) den-sity. Thus it su�ces to restrict to the mean 0 casefor purposes of maximization and look at parametriza-tions of Np(0;�) distributions with � 2 BGiven a MAG or DAG we can parametrize the classof Np(0;�) distributions corresponding to the d-separations in the MAG(DAG)in the following way.Let (�1; �2 : : : ; �p) be random variables with � �Np(0;�). The double headed arrows are then given theinterpretation of correlations between the �'s for thecorresponding vertices. Thus, for a DAG, � has onlydiagonal non-zero entries(since double-headed arrowsare absent). For a MAG, � has nonzero o�-diagonalentries in its (i; j)'th position corresponding to the co-variance between �i and �j whenever there is a doubleheaded arrow between xi and xj . Let further pa(xi)denote the parents of variable xi in the MAG. Thenwrite xi as xi = Xxj2pa(xi)�jxj + �i:Suppose further that x1 : : :xn are named such that novertex precedes its parents, i.e. pa(xi) � fx1 : : : xi�1g,8i. Then we can write:V = �p�pVp�p + �p�1;where V is (x1; x2; : : : ; xn)T, � is a strictly lower tri-angular matrix with the i'th row of � having non-zeroentires only in those positions that correspond to the

parents of xi, these entries being precisely the \regres-sion coe�cients" of xi on its parents and � � N (0;�).Thus � = (I � �)V;or V = (I � �)�1�:Note that the inverse exists because (I � �) is lowertriangular with 1's on the diagonal.Therefore V � Np(0; (I � �)�1�((I � �)�1)T) and� = (I � �)�1�((I � �)�1)T:The number of free parameters which is the dimensionof the model is clearly the number of variables p +number of edges in the graph. Each edge correspondsto a regression coe�cient or a covariance between er-rors and there are the p variances of the errors tooand so we need to add p to the number of edges. Es-tiamtion techniques come up with estimates of � and� and use these to estimate �.Suppose xi is regressed on its parents pa(xi). LetSpa(xi)[fxig be the centered sums of squares matrixfor pa(xi) [ fxig, which we partition as follows:Spa(xi)[fxig = " Spa(xi) rxirTxi sxi #where Spa(xi) is the sums of squares matrix for theparents of i, rxi is an l � 1 vector, and sxi is the sumof squares for xi. To get the estimates of �i and �2ithe variable xi is regressed on its parents, i.e.�̂ = S�1pa(xi)rxiand �̂2i = 1n (sxi � rTxiS�1pa(xi)rxi):In case of a MAG where there is a double headed ar-row, the o�-diagonal elements of the covariance matrix� can be estimated as�̂ij = 1N nXt=1(xit � x̂(pa(xi))t)(xjt � x̂(pa(xj))t)where x̂(pa(xi)t) is the �tted value for the t-th obser-vation, given by regressing xi on pa(xi). Thus �ij isestimated by the covariance between the residuals af-ter regressing xi on its parents, and the residuals afterregressing xj on its parents.



7.2 PRELIMINARY EMPIRICALRESULTSIt is important to note that while the OLS estimatesare MLEs for DAG models, this is no longer true forMAGs in general. Consequently, the likelihood eval-uated at the estimated OLS values may give di�erentvalues for Markov equivalent MAGs. If this e�ect islarge enough it could prove a major disadvantage tousing OLS based estimates in a score when perform-ing a speci�cation search. This is particularly true ofa search across equivalence classes.We are currently investigating the di�erence betweenscores based on evaluating the likelihood at the MLEfound via an iterative numerical algorithm, vs. eval-uating the likelihood at the OLS estimates. Figure7 shows LRT statistic evaluated at the MLE vs. theLRT statistic evaluated at the OLS estimates, for sev-eral di�erent MAG models on the Cochran data set.
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67Figure 7: the LRT evaluated at the MLE vs. the LRTevaluated at the OLS estimates forThese results are preliminary, but suggest reasonableagreement between the scores. A larger simulationstudy is underway, but the results are incomplete.8 SUR MODELSSeemingly Unrelated Regression Models arise when wemeasure more than one response variable on a groupof individuals. So suppose that we have n individuals,on each of whom m measurements are made and letY1; Y2; : : : ; Ym (each an n�1 vector) denote the vectorsof measurements. Also suppose that corresponding toeach Yi we have ki predictor variables and let Xi(n�ki)denote the matrix of predictors. We also denote thesum of the ki's by K. We can now formulate m re-gression models:For i = 1; 2; : : : ;m Yi = Xi�i + Uiwith E[Ui] = 0 for all i and j E[UiUTj ] =

�ijIn�n, where � = ((�ij)) is a positive de�nitematrix. This amounts to stipulating that if ~Uk =(uk1; uk2; : : : ; ukm)T is the vector of errors for mea-surements on the k'th individual then E[ ~Uk] = 0 andCov( ~Uk) = �. Further ~Uk and ~Ul are uncorrelatedif k 6= l. Under the normality assumption on the er-rors we have ~U1; ~U2; : : : ; ~Un are i.i.d. N (0;�). Thuserrors on the same individual corresponding to di�er-ent measurements are allowed to be correlated. Theexpression `seemingly unrelated regression model' be-cause the m equations are related to one another eventhough super�cially they may not seem to be so.One standard method of estimating the regression co-e�cients is to use the standard OLS coe�cients;thusthe estimate of �i is �̂i = (XTi Xi)�1XTi Yi. In this casethe �i's are estimated independently of each other.The residuals from the the i-th regression are Ûi =Yi � Xi�̂i and these can be used to estimate the pa-rameters �ij. More speci�cally �̂ij = n�1ÛTi Ûj . How-ever since we have a structural dependence of thesem equations through the elements of �, it is indeedpossible to construct more e�cient estimates of theregression coe�cients by exploiting this dependence.The m regression equations can be viewed as one gi-ant regression equation:Ynm�1 = Xnm�K�K�1 + Unm�1;where Y = (Y T1 ; Y T2 ; : : : ; Y Tm )TU = (UT1 ; UT2 ; : : : ; UTm)T� = (�T1 ; �T2 ; : : : ; �Tm)TXnm�K = 26664 X1 0 � � � 00 X2 � � � 0... ... ...0 0 � � � Xm 37775this is the giant matrix of predictors such that if it ispartitioned by grouping the rows in stacks of size n andgrouping the columns in stacks of size k1; k2; : : : ; kmrespectively, then the diagonal entries of the parti-tioned matrix (in which the entries themselves are sub-matrices) are X1; X2; : : : ; Xn respectively and the o�-diagonal entries are 0. We note also that E[U ] = 0 andCov[U ] = � 
 In. One then immediately obtains thegeneralized least squares estimate of � by transformingthe above regression equation to one with homoscedas-tic errors. The GLS estimate is:�̂GLS = (XT(��1 
 In)X)�1XT(��1 
 In)Y:In general � is unknown but one usually plugs in aconsistent estimator of � into the above equation, say�̂ = ((�̂ij)) where �̂ij is obtained using the residu-als from OLS regression as explained previously. Both



�̂OLS and �̂GLS are unbiased and in particular underthe normality assumption the estimato obtained byplugging in �̂ for � in �̂GLS is unbiased too. Underthe normality assumption with no restrictions on �one can frame the likelihood equations as follows:XT(��1 
 In)X� = XT(��1 
 In)Y� = n�1((uij)); uij = [(Yi �Xi�i)T(Yj �Xj�j)]Even though analytical closed form expressions for theMLE's do not exist the following iterative proceduregives satisfactory results:�̂w = (XT(S�1(w) 
 In)X)�1XT(S�1(w) 
 In)Y ;w =1; 2; : : :Ûi(w) = Yi �Xi�̂i(w�1);w = 2; 3; : : :Sij(w) = n�1[ÛTi(w)Ûj(w)];w = 2; 3; : : :, where one it-erates till convergence. The initial estimate of �, i.e.S(1) can be obtained from the residuals of OLS regres-sion.9 APPLYING SUR METHODS TOGAUSSIAN MAG VIA9.1 KEY ISSUESThe SUR techniques described earlier can be adaptedto estimation of parameters in a subclass of GaussianMAGs de�ned below.At �rst sight it might appear that a MAG model on mvertices is reducible to a set of m seemingly unrelatedregression equations, with the parents of each vertexacting as the predictors in the corresponding regressionequation.However in a MAG some responses may act as predic-tors for other responses whereas this may not occur ina SUR model (where the predictors are usually con-sidered �xed). A second di�erence is that in a MAGthe error terms in two equations may be speci�ed tobe uncorrelated, while in a SUR model the covariancematrix for the disturbances is unrestricted.To apply the SUR model correctly to a subset B of ver-tices, we also require that there be no double headedarrow between any vertex in B and any vertex in theset of strict ancestors ofB. (Where the strict ancestralset fo B is de�ned as Sx2B(an(b)nfbg.) This is neces-sary because while using the SUR model with the ver-tices inB as response we are modelling the conditionaldistribution of the response variables given their par-ents and so are estimating the conditional covariancematrix between the error variables given the parents.But we need to estimate the unconditional error co-variance matrix and this requires the independence ofthe errors corresponding to the response and the par-ents of B. This is no longer guaranteed if some error

corresponding to a vertex in the strict ancestral setof B is correlated with some error corresponding to avertex in B (since every parent of B can be written asa linear combination of errors from the strict ancestralset). We now characterise classes of MAGS to whichSUR methods can be applied.9.2 FORMULATIONConsider a MAG model on m vertices. Suppose thatthe vertex set admits a partitioning into k subsetsV1;V2; : : : ;Vk such that the following properties aresatis�ed:(a) In each block none of the vertices is an ancestorof any other.(b) For any given block V, denote its connected com-ponents by C1; : : :Cl. We assume that there isno double headed arrow between Ci and the strictancestral set of Ci, for all i.We can then employ the SUR model as follows:For any given block V look at a connected componentC. Since none of the vertices inV is an ancestor of anyother, the only connections between vertices in C aredouble-headed arrows and these correspond to possiblynon-zero entries in the covariance matrix for the errorsassociated with these vertices. Estimate the regressioncoe�cients and the elements of the covariance matrixfor the errors using SUR. IfC is a clique, then the errorcovariance matrix is unconstrained and the iterativetechniques for obtaining the MLE's of the �'s and �'sas outlined in section 8 can be resorted to directly.Otherwise there are constraints on the error covari-ance matrix and we may extend the iterative estima-tion technique in the following way:Compute the estimate of the error covariance �ij ateach stage in the same way as outlined for the iter-ative MLE computation if there is a double-headedarrow between vertices i and j. Otherwise force �i;jto be equal to zero. Repeat process till convergence.We note however that there is no guarantee that theprocess converges to the MLE in this situation. Butthe estimates obtained in the above manner ought tobe consistent.In this way we obtain �nal estimates of the edge coef-�cients and error covariances for each connected com-ponent within a block. There now remains the ques-tion of estimating the covariances between errors thatbelong to di�erent blocks and this is done by comput-ing the sample covariance between the residuals forthe corresponding vertices (where the �nal estimatesof the betas are used to compute the residuals).



9.3 TWO SPECIAL CASES(1) One way of stratifying vertices into subsets so thatwithin each subset there is no directed edge orpath, is to sort them by their generation. De�nea vertex to belong to generation i if the lengthof the longest directed path entering that vertexin the MAG is i. It is then easy to see that novertex in the i-th generation can be a parent ofany other. One can then check for condition (b)and provided it is satis�ed estimation can be car-ried out. In particular, condition (b) is satis�edif there are no double-headed arrows between ver-tices of di�erent generations.(2) De�ne an equivalence relation on the set of ver-tices in the following way: a is in the same equiv-alence class as b if a can be reached from b by apath consisting entirely of double-headed arrows.Let V1;V2; : : :Vk denote the equivalence classesunder this relation. Note that under this strati-�cation each Vi is connected. Note also that ifcondition (a) is satis�ed in this case there is nofurther need to check condition (b). It will besatis�ed automatically (this is a direct outcome ofthe construction of these blocks). One can thenuse SUR techniques as described.AcknowledgementsA grant from the National Science Foundation sup-ported this work (DMS 9704573), and from a RoyaltyResearch Fund Grant from the University of Wash-ington. The �rst author was a Rosenbaum fellow atthe Isaac Newton Institute, Cambridge, England fromJuly-December 1997, where part of this work was un-dertaken. Peter Spirtes and Nanny Wermuth mademany helpful suggestions. Michael Perlman and LangWu provided helpful input on SUR models.ReferencesCochran, W.G. (1938). The omission or addition ofan independent variate in multiple linear regression.JRSS Supplement, 5, pp.171-176.Cooper, G.F. and Herskovits, E. (1992). A Bayesianmethod for the induction of probabilistic networksfrom data. Machine Learning 9, pp. 309-347.Cox, D.R. and Wermuth, N. (1996). Multivariate De-pendencies. Chapman and Hall.Chickering, D. and Geiger, D. and Heckerman, D.(1995). Learning Bayesian networks: Search methodsand experimental results. Preliminary papers of the�fth international workshop on Arti�cial Intelligenceand Statistics, Fort Lauderdale, FL, pp. 112-128.
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