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Abstract

The problem of learning the structure of a
DAG model in the presence of latent variables
presents many formidable challenges. In par-
ticular there are an infinite number of latent
variable models to consider, and these mod-
els possess features which make them hard to
work with. We describe a class of graphical
models which can represent the conditional
independence structure induced by a latent
variable model over the observed margin. We
give a parametrization of the set of Gaussian
distributions with conditional independence
structure given by a MAG model. The mod-
els are illustrated via a simple example. Dif-
ferent estimation techniques are discussed in
the context of Zellner’s Seemingly Unrelated
Regression (SUR) models.

Keywords: Multivariate Graphical Models; Causal
Modelling; Latent Variables; Ancestral Graphs; MAG
Models.

1 INTRODUCTION

There has been significant progress in the development
of algorithms for learning the directed acyclic graph
(DAG) part of a Bayesian network from complete data
and optional background knowledge (Cooper and Her-
skovits, 1992; Spirtes, Glymour and Scheines, 1993;
Heckerman, Geiger and Chickering, 1994). However,
the problem of learning the DAG part of a Bayesian
network with latent (unmeasured) variables is more
difficult: first the number of possible models is in-
finite, and second, calculating scores for latent vari-
able (LV) models is generally much slower than cal-
culating scores for models without LVs. In addition,
general LV models have a number of other features
which make them hard to work with: LV models may

be overparametrized, e.g. containing edges or nodes
that are redundant, and as a consequence the parame-
ters may be underidentified, leading to multimodal or
flat likelihood surfaces; further, as described by Geiger
and Meek (1998), LV models are stratified exponen-
tial families, rather than curved exponential families
(like DAGs without LVs), and consequently the results
which guarantee the asymptotic consistency of scores
such as BIC do not apply; finally, LV models do not
have a well-defined dimension.

This presents a dilemma: on the one hand, attempt-
ing to search for causal structure without allowing for
the possibility of latent or missing variables is sub-
stantively unreasonable in many contexts, and yet
on the other hand, explicitly including latent vari-
ables appears to make the search space intractable,
and introduces models with features that make model
selection difficult. To address this problem Spirtes,
Meek and Richardson (1997) have introduced a class
of graphical Gaussian models, called MAG models,
which do not include latent variables, but do impose
the independence constraints given by latent variable
models, and only these constraints. Thus for any
given LV model there is a MAG model to which it
1s Markov equivalent. However, since LV models often
impose non-independence constraints, the correspond-
ing MAG model will parametrize a set of distributions
which form a superset of the distribution parametrized
by the LV model. In contrast to latent variable mod-
els, MAG models are efficiently parametrized, always
statistically identifiable, and have a well-defined di-
mension (they form curved exponential families).

We describe a class of graphical models which can rep-
resent the conditional independence structure induced
by a latent variable model over the observed mar-
gin. We give a parametrization of the set of Gaussian
distributions with conditional independence structure
given by a MAG model. The models are illustrated
via a simple example taken from Whittaker (1990).
We discuss the relationship between Seemingly Unre-



lated Regression (SUR) models (Zellner, 1962). Fi-
nally, estimation techniques for MAGs, based on SUR
methods are described. The performance of two esti-
mation methods are compared on the example taken
from Whittaker.

2 ANCESTRAL GRAPHS

A mizedgraph is a graph containing three types of edge
{—,—=, e}, where at most one edge (of any type)
may occur between each pair of vertices.

We naturally extend Pearl’s d-separation criterion to
mixed graphs as follows: a pair of consecutive edges
meeting at a vertex z on a path form a collider if both
edges have an arrowhead at z, 1.e. — 2z +, & z &,
&z —, > z <. Two consecutive edges which do
not form a collider are said to form a non-collider. A
vertex a is said to be an ancestor of a vertex b if either
there is a directed path @ — -+ — b on which every
edge is of the form ‘=’ and has the same orientation,
ora=>b

A path between vertices & and y in a mixed graph is
said to be d-connecting given a set 7 if

(i) every non-collider on the path is not in Z, and

(i) every collider on the path is an ancestor of Z,
(note: each vertex is its own ancestor).

If there is no path d-connecting z and y given Z, then
z and y are said to be d-separated given Z. Sets X and
Y are said to be d-separated given Z if for every pair
x,y, with € X and y € Y, # and y are d-separated
given Z.

An ancestral mixed graph, is a mixed graph satisfying
the following conditions:

(i) There are no directed cycles: if there is a directed
path from a to b, 1.e. a = ... — b, then there is
no directed path from b to a.

(i) If there is an edge a <> b in the graph, then there
is no directed path from b to a, and there is no
directed path from a to b.

(iii) If there is an edge @ — b in the graph, then there
is no edge with an arrowhead at a, i.e. there is no
edge ¢ > a, ¢ & a.

A graph satisfying these properties is termed ‘ances-
tral’ because whenever there is an arrowhead at a, i.e.
a < bor a < bthen @ is not an ancestor of b in
the graph. The presence of a tail at a, i.e. ¢ — b
or a — b can also be given an ancestral interpretation
in the context of a larger graph containing selection
variables (see Section 3).

Figure 1 (a) shows two mixed graphs that are not an-
cestral: in the first there is a directed path from b to a
while at the same time there i1s an edge a <> b; in the
second there is an edge a — ¢ while at the same time
there is an edge a « b. Figure 1 (b) shows two an-
cestral mixed graphs. Note that the class of ancestral
mixed graphs contains the set of DAGs and undirected
graphs. However, as the second graph in Figure 1(a)
shows, the class of ancestral mixed graphs does not
contain the class of chain graphs.
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Figure 1: (a) Two mixed graphs that are not ancestral;
(b) two ancestral mixed graphs; (c) an ancestral mixed
graph that is not maximal.

2.1 MAXIMAL MIXED ANCESTRAL
GRAPHS (MAGs).

An ancestral mixed graph is said to be mazimal if 1t
satisfies the following condition:

(iv) If there is no edge between @ and b, then there is
some subset Z of the other vertices such that a
and b are d-separated given Z.

Figure 1(c) shows a simple example of an ancestral
mixed graph which is not maximal: there is no edge
between a and d in the graph, and yet a and d are d-
connected by all four subsets of the other variables
{b,c}. The local Markov properties for DAGs and
undirected graphs (see Lauritzen, 1996), imply that
every graph in either of these classes is maximal, since
there is some subset which d-separates each pair of
edges which are not joined by an edge.

Spirtes and Richardson (1997) present an O(n*) algo-
rithm for checking that a MAG is maximal. The algo-
rithm is based on the following pairwise Markov prop-
erty which holds in maximal ancestral mixed graphs.
A vertex x 1s said to be anterior to y if there is a path
from # to y on which every edge (u, v} is either undi-
rected, u — v, or directed, u — v, with orientation
from z to y. Tt follows from condition (iii) in the defi-
nition of an ancestral graph that if v — v is a directed
edge then no undirected edge occurs between v and
y, so the path is of the formz — -+ — — -+ > y,
r— - —y,orx == y. antay(x) is the set of
vertices anterior to  in M, and similarly antp(X) =
{y | y € antpq () for some x € X}. Finally note that
for a DAG G, z 1s an anterior to y if and only if « is
an ancestor of y.



Pairwise Markov Property:

If there is no edge between a and b in the maximal
ancestral graph M then:

a is d-separated from b by (ant (@) Uantaqg (b)) \ {a, b}

Except where otherwise noted, we will restrict our-
selves to Maximal Ancestral mixed Graphs (MAGs).
Given given a non-maximal ancestral mixed graph it
can be converted into a maximal ancestral graph by
adding double-headed edges (¢3), between every pair
of vertices for which no d-separating set exists. Fur-
ther the resulting maximal ancestral graph will rep-
resent exactly the same set of d-separation as held in
the original graph (see section 3). In addition, maxi-
mal ancestral graphs lead to a natural parametrization
of the associated Markov model in the Gaussian case
(see section 4).

3 GRAPHS WITH LATENT AND
SELECTION VARIABLES

Cox and Wermuth (1996) and Spirtes et al. (1997)
consider a DAG G with vertex set V| partitioned into
observed (0O), latent (L), and selection (S) subsets.
The interpretation is that G represents a causal, or
data-generating mechanism; O represents the subset
of the variables that are observed; S represents a set
of variables which, due to the nature of the mecha-
nism selecting the sample, are conditioned on in the
subpopulation from which the sample is drawn; the
variables L are not observed and for this reason are
called latent.

Spirtes et al. show that given such a DAG G, with
vertex set 'V, partitioned into (O, S, L) there is a cor-
responding MAG M with vertex set O, such that for
disjoint sets X, Y,Z C O, X and Y are d-separated
given ZUS in G, if and only if X and Y are d-separated
given Z in M. Thus the MAG captures the indepen-
dencies holding among the observed variables in the
selected subpopulation.

The algorithm for creating a MAG M from a DAG G.
Requires only three steps:

DAG to MAG Algorithm

(i) Form an undirected graph M with vertex set O
in which there is an edge # — y if and only if for
every subset Z C O, z and y are d-connected
given ZUS in G.

(i) Ifthere is an edge # — yin M, and = ¢ antg ({y}U
S), and y ¢ antg ({x}US) then replace # — y with
Ty,

(iii) If there is an edge ¢ —y in M, and = €
antg ({y}US), but y & antg({x}US) then replace

r —y with z « y.

Step (i), together with the fact stated above, that
M captures all d-separation relations holding between
disjoint subsets XY of O given a third subset Z union
S, ensures that the resulting graph M is maximal.

It is simple to check that the orientation rules given
in steps (ii) and (iii) result in a mixed graph that is
ancestral. If there is an edge © — y in M, after steps
(i) and (iii) then both 2 and y are in antg(S). Since
in a DAG @G there are no undirected edges antg(X) =
ang (X), the set of ancestors of X in G, so both x and
y are ancestors of vertices in S (in G).

The algorithm can in fact be applied directly to an
ancestral graph (not simply a DAG) whose vertices
are partitioned O, S, L, to generate a MAG encoding
the d-separation relations holding between vertices in
O given S.

3.1 EXAMPLE

We illustrate the operation of this algorithm with a
simple example. Figure 2(a) shows an example of a
DAG G, while (b) shows the corresponding MAG, un-
der the partition O = {a,b,c,d e, f}, S = {s}, and
L=1{l,l}.
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Figure 2: (a) A DAG G with vertex set V =
{a,b,e,d,e, f 11,12, s}; (b) the MAG M corresponding
to G under the partition O = {a,b,¢,d, e, f}, S = {s},
and L = {11,12}.

3.2 DECOMPOSITION INTO DIRECTED
AND UNDIRECTED COMPONENTS

It follows from (i) and (iii) in the definition of an an-
cestral graph, that it is always possible to construct
a total order on the vertices in an ancestral graph in
such a way that if a is an ancestor of b then a precedes
b in the ordering, and such that all vertices  which
are endpoints of undirected edges  — y preceed all
vertices which are not.

It is thus always possible to partition the vertices of
a MAG into two sets €, A such that the induced sub-
graph on €2 1s completely undirected, and the induced
subgraph on A contains no undirected edges; further



if there 1s an edge connecting a vertex u € €2 to a
vertex d € A then it is oriented as v — d. (The in-
duced subgraphs on € and A need not be connected.)
A schematic of this decomposition is shown in Fig-
ure 3. For the MAG in Figure2, such a partition is
Q = {a,b,c}, A = {d,e, f}. This decomposition is

>
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Figure 3: Schematic showing the decomposition of an
ancestral mixed graph into an undirected component
and a directed component.

significant because it implies a corresponding factor-
1zation of the joint density:

P(Q,A) = P(Q) - P(A | Q)

Thus we may break down the problem of estimating a
MAG, to the problem of fitting an undirected graphi-
cal model, the induced subgraph over Q, and a MAG
containing no undirected edges for the conditional dis-

tribution P(A | ).

There are well-established methods such as the TIPS
algorithm (See Lauritzen, 1996) for fitting undirected
graphical models. For this reason, in this paper we will
focus on the problem of parametrizing, estimating and
scoring MAGs containing no undirected edges. This
subclass of MAG models is also interesting in its own
right since it follows directly from the MAG construc-
tion algorithm given in section 3 that if there are no
selection variables (S =) then there will be no undi-
rected edges in the resulting MAG.

3.3 RELATION TO SUMMARY GRAFPHS

MAGs are closely related to the Summary Graphs in
Cox and Wermuth (1996), though there are key dif-
ferences. In particular it is possible to have no edge
between a pair of vertices # and y and yet there is no
subset of the remaining variables which make z and y
conditionally independent; it is also possible to have
more than one edge between a pair of vertices in a
summary graph.

Pearl and Verma (1991) prove that every latent vari-
able model may be transformed into a Markov equiv-
alent model in which every latent variable has only
two children. However, such latent variable models,

though simpler, are not in general characterized purely
in terms of conditional independence relations.

4 GAUSSIAN MAG MODELS

A Gaussian MAG model is a set of multivariate Gaus-
sian distributions P, such that for all disjoint sets X, Y
and Z, if X is d-separated from Y given Z in the MAG,
then X1Y | Zin P.

A Gaussian MAG model (with means fixed at zero)
can be parametrized as follows:

(1) Associate with each vertex in the MAG a linear
equation, expressing that variable as a linear func-
tion of its parents plus an error term:

y= Z QT + €y

szpa(y)
where pa(y) is the set of parents of y.

(ii) Specify a multivariate Gaussian distribution over
the error terms (with mean zero) satisfying the
condition that if there is not a double-headed edge
X & Y in the MAG, then Cov(ex,ey) = 0, but
otherwise unrestricted.

The dimension of a MAG model is then equal to the
number of vertices plus the number of edges (of either
type) that are present in the graph.

Note that the MAG model parametrizes all Gaussian
distributions in which the conditional independence re-
lations corresponding to d-separation relations hold.
For this to hold it is crucial that the ancestral mixed
graph be maximal: consider the graph in Figure 1(c).
There are no d-separation relations holding in this
graph, but under the parametrization given above the
corresponding Gaussian model would not be saturated.
In particular it implies the following constraint:

Cov(a La(e),d Ld(b)) =0
where #(y) is the linear predictor of # from y.

Since the set of distributions parametrized by a Gaus-
sian MAG models is characterized purely in terms of
conditional independence it follows that two Gaussian
MAG models are Markov equivalent if and only if they
are statistically equivalent.

Gaussian MAG models represent a generalization of
the Seemingly Unrelated Regression (SUR) models in-
troduced by Zellner (1962). SUR models and asso-
ciated estimation techniques are discussed in sections
8 & 9. Sewall Wright’s path diagrams also contain
double headed arrows representing correlated errors

(Wright, 1934).



5 EXAMPLE: COCHRAN’S
NOCTUID MOTH DATA

To illustrate the use of MAG models we consider the
data on moth trappings, which originally appeared in
the statistical literature in a paper of Cochran (1938),
but which were subsequently analyzed by Dempster
(1972) and Whittaker (1990). The data consist of one

response variable:

moth = log(1 + no. of moths caught
in a light trap on one night)

and five covariates,
min: the minimum night temperature;

max: the previous day’s maximum temperature;
wind:  the average wind speed during the night;
ratn: the amount of rain during the night;

cloud: the percentage of starlight obscured by clouds.

Dempster (1972) fitted a model which corresponds to
the undirected graph shown in Figure 4(a), in which
conditional independence is encoded via separation.
Dempster arrived at this model via a forward selec-
tion procedure, which terminated with the first model
for which the p-value > 0.05, based on a likelihood ra-
tio test against the full model (with d.f. = 21L Dim.
of model). We also give Deviance +In(Sample Size)-
Dimension, since this 1s equal to the BIC score + a
constant (note that lower scores correspond to ’better’
models under this criterion).

Whittaker (1990) presents an analysis based on a chain
graph with a division of the variables into two blocks,
the first containing the five covariates, and the second
containing the response, see Figure 4(b).

Applying the FCI search algorithm (described in
Spirtes, Glymour and Scheines, 1993) resulted in the
MAG shown in Figure 4(c), which imposes the follow-
ing conditional independence constraints:

maz 1L rain, cloud, moth,;
min 1L rain, moth | cloud,
wind 1L maz, cloud, rain | min;

rain 1L max, min, wind, moth | cloud.

The FCI algorithm is not designed to maximize the
BIC score, but instead uses a sequence of conditional
independence tests. However, a subsequent search in-
dicates that there is no MAG model with a higher
score. In fact the MAG model is nested within Whit-
taker’s model. Since the two models differ by 2 d.f.,
and the difference in deviance 1s only 2.11, a likelihood
ratio test finds no evidence against the MAG model
(p-value 0.348).

6 MARKOV EQUIVALENCE

The existence of equivalent, yet structurally distinct,
DAG models is a central problem when attempting
to identify cause-effect relationships (Spirtes, Glymour
and Scheines, 1993; Verma and Pearl, 1990). Tt is im-
portant to identify statistically equivalent structures,
since they may have different causal interpretations.
Data fitting a model M well can be regarded as evi-
dence for some feature of the model only if that feature
1s common to all models equivalent to M.

Equivalent models may also be important for model
search: it is inefficient to score many different struc-
tures if it is inevitable that they will all receive the
same score. In the case of DAG models without la-
tent variables a number of authors (Madigan et al.,
1996; Chickering, 1995; Spirtes and Meek, 1995) have
performed model searches which consider equivalence
classes of models.

Figure 5 shows three MAGs that are Markov equiva-
lent (hence statistically equivalent) to the MAG in Fig-
ure 4(c). In fact it is not hard to show that all MAGs
that are statistically equivalent possess the same set of
adjacencies. (There are 6 other MAGs in this class).

max — min —wind max — min —swind

|

rain <—— cloud—s moth

max — min —swind

rain <—— cloude—smoth rain <—— cloud—s moth

Figure 5: Three MAGs Markov equivalent to the MAG
in Figure 4(c).

DAG models with LVs present further problems in this
regard since there 1s no general characterization of the
constraints on the marginal distribution over the ob-
served variables that are imposed by LV models. Such
a characterization would be needed in order to describe
statistical equivalence classes of LV models.

However, the independence constraints imposed by la-
tent variable models correspond to the d-separation re-
lations involving only observed variables. It is possible
to characterize Markov equivalence classes of LV mod-
els in graphical terms (Spirtes, Glymour and Scheines,
1993). A graphical characterization of Markov equiv-
alence (and hence statistical equivalence) for MAGs
without undirected edges follows directly from this re-
sult. Spirtes and Richardson, (1997) extends these re-
sults to cover MAGs including undirected edges.

This graphical characterization can then be exploited
to perform searches which consider Markov equiva-
lence classes of MAG models and to identify structural
features that are common to all latent variable models
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() MAG
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rain — cloud— moth

Dimension  Deviance  Deviance

+In(SS)*dim.
12 15.66 66.98
14 4.42 64.30
12 6.53 57.85

Figure 4: Three graphical models for Cochran’s moth data.

within a given Markov equivalence class, parametrized
by a MAG. Spirtes, Richardson and Meek (1996)
describe such a procedure for model selection that
searches equivalence classes of MAGs.

6.1 MARKOV EQUIVALENCE CLASSES
ON 3 AND 4 VERTICES

We briefly describe the Markov equivalence classes of
MAGs that occur on 3 and 4 variables. This character-
ization may be important for local search procedures
of the type considered by Spirtes and Cooper (1999),
which look for models that describe well the relation-
ships between small subsets of variables.

Every MAG on 3 variables is Markov equivalent to
some DAG. Thus there are 11 Markov equivalence
classes on 3 variables.

Up to permutation of vertices there are 5 classes of
MAGs which are not Markov equivalent to any DAG.
These are illustrated in Figure 6. Only models in
classes (a) and (b) can be decomposed into SUR mod-
els, with unconstrained error covariance matrices.
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Figure 6: MAGs that are not Markov equivalent to
any DAG. The number of Markov equivalence classes
of each type are: (a) 12; (b) 12; (¢) 12; (d) 3; (e) 24;
(f) 3.

Table 1: No. of Markov Equivalence Classes
Class of Graphs No. of Vertices

3 4
MAGs 11 251
MAGs without 11 248
undirected edges
DAGs 11 185
Undirected Graphs 8 64

7 PROCEDURES FOR
ESTIMATING GAUSSIAN MAGS

Closed form maximum likelihood estimates do not in
general exist for MAGs. Thus iterative procedures
must be used to find the Maximum Likelihood (ML)
estimates. The use of an iterative procedure is unde-
sirable since it will slow down a specification search.
However, consistent closed form estimates can be ob-
tained by first regressing each variable on its par-
ents to estimate the linear coefficients, and then us-
ing the covariance of the residuals as an estimate of
the error covariances. There is also empirical evi-
dence to suggest that these procedures are more robust
when distributional assumptions are violated. A num-
ber of other estimation techniques (Two Stage Least
Squares) have been proposed for Seemingly Unrelated
Regression models, which form a subclass of MAGs

7.1 OLS ESTIMATION PROCEDURE FOR
MAGS/DAGS

Let zq ...z, denote p variables with n observations on
each. Given a MAG (or as a special case a DAG)
model for the p variables we consider the class of
multivariate normal distributions N, (i, X), such that
the conditional independencies corresponding to the d-
separations in the model are satisfied. This amounts to
imposing certain constraints on the elements of ¥ only,



with the mean vector playing no role. More specifically
a DAG or a MAG corresponds to a class of multinor-
mal distributions with g unconstrained and X varying
in a subset B of the class of p x p positive definite
matrices. Let X(,xn) denote the data matrix on the
p variables and n observations. The centered sum of
squares and product matrix for the data is then given

by S = X(I, L 1’;L#)XT. If we now consider the
problem of maximising the log of the joint likelihood
over all g and ¥ varying in B (this being precisely the
subclass for which the constraints imposed by the d-
separation relations in the graph hold) it is easy to see
that the maximisation can be done by setting p to be
equal to the sample mean vector X (this is the max-
imum likelihood estimate for p) and then maximizing
the resulting expression over . More specifcally we
need to find:

1
SUPses (L% log(27) L glog(|§]|) L srs)

If we now think of having been originally provided with
the centered data (the data centered around the sam-
ple mean vector) then the expression enclosed in brack-
ets above is precisely the log of the joint likehihood for
the centered data under a multivariate N,(0,X) den-
sity. Thus 1t suffices to restrict to the mean 0 case
for purposes of maximization and look at parametriza-
tions of N, (0, X) distributions with ¥ € B

Given a MAG or DAG we can parametrize the class
of N,(0,X) distributions corresponding to the d-
separations in the MAG(DAG)in the following way.
Let (e1,€2...,€p) be random variables with e ~
N, (0,A). The double headed arrows are then given the
interpretation of correlations between the ¢’s for the
corresponding vertices. Thus, for a DAG, A has only
diagonal non-zero entries(since double-headed arrows
are absent). For a MAG, A has nonzero off-diagonal
entries in its (¢, j)’th position corresponding to the co-
variance between ¢; and ¢; whenever there is a double
headed arrow between z; and ;. Let further pa(z;)
denote the parents of variable z; in the MAG. Then
write z; as

Xy =

E ;X5 + €.

vj€pa(w;)

Suppose further that z; ...z, are named such that no
vertex precedes its parents, i.e. pa(z;) C {®1 ... 21},
Vi. Then we can write:

V= apsxpVoxp + px1,

where V is (z1,22,...,2,)T, a is a strictly lower tri-
angular matrix with the i’th row of a having non-zero
entires only in those positions that correspond to the

parents of x;, these entries being precisely the “regres-
sion coefficients” of x; on its parents and ¢ ~ N (0, A).
Thus

e=({ILa)V,

or

V=1 oz)_le.

Note that the inverse exists because (I L «) is lower
triangular with 1’s on the diagonal.

Therefore V ~ N, (0, (I La)"*A(( La)™1)T) and

Y= (I La) 'A((T La)™HT.

The number of free parameters which is the dimension
of the model is clearly the number of variables p +
number of edges in the graph. Each edge corresponds
to a regression coefficient or a covariance between er-
rors and there are the p variances of the errors too
and so we need to add p to the number of edges. Es-
tlamtion techniques come up with estimates of o and
A and use these to estimate X.

Suppose x; is regressed on its parents pa(z;). Let
Spa(z;)uie;} be the centered sums of squares matrix
for pa(z;) U {z;}, which we partition as follows:

IS . Spa(x,) Ty,
pa(ei)u{ri} = »T So,
where Sp4(z;) is the sums of squares matrix for the
parents of ¢, vy, is an [ x 1 vector, and s, is the sum
of squares for z;. To get the estimates of «; and O'Z»2

the variable z; is regressed on its parents, i.e.

and

In case of a MAG where there 1s a double headed ar-
row, the off-diagonal elements of the covariance matrix
A can be estimated as

o D (e L a(pate))e) (e L #(pa(e;))

t=1

05 =

where #(pa(xz;);) is the fitted value for the ¢-th obser-
vation, given by regressing z; on pa(z;). Thus o;; is
estimated by the covariance between the residuals af-
ter regressing x; on its parents, and the residuals after
regressing x; on its parents.



7.2 PRELIMINARY EMPIRICAL
RESULTS

It is important to note that while the OLS estimates
are MLEs for DAG models, this is no longer true for
MAGSs in general. Consequently, the likelihood eval-
uated at the estimated OLS values may give different
values for Markov equivalent MAGs. If this effect is
large enough it could prove a major disadvantage to
using OLS based estimates in a score when perform-
ing a specification search. This is particularly true of
a search across equivalence classes.

We are currently investigating the difference between
scores based on evaluating the likelihood at the MLE
found via an iterative numerical algorithm, vs. eval-
uating the likelihood at the OLS estimates. Figure
7 shows LRT statistic evaluated at the MLE vs. the
LRT statistic evaluated at the OLS estimates, for sev-
eral different MAG models on the Cochran data set.

Figure 7: the LRT evaluated at the MLE vs. the LRT
evaluated at the QLS estimates for

These results are preliminary, but suggest reasonable
agreement between the scores. A larger simulation
study is underway, but the results are incomplete.

8 SUR MODELS

Seemingly Unrelated Regression Models arise when we
measure more than one response variable on a group
of individuals. So suppose that we have n individuals,
on each of whom m measurements are made and let
Y1,Ys, ..., Y (each an nx 1 vector) denote the vectors
of measurements. Also suppose that corresponding to
each Y; we have k; predictor variables and let Xi(nxk,)
denote the matrix of predictors. We also denote the
sum of the k;’s by K. We can now formulate m re-
gression models:

Fori=1,2,....,m

Yi = Xifi + Ui

with E[l;] = 0 for all ¢ and j E[UZ'U]T] =

Oijlnxn, where ¥ = ((oy;)) is a positive definite
matrix. This amounts to stipulating that if Up =
(wg1, U2, - . Ugm) T is the vector of errors for mea-
surements on the k’th individual then E[U;] = 0 and
Cov(Uk) — Y. Further U, and U; are uncorrelated
if & # 1. Under the normality assumption on the er-
rors we have Uy, Us, ..., U, are i.i.d. N(0,X). Thus
errors on the same individual corresponding to differ-
ent measurements are allowed to be correlated. The
expression ‘seemingly unrelated regression model’ be-
cause the m equations are related to one another even
though superficially they may not seem to be so.

One standard method of estimating the regression co-
efficients is to use the standard OLS coefficients;thus
the estimate of 3; is BZ = (X} X;)7tX1Y;. In this case
the 3;’s are estimated independently of each other.
The residuals from the the -th regression are U, =
Y, L XZ'BZ' and these can be used to estimate the pa-
rameters o;;. More specifically ¢;; = n_lﬁiTﬁj. How-
ever since we have a structural dependence of these
m equations through the elements of X, it is indeed
possible to construct more efficient estimates of the
regression coefficients by exploiting this dependence.
The m regression equations can be viewed as one gi-
ant regression equation:

Ynmxl = Xnmeﬁle + Unmxla

where

Y= (YlT’YZTa"'aYTE)T
U=wrut . uht
B=(81.07, ..., B0)"

X, 0 .- 0

0 X5 0

Xnme: . . .

0 0o - Xn

this is the giant matrix of predictors such that if it is
partitioned by grouping the rows in stacks of size n and
grouping the columns in stacks of size ki, ks, ..., kn
respectively, then the diagonal entries of the parti-
tioned matrix (in which the entries themselves are sub-
matrices) are X1, X, ..., X, respectively and the off-
diagonal entries are 0. We note also that E[U] = 0 and
Cov[U] = ¥ ® I,,. One then immediately obtains the
generalized least squares estimate of 3 by transforming
the above regression equation to one with homoscedas-
tic errors. The GLS estimate is:

Bars = (XT(E e L)X) ' XT(E ! @ 1,)Y.

In general ¥ is unknown but one usually plugs in a
consistent estimator of ¥ into the above equation, say
3= ((6i;)) where &;; is obtained using the residu-
als from OLS regression as explained previously. Both



BOLS and BGLS are unbiased and in particular under
the normality assumption the estimato obtained by
plugging in ¥ for ¥ in Bars is unbiased too. Under
the normality assumption with no restrictions on X
one can frame the likelihood equations as follows:

X' e L)Xp=X"(S"'o L)Y
Y= 0" (uy)); wy = [V LX) T (Y L X;6)]

Even though analytical closed form expressions for the
MLE’s do not exist the following iterative procedure
gives satisfactory results:

Bo = (XT(S) @ L)X)T'XT(SL) @ L)Yw =
1,2,...

Uitw) = Yi L XiBiw-1;w=2,3,...

Sijw) = n_l[UZjEw)Uj(w)];w = 2,3,..., where one it-
erates till convergence. The initial estimate of X, i.e.
S(1) can be obtained from the residuals of OLS regres-

slon.

9 APPLYING SUR METHODS TO
GAUSSIAN MAG VIA

9.1 KEY ISSUES

The SUR techniques described earlier can be adapted
to estimation of parameters in a subclass of Gaussian

MAGs defined below.

At first sight it might appear that a MAG model on m
vertices is reducible to a set of m seemingly unrelated
regression equations, with the parents of each vertex
acting as the predictors in the corresponding regression
equation.

However in a MAG some responses may act as predic-
tors for other responses whereas this may not occur in
a SUR model (where the predictors are usually con-
sidered fixed). A second difference is that in a MAG
the error terms in two equations may be specified to
be uncorrelated, while in a SUR model the covariance
matrix for the disturbances is unrestricted.

To apply the SUR model correctly to a subset B of ver-
tices, we also require that there be no double headed
arrow between any vertex in B and any vertex in the
set of strict ancestors of B. (Where the strict ancestral
set fo B is defined as | J,g(an(b)\ {6}.) This is neces-
sary because while using the SUR model with the ver-
tices in B as response we are modelling the conditional
distribution of the response variables given their par-
ents and so are estimating the conditional covariance
matrix between the error variables given the parents.
But we need to estimate the unconditional error co-
variance matrix and this requires the independence of
the errors corresponding to the response and the par-
ents of B. This is no longer guaranteed if some error

corresponding to a vertex in the strict ancestral set
of B is correlated with some error corresponding to a
vertex in B (since every parent of B can be written as
a linear combination of errors from the strict ancestral
set). We now characterise classes of MAGS to which
SUR methods can be applied.

9.2 FORMULATION

Consider a MAG model on m vertices. Suppose that
the vertex set admits a partitioning into &k subsets
Vi1,Va, ..., Vi such that the following properties are
satisfied:

(a) In each block none of the vertices is an ancestor
of any other.

(b) For any given block V| denote its connected com-
ponents by Cgq,...C;. We assume that there is
no double headed arrow between C; and the strict
ancestral set of C;j, for all 4.

We can then employ the SUR model as follows:

For any given block V look at a connected component
C. Since none of the vertices in V is an ancestor of any
other, the only connections between vertices in C are
double-headed arrows and these correspond to possibly
non-zero entries in the covariance matrix for the errors
associated with these vertices. Estimate the regression
coefficients and the elements of the covariance matrix
for the errors using SUR. If C' is a clique, then the error
covariance matrix is unconstrained and the iterative
techniques for obtaining the MLE’s of the s and o’s
as outlined in section 8 can be resorted to directly.

Otherwise there are constraints on the error covari-
ance matrix and we may extend the iterative estima-
tion technique in the following way:

Compute the estimate of the error covariance o;; at
each stage in the same way as outlined for the iter-
ative MLE computation if there is a double-headed
arrow between vertices ¢+ and j. Otherwise force o ;
to be equal to zero. Repeat process till convergence.
We note however that there is no guarantee that the
process converges to the MLE in this situation. But
the estimates obtained in the above manner ought to
be consistent.

In this way we obtain final estimates of the edge coef-
ficients and error covariances for each connected com-
ponent within a block. There now remains the ques-
tion of estimating the covariances between errors that
belong to different blocks and this is done by comput-
ing the sample covariance between the residuals for
the corresponding vertices (where the final estimates
of the betas are used to compute the residuals).



9.3 TWO SPECIAL CASES

(1) One way of stratifying vertices into subsets so that
within each subset there is no directed edge or
path, is to sort them by their generation. Define
a vertex to belong to generation i if the length
of the longest directed path entering that vertex
in the MAG is ¢. It is then easy to see that no
vertex in the ¢-th generation can be a parent of
any other. One can then check for condition (b)
and provided it is satisfied estimation can be car-
ried out. In particular, condition (b) is satisfied
if there are no double-headed arrows between ver-
tices of different generations.

(2) Define an equivalence relation on the set of ver-
tices in the following way: a 1s in the same equiv-
alence class as b if @ can be reached from b by a
path consisting entirely of double-headed arrows.
Let V1, V3, ... Vi denote the equivalence classes
under this relation. Note that under this strati-
fication each V; is connected. Note also that if
condition (a) is satisfied in this case there is no
further need to check condition (b). Tt will be
satisfied automatically (this is a direct outcome of
the construction of these blocks). One can then
use SUR techniques as described.
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