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Abstract

Classification problems have dominated research
on boosting to date. The application of boosting
to regression problems, on the other hand, has
received little investigation. In this paper we
develop a new boosting method for regression
problems. We cast the regression problem as a
classification problem and apply an interpretable
form of the boosted naive Bayes classifier. This
induces a regression model that we show to be
expressible as an additive model for which we
derive estimators and discuss computational
issues. We compare the performance of our
boosted naive Bayes regression model with other
interpretable multivariate regression procedures.

1. INTRODUCTION

In a wide variety of classification problems, boosting

modeling, predictive strength, and, unlike most voting
methods, interpretability. In spite of the infinite dataset
we can still obtain closed form parameter estimates within
each iteration of the boosting algorithm. As a
consequence of the model formulation, the naive Bayes
regression model turns out to be an estimation procedure
for additive regression for a monotone transformation of
the response variable. In this paper we derive the boosted
naive Bayes regression model (BNB.R) as well as show
some results from experiments using a discrete
approximation.

2. BOOSTING FOR CLASSIFICATION

In binary classification problems, we observg,Yj;,
i=1,...,N whereY; O {0,1} and we wish to formulate a
model, h(X), which accurately predictsy. Boosting
describes a general voting method for constructif}9
from a sequence of modelg(X), where each model uses
3 different weighting of the dataset to estimate its

techniques have proven to be an effective method fo . .
reducing bias and variance, and improvingparameters. Observations poorly modeledhbyeceive

misclassification rates (Bauer and Kohavi [1998]). Whiledreater We.'ght. for learniny,.. .The final boosted model
more evidence compiles about the utility of these'> & cqmblna.non of the pre_dlcnons from edu;_rwvhere .
techniques in classification problems little is known abouFaCh. IS _we|ghted accqrdmg to the quality of its
their effectiveness in regression problems. Freund an(aassﬁmatlon of the training data. F&S presented a

- ; ; oosting algorithm for classification problems that
Schapire [1997] (F&S) provide a suggestion as to hovgmpirically has yielded reduction in bias, variance, and

boosting might produce regression models using their . A , . e
algorithmAdaBoost. RBreiman [1997] also suggests how misclassification rates with a variety of base classifiers
5'and problem settings.

boosting might apply to regression problems using hi
algorithmarc-gvand promises a study in the near future.Their AdaBoostadaptive boosting) algorithm has become
The only actual implementation and experimentation withthe dominant form of boosting in practice and
boosting regression models that we know of is Druckeexperimentation so faAdaBoosproceeds as follows.
[1997] in which he applies an ad hoc modification of

AdaBoost.Rto some regression problems and obtaindnitialize the weight of each observationf =L . Fort

promising results. in 1 toT do the following...

In this paper we develop a new boosting method fog
regression problems. This is a work in progress and
represents some of the earliest work to connect boostirgy
methodology with regression problems. Motivated by the

Using the weights, learn modg(x,) : X-[0,1].
N

Computeg, = Z wy, =h (x)| as the error foh,
1=1

concept pehlndAdanqst.E_e we project the regression ? LetB = £, and update the weights of each of the
problem into a classification problem on a dataset o 1-¢

infinite size. We use a variant of the boosted naive Bayes ) D) © % -h (o) ]

classifier (Ridgewayet al[1998]) that offers flexibility in observations asv ™ = w; - This scheme



increases the weights of observations poorlyassumptions and tends not to be sensitive to extraneous
predicted byh,. predictor variables. Note that (1) remains a naive Bayes

4. Normalizew™ so that they sum to one. classifier even though it has been boosted. However,
boosting has biased the estimates of the weights of

To classify a new observation F&S suggest combining thevidence to favor improved misclassification rates.

classifiers as: Subsequent classifiers place more weight on observations
T L that are poorly predicted. Intuitively, boosting weights
1 Z (log5)h (x) regions of the sample space that are not modeled well or
h(x) =——=——— wherer(x) == . exemplify violations of the model's assumptions (in the
1+ |—j B Z(k)gi) naive Bayes case, conditional independence of the
t B, L. . L ..
1= = features). Similar to the weight of evidence logistic

They prove that boosting in this manner places an uppéegression proposal of Spiegelhalter and Knill-Jones
bound on the final misclassification rate of the training[1984], boosting the naive Bayes classifier seems to have
dataset at a shrinking effect on the weights of evidence and reins in

T the classifier’s over-optimism.
2 H JE(@d-¢€) .
t=

Some methods to offset violations of the naive Bayes
Note that as long as the weighted misclassification rate @fssumption build decision trees that fit local naive Bayes
each of the classifiers can do even slightly better (oclassifiers at the leaves. Zheng and Webb [1998] give a
worse) than random guessing, then the bound decreasésstory of some methods as well as propose a new method
Even if boosting drives the training error to zero theof their own. Within a leaf this method fits a naive Bayes
boosted models tend not to be overfit. The work orclassifier where the observation weighting assigns weight
AdaBoostalso produced bounds on generalization errod to observations in the leaf and weight O to observations
based on VC dimension. HoweverAdaBooss  outside the leaf. The final model then mixes all the leaves
performance in practice often is much better than théogether. Boosting performs in a similar manner.
bound implies. However, rather than partitioning the dataset, boosting
- reweights smoothly, learning on each iteration to what

: R o acﬂagree it should fit the next classifier to each observation.
be fairly simplistic (classification trees) and yet, when

boosted, can capture complex decision boundarie

(Breiman [1998]). Ridgewayet al [1998] substituted the § BOOSTING REGRESSION

naive Bayes classifier foh(x) and a Taylor series PROBLEMS

approximation to the sigmoid function to obtain any spite of the attention boosting receives in classification

accurate and interpretable boosted naive Bayes classifiefthodoloay. few results exist that applv the ideas to
Equation (1) shows this version of the boosted naiv. 9 pply

B lassifier in the f fthe | dds in f fegression problems. If boosting’s effectiveness extends
ayes classifier in the form of the log-odds in favor o beyond classification problems then we might expect that

Y=1. _ the boosting of simplistic regression models could result
P =1|X) - in a richer class of regression models. Breiman [1997]
P(Y =0| X) describes a boosting method callet-gv although to

P(Y=D) &Z P(X, Y =1) date he has produced no performance results.

.
log——=+ log————— , , ,

;m og P(Y=0) JZ;m og R(X,|Y=0) (1) Druc|_<er [1997] co_nS|dered &ml hocboosting regression

algorithm. He assigned a weight, to each observation

= boostedprior weidht of evidencer and fit a CART modelh(X) - Y, to the weighted sample.

iboostedNeightof evidencdrom X, Similar to theAdaBoostlgorithm for classification he set
" & lyi —h(x) ]

P(0) is an estimate of the probability density function & = ZWi(t)LiE : — : .

using a weighted likelihood taking into account the 1= max|y; —h ()|

observation weightsp®, from thet™ boosting iteration. He offers three candidate loss functiohs,all of which
The a; are the weights of the individual classifiers asare constrained on [0, 1]. The definition &fremains the
assigned by the boosting algorithm. The boosted weightsame and the reweighting proceedddaBoostfashion.
of evidence are a version of those described in Good LA Mmh)l E

[1965]. A positive weight corresponding ¥ indicates wt =w® B 'Ema&rh(x)l

that the state oX; is evidence in favor of the hypothesis

thatY=1. A negative weight is evidence f6z0. In this manner, each boosting iteration constructed a

regression tree on different weightings of the dataset.
In practice the non-boosted naive Bayes classifiekastly, he used a weighted median to merge the
consistently demonstrates robustness to violations in itgredictions of each regression tree. Using this method, his



empirical analysis showed consistent improvement irproblems, if a classifier performs very poorly in the sense
prediction error over non-boosted regression trees. of getting almost every observation wrodgiaBoostcan

Drucker’s and F&S’s methods share little in common. Inuse such a.classme.r just as much as one that' gets 'almost
everyone right. This drawback led us to investigate

order to extend F&S's theoretical classification results to

rearession broblems thev broiect the rearession data Wpether we could avoid fitting a regression model that
9 P Y proj 9 SHduces a classifier and instead fit a classifier directly to

into a classification dataset and apply thémlaBoost D
algorithm. Our algorithm proceeds similarly. ’
Table 2: Transformed dath),
3.1. PROJECTING THE OBSERVED DATA X v S V=5
F&S project the data into a “reducédlaBoostspace,” a 06 04 03 000 0
classification dataset, in the following way. For the 06 04 03 001 0
moment we will assume that[ [0, 1]. The methodology 06 04 03 : 0
readily extends to the whole real line. To make this = 06 04 03 029 0
transition to a classification problem we first expand the % 06 04 03 030 1
size of the dataset. Consider the toy dataset with two © 06 04 03 031 1
observations shown in Table 1. We transform the original 06 04 03 : 1
regression datasel), to a new classification dataser,, 06 0.4 03 0.99 1
as follows. 06 04 03 1.00 1
Table 1: Example dat& 08 05 09 0.00 0
08 05 09 o0.01 0
X1 X Y 08 05 09 0.02 0
06 04 03 ~ 08 05 09 : 0
08 05 09 g 08 05 09 0.89 0
First, letS be a sequence of equally spaced values in o 82 82 88 88(1) i
the interval [0, 1]. Secondly, create the Cartesian product 0.8 0'5 0'9 a 1
of (Xy, Xz, Y) andS Then append the dataset with a binary ' ' ' :
variable,Y’, that has the value 0 §< Y and 1ifS>Y. 0.8 05 09 099 1
T = 08 05 09 1.00 1

Table 2 shows an example transformation of Table 1. We
will call this datasetD’ which hasmxN observations.
Now we can construct a classifier of the form%- CLASSIFICATION FOR INFINITE
h:(X,9 - {0, 1}. In other words, we can give this model DATASETS

anX and anS and ask of it whether thé associated with

X is larger or smaller thas. A probabilistic classifier If h(X,8 s our classifier constructed for, our predicted

value of Y for a givenX is the smallest value d for
fwhich h predicts Y'=1. Many classifiers base their

h:(X,S) - [0, 1]. Note that whem is large enough such ¢|assification rule,h, on estimates oP(Y'=1 | X, 9.

that the precision oS*exceeds the precision of the  tharefore to obtain a prediction fgmwe can use
transform of D to D is 1-to-1 and therefore the P A _ 1}

classification dataset contains the same information as the ¥ = nf {S' P(Y =1|X,S=9)23/. (2)
regression dataset. Throughout this paper we will index/ore easily stated, this prediction is thdor which we
the observations iD by i and the observations D' by  are equally uncertain whether the tr¥eis smaller or
(i,9. larger. Concretely, iP(Y'=1 | X, S=0.3) = 0.1 then we

At this point our methodology and F&S's methodologyWOUId believe thal'=0 is more likely and therefore, by

depart. UsingAdaBoost.Rone fits any regression model the definition ofY’, Y is likely to be larger than O.3._On
on the regression datasd®, which in tumn induces a the other hand, P(Y=1]X, $=0.3) = 0.5 then our beliefs

classifier on the classifier datasbf, That is, one can ask Would be divided as to whethéis larger or smaller than

of the regression model whether it predicts ¥neo be  0-3- In this situation, 0.3 would make a reasonable
greater or less than a val8gjiven a vector of featurex, pred|ct|9n forY. This b_ears some similarity to slicing
The performance of this induced classifier @  regression (Duanand Li[1991]).

determines the reweighting of the observations and that this stage we could potentially try to fit any classifier
weight of the model itself. to D" although to date we have just experimented with the

However, both F&S'sAdaBoost.Rand Drucker's method Naive Bayes classifier.
fail if the weighted misclassification di” exceeds ¥ on

any iteration. In practice, no method can really guarantee

that this constraint should hold. In binary classification



4.1. BOOSTED NAIVE BAYES CLASSIFICATION

FOR INFINITE DATASETS log PS”'=°(Y|Y* 0 =1og P =D
, e P._(Y]Y =] P(Y =0)
Generally naive Bayes classification assumes that the SV =
features are independent given the class label. In the d P(X; Y =1
setting here the features consistXoéind S and the class a P(X. Y =0) (6)
label is Y. This model corresponds to the following ] = :
factorization. v
orl(Y)=f,+) (X,
B 2 [ X §) M=o+ (X))
L. .. 4 L (3) Thus, if I(s) is continuous, the naive Bayes regression
P(Y =y )P(S|Y =y )|_'l P(X; 1Y =y) model is an additive model (Hastie and Tibshirani [1990])
l:

. " i . ) for a transformation of the response. Estimation of the
This  conditional ~ independence assumption is nOkdditive regression model shown in (6) is not traditional
necessarily sensible. If in fadt and X are positively  since the model relies on probability estimates rather than
correlated then, given that=1, knowledge thaBis small  op, backfitting (Friedman and Stuetzle [1981]). Also, in
is highly informative thal is small and sXis also likely  the ysual additive model framework, transformations of
to be small. Therefore, on the surface the naivene response variable usually take the form of a
assumption does not necessarily appear to be reasonai@nsformation that stabilizes the variance (AVAS). Here,
We then must rely on its robustness toward sucl {ransformation of the response is a component of the
violations and boosting's ability to compensate formggel. The earliest work on boosted naive Bayes for

incorrectly specified models. classification by Elkan [1997] showed that it was
Note that for (3) there exists ands, for everyX such €quivalent to a non-linear form of logistic regression.
that Recent work by Friedmanet al [1998] shows that

. . boosting fits an additive logistic regression model with a
P(Y =1|X,S=s)<zand P(Y =1|X,S=5,)23 (4) modifieg fitting procedure. ’ ’

By the construction ob n D fimati f th s of th |
s"nj P(SIY" :1):0andgm P(SIY" =0)= 0 n D, estimation of the components of the usual (non-

boosted) naive Bayes model is fairly straightforward. Still

This implies that assuming thaty is in [0, 1], the MLE forP(Y'=1) is
lim P(Y" =1| X, S) =0andlim P(Y" =1|X,S) =1. simply the count of rows for whic?f=1*divided byNxm,
S e = S-w = the total number of observations . Estimation of

Therefore, for the naive Bayes model, (4) holds for some(X[Y") for discreteX; also a simple ratio of counts.
s; ands,. Estimation ofP(SY') andP(X]Y'), whenX; is continuous,
Substituting (3) into (2) the computation of the regressiorﬁnay rgly on a density e;tlmate ordiscretization.
prediction under this model becomes Estimation remains mathematically tractablera;oo and
. . the resolution ofS and Y becomes more refined. To
= :lo PslY _=0) <lo P(Y_=1) + J demonstrate this consider the simplest part of the

V=i fD. P(slY'=1)  "P(Y'=0) 5 estimation problem, that of estimating(Y'=1) as m
- E ¢ P(X;|Y :1)8 ®) approaches infinity. LetS, =13, j=1,...m, and [
% lelo P(X, Y’ :o)% indicates the greatest integer function.
" N
Note that equation (5) bears some resemblance t@(Y" =1)=lim = S 4 (S)=9
equation (1). We will call the function to the left of the m-e =
inequalityl(s). I(s) is necessarily non-increasing sincesas N m
increases it must become more likely that1. Then, =w ) Im <) 1S >y) @
large values on the right side are evidence in favor of =1 1=
Y'=1. Since (4) is true for the naive Bayes model and if I
[(s) is a continuous function a&f(as would be the case for - WZ ,L'[Tlﬁ [m-D-y)0

a smooth density estimator), then by the intermediate

value theorem there exists some value &r which the ) ) i
equality holds.In this case, (5) simplifies as This says that if we randomly select an observatipn,

from D and draw a numbel§, from a Uniform[0, 1],
P(Y'(S)=1) =1-¥. In the presence of sufficient data we
would believe that this would be close R¢S > Y) if Y
was a new observation drawn from the same distribution

as the observations comprisiBg Some difficulties arise,
however, even in this simplest component of the model,



when we considely O R. Particularly theS’'s are not o Ay
definable. Clearly we cannot generateequally spaced P(S<snY =1[i)P()

S's on (<0, ). To accommodate this we assign a finitely P(S<s|Y™ =1) ==

integrable weight functionwi(s), to each observation, N P =1)
presumably with most of the weight in the neighborhood P(v. <S<sID w(s)d
of y;.. We constrain these functions so that _ .Z S s||)J'_mvv, (s)ds

< _ P(Y" =1)

w, (s)=0 and ZI_ W, (s)ds=1

- > [ wi(s)ds

and, at least initially, we will fi)J' w, (s)ds=+. We now = iz
o N
estimateP(Y =1) under a different sampling scenario. If ZI w (s)ds
we sample an observation fro® such that the =
N

probability of selecting observation is equal to Z'(y <8 (9)
fvvi(s)ds and then draw a numberS from |S(S|y*:1) 5 '

=Sy
P(s|i) Ow (s) we wish to comput®(S>y,). Derivations Z_[y W (s))ds
of the estimates follow in the next section. N

The conditional density faY is proportional to the sum
4.2. PARAMETER ESTIMATION FOR NAIVE of the mass each observation putssmver observations
BAYES REGRESSION with responses less thanA similar computation foY =0

We propose the following estimators for the componentglelds'”

of (5), the naive Bayes regression model. These 1- z :iwi(s‘)ds‘
derivations rely on the sampling scenario just described irps(s< s|Y' =0)= iy>s
section 4.1. Particularly, the probability of selecting an s

. > [ wi(s)ds
observation isP(i) :I_wwi (s)ds and P(s|i) Ow(s). ) i
Zl(yi >s) [ (s)

and

BV =D= 5 P(Y (9 =L1)PG)

P(SIY" =0) =1L -
N 00 * o I VVI (S')ds
= %‘ P(S>Y, |s:s,i)P(s|i)dsﬁq w. (s)ds ZL’
=i - Lastly, for the model componentsX..
N
— 2 w (s) *
B 4 ﬁ_m (s> i) [oaw ()ds dsﬁq_wwi (s)ds Case 1 Xis discrete
N
N o — -* - . .
- I W, (s)ds 2 P(X; =xnY; (S) =1]i)P(i)
il P(X=x|Y =1) = PV =1)
~ . N 0 -
P =013 (9 5 i
N N . S
= 2 J‘_mvvl (S)dS ;J’yl VVI (S)dS IZJ;/I VV, (S)dS
§ z
= [Lwi(s)ds S [w(e)ds
1=1 2 _ * _ i =x -
- R =xIY 0=
We see here that the estimation of the prior incorporating Iyi w (s)ds
the weights is the total weight that the observations place ,Z o
on the regionyf, ], for P(Y'=1), and on [, y; for Case 2 X is continuous
P(Y'=0). In the case wherei(s)=N"M(0<s<1) the above N ) o
expression reduces to (7). The conditional densitg6f ) Z P(X; <xnY; (S) =1]i)P(i)
follows using similar techniques. P(X<x|Y =1) == P =1)

S (% <x)I:Wi(s)ds

5 i




N f e ey from y,. The most difficult region to classify must be the
Z P(X; <xn ¥, (S)=0[i)P(i) neighborhood arouny. If the classifier performs well at

P(X <x|Y =0)=+= — all then predicting whethey is smaller thars whens is
P(Y' =0) much larger thag; should be an easy task. The usual idea
N Lx <[ d behind boosting is to downweight the easy to classify
; (% X)I-wwi (s)ds regions. Little to our surprise, in experiments with the
B y algorithm when initialized to be uniform on [0,1] boosting
Z-r_wvv, (s)ds increased the mass of the weight function in the

neighborhood between the prediciésl and the trusy’s,

The form of the cdP(X < x | Y) whenX is a continuous the r_egion of mi_sclassification *: This ph_e_nomenon_is
predictor, resulting from the discreteness of the observeRr€cisely opposite to F&S’s choice of initial weighting.
%, introduces an unfortunate complexity to the estimatiofrigure 2 shows a typical collection of weight functions
problem. Therefore, the naive Bayes computation ma_fter a few iterations, all of which are peaked, Laplace-
require some form of non-parametric density estimationlik€ around the true value.

either discretization or a density-smoothing algorithm.

Although we found the above derivation more intuitive, N N
we can also derive these results by directly maximizing a - o
weighted likelihood on the observationsDn indexed by

@i, 9,

N 00
L©) =[] TTP(Y; (9.5.% 16)™* 8)
1=1 - £ g
where 8 are the model components we wish to estimate J\ 2
and 7Tdenotes the product-integral (Dollard and Friedman § £
[1979]). From (8), the log weighted likelihood is Pooer o e en oo
N .
1) =3 [ N O (s)[ogP(y, (s),s,% 16)ds. Figure 2: Example weight functions
1=1

Lastly, utilizing the naive Bayes assumption to fagi@ = The total weighted empirical misclassification rate on
and subsequently maximizing(6), the estimators Iterationtis

previously derived follow. & =P, (Y (S)2h'(X,9)
N
4.3. THE BOOSTED NAIVE BAYES = Z P, Y, (S) 2 h"(x,9)]i)P(i)
REGRESSION ALGORITHM =il

N
The establishment of weight functions on each = Z P, (y; <S< ¥, O <S<y, |i)P()
observation leads directly to the application of boosting. =
The manipulation of weights is a central idea of boosting Iy‘w (y)dy‘
i o

and, as previously mentioned, their manipulaton X

improves misclassification rates and, therefore in this ‘Z * q I_wWi (y)dy
application, regression error. . I_wwi(y) y

When we constrain ourselvesYadl [0, 1] as F&S do, the = %hj‘wi (y)dy‘

weight functions for each observation on the first iteration = WY

may be uniform on [0, 1]. Extensions of this method from
[0, 1] to the real line involve modifying the weight
function so that they have finitely integrable tails (e.qg.
function that decays exponentially frany). We suggest

Figure 1 compiles the preceding results into the boosted
d‘na'l've Bayes regression algorithm. The reweighting in step
4 of the algorithm can be rather complicated since the

initially using Laplace distribution weight functions of the naive Bayes classifier puts (.)Ut a pr(_)babilist!c preo!iction.
Y gLap 9 If we abandon the added information available in the

formw, (y) D expC-|y =, |/0) . Letting o be fairly large probability estimates in step 4 and instead merely

with respect to the spread of the data so that the Laplace =~ . . . .
distribution is flat may let the boosting algorithm drive usel (P(Y" =1| X;,s)>3) then the weight update is much

the modification of the weight functions. F&S considersimpler. With this 0-1 prediction the update step scales
only Y O [0, 1] and propose initializing the weight the weight function by except on the interval betwegn
function to bew, (y) |y -y, | This seems to be a poor andy, (note that the discontinuity in the indicator
choice of weight function since it ties the weight functionfunction occurs aty; ). This is the update scheme used in
to be 0 aty=y; and increases the weight on regions farAdaBoost.R To implement this alternate scheme, the



Input: sequence of examplégy,yi),..., (X, yn)Owherey, [0 R andT, the number of boosting iterations
Initialize: wi(y) as a Laplace density function with mgaand scale.

Fort=1,2,..T

1. Usingw(y), estimate the components of the naive Bayes regression im@del,

N
2. Calculate the loss of the mo g, = z U:mwi (s)d%
=1~

3. Setp, =t

4. Update the weight functions so that for each observation the rggibitq)] is more heavily weighted as

(g = OB Y scy,
i EW (S)mP(Y =1yX;,s) S>yi

N 00
5. Normalize the weights so th ZI_ w, (s)ds=1.
1=1

Output the model:

= PLy|Y ' =0) I P(Y =) & P'(X; 1Y =D
mnfw:Zatlog Gl ) < Z ¥+Zzat og———————L0
YH & Ps(ylY' =) & 0 && PY(X; 1Y =0)§
wherea, = _10gh,
Zlogﬁt
t=1

Figure 1: The boosted naive Bayes regression algorithm

algorithm stores the §® and B on each boosting (Loader [1997]) is a local density estimator that can

iteration. The integrals in the estimation of the naive handle observation weights.

Bayes model and the integral at step 2 of the boostingor each simulated test function we generated 100
procedure then become computable in closed form asbservations as a training dataset and 100 observations for
integrals of piecewise scaled sections of the Laplaca validation set. For the two real datasets we randomly
distribution. How this change would affect the selected half of the observations as training and the

performance is currently unclear. remaining half as a validation set. From the training
dataset we fit the boosted naive Bayes regression model, a

5. EXPERIMENTAL RESULTS least-squares plane, a generalized additive model, and a
CART model. We replicated each experiment ten times

5.1. METHODS and measured performance on the validation set using

) ) mean squared bias.
Our experimental work with boosted naive Bayes

regression uses a discrete approximation to the algorithm meansquaredias= Z (y, - 9i)2
developed in the previous section. We actually construct =
D" with S as a finite sequence of evenly spaced valueAs the boosting iterated, |q§ always approached zero so
(m=100 in our experiments) and fit the boosted naivéhat each additional iteration contributed less and less to
Bayes model. Experimenting in this way gave someerror improvement. We ran the boosting iteration until log
intuition on the performance of the method and howB was fairly small. This stopping criterion generally did
AdaBoostmodifies the weights of hard to classify regions.not affect the performance on the validation set.
We shpw empirically that the b_oosted. nafve Baygswe tested using the following functions.
regression can capture many interesting regressio A plane
surfaces. Because our experimentation used this discrete_

=0.6x, +0.3x, + &, wheres ~ N(0,0.05)
approximation, we are only able to handle a respons
bounded on [0, 1]. Therefore, in all experiments weX; ~U[0,1], j=12
shifted and scaled the response to the unit interval. For the
continuous predictors we used a non-parametric density
estimator to estimat®(X; | Y') and P(S | Y). LocriT



B. Friedman #1 (Friedmaet al[1983])
y =10sin(7x,x,) + 20(x, — )% +10x, +5x; + N(0,1)
x; ~U[0,1], j=1....10

C. Friedman #2 (Friedman [1991])

y=§<f+§<2xs_ §§+N(O,G)
O O

D. Friedman #3 (Friedman [1991])

1
Xo X4

1

For both C and Do is tuned so that the true underlying
function explains 91% of the variability jnand

x, ~U[0,100

X, ~U[4071,5607]

X; ~U[0,]

X, ~U[L1]]

E. Bank dataset (George and McCulloch [1993])
This dataset contains financial information on 233 bank

in the greater New York area. We selected eleven of the
variables for predicting the number of new accounts sold

in a fixed time period.
F. Body fat dataset (Penrost,al [1985])

This dataset contains physical measurements on 252 me
From a set of non-invasive body measurements we

attempt to predict body fat percentage.

For all the datasets we linearly scaled the response so th

y fell in the interval [0, 1].

5.2. PERFORMANCE RESULTS
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Figure 2: Performance comparison on (a) the plane (b)
Friedman #1 (c) Friedman #2 and (d) Friedman #3

In the first example, the plane, the least-squares linear
model is the best predictive model to fit. Naturally, any
other model cannot outperform the ordinary least squares
plane in terms of generalization error, but we desire that
the boosted naive Bayes regression model would still
perform relatively well. Figure 2(a) shows that indeed
BNB.R did not perform as well as LM or GAM but its
performance was satisfactory.

Friedman, et al [1983] proposed Friedman #1 to test
learning noisy functions that are additive with
interactions. Furthermore, it introduces five variablgs,
to X1, Which are purely extraneous variables. We found
that BNB.R outperformed the linear model and CART but
GAM still preceded its performance. Figure 2(b) shows
the performance over 10 validation datasets.

Table 3: Performance results

Mean squared Standard

Function Model bias deviation
BNB.R 0.0044 0.0004
Plane GAM 0.0034 0.0005
LM 0.0033 0.0005
CART 0.0083 0.001(0
\ BNB.R 0.0087 0.003
Friedman #1| GAM 0.0064 0.001
LM 0.0132 0.003
CART 0.0248 0.007
BNB.R 0.0072 0.002
"Friedman #2| GAM 0.0060 0.002
LM 0.0132 0.003
CART 0.0091 0.002
at BNB.R 0.0106 0.002
Friedman #3| GAM 0.0099 0.001
N=100 LM 0.0182 0.003
CART 0.0194 0.006
BNB.R 0.009 0.0016
Friedman #3| GAM 0.009 0.0011
N=200 LM 0.016 0.0025
CART 0.012 0.0018
BNB.R 0.010 0.0031
Bank GAM 0.018 0.0201
LM 0.005 0.0017
CART 0.009 0.0008
BNB.R 0.017 0.002
Body fat GAM 0.014 0.005
LM 0.010 0.001
CART 0.014 0.002

Friedman [1991] proposed learning functions Friedman
#2 and #3, the impedance and phase shift of a specific
circuit where x;, X, X3, and X, relate to a resistor,
generator, inductor, and capacitor. Figure 2(c) and Figure
2(d) show the performance on Friedman #2 and #3. On
function Friedman #2 BNB.R outperformed the linear
model and CART and performed a little worse than



GAM. Among all the simulated function experiments The most important aspect from a research perspective is
BNB.R was most competitive with GAM on Friedman #3.that applying the boosted naive Bayes classifier in this

Table 3 summarizes the performance results including th%’;\shlon provides an early link between the advances

c%osting has made for classification problems to its
performance on the real datasets. On the bank datase . L . )
: .~ ‘potential application in regression contexts. Changes in
GAM performed especially poorly and BNB.R was third o . . .

, . the base classifier, an improved implementation, and
to LM and CART. Unlike the simulated examples, thesef h hoi h . fb '
datasets don’t have a controlled error structure. At thi urther researc .'mo the propertle_s of boosting may

) . o e ntroduce a new rich class of regression models.
point we are uncertain how sensitive BNB.R is to very
noisy data. We also briefly investigated how changes i
the sample size affect the performance by including
second analysis of Friedman #3 wiik200. CART, as a A grant from the National Science Foundation supported
Bayes risk consistent regression procedure, naturallshis work (DMS 9704573).
gains substantially in performance. GAM and BNB.R
improve slightly, although not by a significant amount.  References
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