
Boosting Methodology for Regression Problems

Greg Ridgeway, David Madigan, and Thomas Richardson
Box 354322, Department of Statistics

University of Washington
Seattle, WA 98195

{greg, madigan, tsr}@stat.washington.edu

Abstract

Classification problems have dominated research
on boosting to date. The application of boosting
to regression problems, on the other hand, has
received little investigation. In this paper we
develop a new boosting method for regression
problems. We cast the regression problem as a
classification problem and apply an interpretable
form of the boosted naïve Bayes classifier. This
induces a regression model that we show to be
expressible as an additive model for which we
derive estimators and discuss computational
issues. We compare the performance of our
boosted naïve Bayes regression model with other
interpretable multivariate regression procedures.

1. INTRODUCTION

In a wide variety of classification problems, boosting
techniques have proven to be an effective method for
reducing bias and variance, and improving
misclassification rates (Bauer and Kohavi [1998]). While
more evidence compiles about the utility of these
techniques in classification problems little is known about
their effectiveness in regression problems. Freund and
Schapire [1997] (F&S) provide a suggestion as to how
boosting might produce regression models using their
algorithm AdaBoost.R. Breiman [1997] also suggests how
boosting might apply to regression problems using his
algorithm arc-gv and promises a study in the near future.
The only actual implementation and experimentation with
boosting regression models that we know of is Drucker
[1997] in which he applies an ad hoc modification of
AdaBoost.R to some regression problems and obtains
promising results.

In this paper we develop a new boosting method for
regression problems. This is a work in progress and
represents some of the earliest work to connect boosting
methodology with regression problems. Motivated by the
concept behind AdaBoost.R, we project the regression
problem into a classification problem on a dataset of
infinite size. We use a variant of the boosted naïve Bayes
classifier (Ridgeway, et al [1998]) that offers flexibility in

modeling, predictive strength, and, unlike most voting
methods, interpretability. In spite of the infinite dataset
we can still obtain closed form parameter estimates within
each iteration of the boosting algorithm. As a
consequence of the model formulation, the naïve Bayes
regression model turns out to be an estimation procedure
for additive regression for a monotone transformation of
the response variable. In this paper we derive the boosted
naïve Bayes regression model (BNB.R) as well as show
some results from experiments using a discrete
approximation.

2. BOOSTING FOR CLASSIFICATION

In binary classification problems, we observe (X,Y)i,
i=1,…,N where Yi ∈ {0,1} and we wish to formulate a
model, h(X), which accurately predicts Y. Boosting
describes a general voting method for constructing h(X)
from a sequence of models, ht(X), where each model uses
a different weighting of the dataset to estimate its
parameters. Observations poorly modeled by ht receive
greater weight for learning ht+1. The final boosted model
is a combination of the predictions from each ht where
each is weighted according to the quality of its
classification of the training data. F&S presented a
boosting algorithm for classification problems that
empirically has yielded reduction in bias, variance, and
misclassification rates with a variety of base classifiers
and problem settings.

Their AdaBoost (adaptive boosting) algorithm has become
the dominant form of boosting in practice and
experimentation so far. AdaBoost proceeds as follows.

Initialize the weight of each observation to Niw 1)1(= . For t

in 1 to T do the following…

1. Using the weights, learn model ht(xi) : X→[0,1].

2. Compute ∑
=

−=
N

i
iti

t
it xhyw

1

)()(ε as the error for ht.

3. Let
t

t
t ε

εβ
−

=
1

 and update the weights of each of the

observations as)(1)()1(iti xhy
t

t
i

t
i ww −−+ = β . This scheme

increases the weights of observations poorly
predicted by ht.

4. Normalize w(t+1) so that they sum to one.

To classify a new observation F&S suggest combining the
classifiers as:

∏
=

−+
=

T

t

xr
t

xh

1

1)(21

1
)(

β
 where

∑

∑

=

==
T

t

T

t
t

t

t
xh

xr

1

1

1

1

)(log

)()(log

)(

β

β

.

They prove that boosting in this manner places an upper
bound on the final misclassification rate of the training
dataset at

∏
=

− −
T

t
tt

T

1

1)1(2 εε .

Note that as long as the weighted misclassification rate of
each of the classifiers can do even slightly better (or
worse) than random guessing, then the bound decreases.
Even if boosting drives the training error to zero the
boosted models tend not to be overfit. The work on
AdaBoost also produced bounds on generalization error
based on VC dimension. However, AdaBoost’s
performance in practice often is much better than the
bound implies.

Empirical evidence has shown that the base classifier can
be fairly simplistic (classification trees) and yet, when
boosted, can capture complex decision boundaries
(Breiman [1998]). Ridgeway, et al [1998] substituted the
naïve Bayes classifier for ht(x) and a Taylor series
approximation to the sigmoid function to obtain an
accurate and interpretable boosted naïve Bayes classifier.
Equation (1) shows this version of the boosted naïve
Bayes classifier in the form of the log-odds in favor of
Y=1.

∑

∑∑∑

=

= ==

+=

=
=

+
=
=

=
=
=

d

j
j

d

j

T

t jt

jt
t

T

t t

t
t

X

YXP

YXP

YP

YP

XYP

XYP

1

1 11

 from evidence of weight boosted

evidence ofht prior weig boosted

)0|(

)1|(
log

)0(

)1(
log

)|0(

)|1(
log

αα
(1)

Pt(⋅) is an estimate of the probability density function
using a weighted likelihood taking into account the
observation weights, w(t), from the tth boosting iteration.
The αt are the weights of the individual classifiers as
assigned by the boosting algorithm. The boosted weights
of evidence are a version of those described in Good
[1965]. A positive weight corresponding to Xj indicates
that the state of Xj is evidence in favor of the hypothesis
that Y=1. A negative weight is evidence for Y=0.

In practice the non-boosted naïve Bayes classifier
consistently demonstrates robustness to violations in its

assumptions and tends not to be sensitive to extraneous
predictor variables. Note that (1) remains a naïve Bayes
classifier even though it has been boosted. However,
boosting has biased the estimates of the weights of
evidence to favor improved misclassification rates.
Subsequent classifiers place more weight on observations
that are poorly predicted. Intuitively, boosting weights
regions of the sample space that are not modeled well or
exemplify violations of the model’s assumptions (in the
naïve Bayes case, conditional independence of the
features). Similar to the weight of evidence logistic
regression proposal of Spiegelhalter and Knill-Jones
[1984], boosting the naïve Bayes classifier seems to have
a shrinking effect on the weights of evidence and reins in
the classifier’s over-optimism.

Some methods to offset violations of the naïve Bayes
assumption build decision trees that fit local naïve Bayes
classifiers at the leaves. Zheng and Webb [1998] give a
history of some methods as well as propose a new method
of their own. Within a leaf this method fits a naïve Bayes
classifier where the observation weighting assigns weight
1 to observations in the leaf and weight 0 to observations
outside the leaf. The final model then mixes all the leaves
together. Boosting performs in a similar manner.
However, rather than partitioning the dataset, boosting
reweights smoothly, learning on each iteration to what
degree it should fit the next classifier to each observation.

3. BOOSTING REGRESSION
PROBLEMS

In spite of the attention boosting receives in classification
methodology, few results exist that apply the ideas to
regression problems. If boosting’s effectiveness extends
beyond classification problems then we might expect that
the boosting of simplistic regression models could result
in a richer class of regression models. Breiman [1997]
describes a boosting method called arc-gv although to
date he has produced no performance results.

Drucker [1997] considered an ad hoc boosting regression
algorithm. He assigned a weight, wi, to each observation
and fit a CART model, h(X) → Y, to the weighted sample.
Similar to the AdaBoost algorithm for classification he set

∑
=







−

−
=

N

i iti

iti
i

t
it xhy

xhy
Lw

1

)(

|)(|max

|)(|ε .

He offers three candidate loss functions, Li, all of which
are constrained on [0, 1]. The definition of βt remains the
same and the reweighting proceeds in AdaBoost fashion.







−

−
−

+ = |)(|max

|)(|
1

)()1(iti

iti
i

xhy

xhy
L

t
t

i
t

i ww β
In this manner, each boosting iteration constructed a
regression tree on different weightings of the dataset.
Lastly, he used a weighted median to merge the
predictions of each regression tree. Using this method, his

empirical analysis showed consistent improvement in
prediction error over non-boosted regression trees.

Drucker’s and F&S’s methods share little in common. In
order to extend F&S’s theoretical classification results to
regression problems they project the regression dataset
into a classification dataset and apply their AdaBoost
algorithm. Our algorithm proceeds similarly.

3.1. PROJECTING THE OBSERVED DATA

F&S project the data into a “reduced AdaBoost space,” a
classification dataset, in the following way. For the
moment we will assume that Y ∈ [0, 1]. The methodology
readily extends to the whole real line. To make this
transition to a classification problem we first expand the
size of the dataset. Consider the toy dataset with two
observations shown in Table 1. We transform the original
regression dataset, D, to a new classification dataset, D*,
as follows.

Table 1: Example data, D

X1 X2 Y
0.6 0.4 0.3
0.8 0.5 0.9

First, let S be a sequence of m equally spaced values in
the interval [0, 1]. Secondly, create the Cartesian product
of (X1, X2, Y) and S. Then append the dataset with a binary
variable, Y*, that has the value 0 if S < Y and 1 if S ≥ Y.
Table 2 shows an example transformation of Table 1. We
will call this dataset D* which has m×N observations.
Now we can construct a classifier of the form
h:(X,S)→{0, 1}. In other words, we can give this model
an X and an S and ask of it whether the Y associated with
X is larger or smaller than S. A probabilistic classifier
may instead give a probabilistic prediction so that
h:(X,S)→[0, 1]. Note that when m is large enough such
that the precision of S exceeds the precision of Y the
transform of D to D* is 1-to-1 and therefore the
classification dataset contains the same information as the
regression dataset. Throughout this paper we will index
the observations in D by i and the observations in D* by
(i, S).

At this point our methodology and F&S’s methodology
depart. Using AdaBoost.R one fits any regression model
on the regression dataset, D, which in turn induces a
classifier on the classifier dataset, D*. That is, one can ask
of the regression model whether it predicts the Y to be
greater or less than a value S given a vector of features, X.
The performance of this induced classifier on D*

determines the reweighting of the observations and the
weight of the model itself.

However, both F&S’s AdaBoost.R and Drucker’s method
fail if the weighted misclassification on D* exceeds ½ on
any iteration. In practice, no method can really guarantee
that this constraint should hold. In binary classification

problems, if a classifier performs very poorly in the sense
of getting almost every observation wrong, AdaBoost can
use such a classifier just as much as one that gets almost
everyone right. This drawback led us to investigate
whether we could avoid fitting a regression model that
induces a classifier and instead fit a classifier directly to
D*.

Table 2: Transformed data, D*

X1 X2 Y S Y* = I(S ≥ Y)
0.6 0.4 0.3 0.00 0
0.6 0.4 0.3 0.01 0
0.6 0.4 0.3 � 0
0.6 0.4 0.3 0.29 0
0.6 0.4 0.3 0.30 1
0.6 0.4 0.3 0.31 1
0.6 0.4 0.3 � 1
0.6 0.4 0.3 0.99 1

O
b

s.
 1

0.6 0.4 0.3 1.00 1
0.8 0.5 0.9 0.00 0
0.8 0.5 0.9 0.01 0
0.8 0.5 0.9 0.02 0
0.8 0.5 0.9 � 0
0.8 0.5 0.9 0.89 0
0.8 0.5 0.9 0.90 1
0.8 0.5 0.9 0.91 1
0.8 0.5 0.9 � 1
0.8 0.5 0.9 0.99 1

O
b

s.
 2

0.8 0.5 0.9 1.00 1

4. CLASSIFICATION FOR INFINITE
DATASETS

If h(X,S) is our classifier constructed for D*, our predicted
value of Y for a given X is the smallest value of S for
which h predicts Y*=1. Many classifiers base their
classification rule, h, on estimates of P(Y*=1 | X, S).
Therefore, to obtain a prediction for Y we can use

{ }2
1*),|1(:infˆ ≥=== sSXYPsY

s
. (2)

More easily stated, this prediction is the y for which we
are equally uncertain whether the true Y is smaller or
larger. Concretely, if P(Y*=1 | X, S=0.3) = 0.1 then we
would believe that Y*=0 is more likely and therefore, by
the definition of Y*, Y is likely to be larger than 0.3. On
the other hand, if P(Y*=1 | X, S=0.3) = 0.5 then our beliefs
would be divided as to whether Y is larger or smaller than
0.3. In this situation, 0.3 would make a reasonable
prediction for Y. This bears some similarity to slicing
regression (Duan and Li [1991]).

At this stage we could potentially try to fit any classifier
to D* although to date we have just experimented with the
naïve Bayes classifier.

4.1. BOOSTED NAÏVE BAYES CLASSIFICATION
FOR INFINITE DATASETS

Generally naïve Bayes classification assumes that the
features are independent given the class label. In the
setting here the features consist of X and S and the class
label is Y*. This model corresponds to the following
factorization.

∏
=

===

∝=
d

j
j

d

yYXPyYSPyYP

SXXyYP

1

1
**

)|()|()(

),,,|(�

(3)

This conditional independence assumption is not
necessarily sensible. If in fact Y and X are positively
correlated then, given that Y*=1, knowledge that S is small
is highly informative that Y is small and so X is also likely
to be small. Therefore, on the surface the naïve
assumption does not necessarily appear to be reasonable.
We then must rely on its robustness toward such
violations and boosting’s ability to compensate for
incorrectly specified models.

Note that for (3) there exists s1 and s2 for every X such
that

2
1

1
*),|1(<== sSXYP and 2

1
2

*),|1(≥== sSXYP (4)

By the construction of S

0)1|(lim * ==
−∞→

YSP
S

and 0)0|(lim * ==
∞→

YSP
S

.

This implies that

0),|1(lim * ==
−∞→

SXYP
S

and 1),|1(lim * ==
∞→

SXYP
S

.

Therefore, for the naïve Bayes model, (4) holds for some
s1 and s2.

Substituting (3) into (2) the computation of the regression
prediction under this model becomes

























=

=

+
=
=≤

=
=

=

∑
=

d

j j

j
s

YXP

YXP

YP

YP

YsP

YsP
s

Y

1
*

*

*

*

*

*

)0|(

)1|(
log

)0(

)1(
log

)1|(

)0|(
log:

infˆ (5)

Note that equation (5) bears some resemblance to
equation (1). We will call the function to the left of the
inequality l(s). l(s) is necessarily non-increasing since as s
increases it must become more likely that Y*=1. Then,
large values on the right side are evidence in favor of
Y*=1. Since (4) is true for the naïve Bayes model and if
l(s) is a continuous function of s (as would be the case for
a smooth density estimator), then by the intermediate
value theorem there exists some value of s for which the
equality holds.In this case, (5) simplifies as

∑

∑

=

=

=

=

+=

=
=

+
=
==

=

=

d

j
j

d

j j

j

YS

YS

XffYl

YXP

YXP

YP

YP

YYP

YYP

1
0

1
*

*

*

*

*
1|

*
0|

)()ˆ(or

)0|(

)1|(
log

)0(

)1(
log

)1|ˆ(

)0|ˆ(
log

*

*

(6)

Thus, if l(s) is continuous, the naïve Bayes regression
model is an additive model (Hastie and Tibshirani [1990])
for a transformation of the response. Estimation of the
additive regression model shown in (6) is not traditional
since the model relies on probability estimates rather than
on backfitting (Friedman and Stuetzle [1981]). Also, in
the usual additive model framework, transformations of
the response variable usually take the form of a
transformation that stabilizes the variance (AVAS). Here,
a transformation of the response is a component of the
model. The earliest work on boosted naïve Bayes for
classification by Elkan [1997] showed that it was
equivalent to a non-linear form of logistic regression.
Recent work by Friedman, et al [1998] shows that
boosting fits an additive logistic regression model with a
modified fitting procedure.

In D*, estimation of the components of the usual (non-
boosted) naïve Bayes model is fairly straightforward. Still
assuming that Y is in [0, 1], the MLE for P(Y*=1) is
simply the count of rows for which Y*=1 divided by N×m,
the total number of observations in D*. Estimation of
P(Xj|Y

*) for discrete Xj also a simple ratio of counts.
Estimation of P(S|Y*) and P(Xj|Y

*), when Xj is continuous,
may rely on a density estimate or discretization.
Estimation remains mathematically tractable as m→∞ and
the resolution of S and Y* becomes more refined. To
demonstrate this consider the simplest part of the
estimation problem, that of estimating P(Y*=1) as m

approaches infinity. Let 1
1

−
−= m

j
jS , j=1,…,m, and ⋅

indicates the greatest integer function.

 

y

ym

ySI

SYIYP

N

i
immN

N

i

m

j
ijmmN

N

i

m

j
jimNm

−=

−−=

>=

===

∑

∑ ∑

∑∑

= ∞→

= =∞→

= =
×∞→

1

)1)(1(lim

)(lim

)1)((lim)1(ˆ

1

11

1 1

11

1 1

1

(7)

This says that if we randomly select an observation, i,
from D and draw a number, S, from a Uniform[0, 1],

ySYP −== 1)1)((ˆ * . In the presence of sufficient data we

would believe that this would be close to P(S > Y) if Y
was a new observation drawn from the same distribution
as the observations comprising D. Some difficulties arise,
however, even in this simplest component of the model,

when we consider Y ∈ ¸. Particularly the Sj’s are not
definable. Clearly we cannot generate m equally spaced
Sj’s on (-∞, ∞). To accommodate this we assign a finitely
integrable weight function, wi(s), to each observation,
presumably with most of the weight in the neighborhood
of yi. We constrain these functions so that

0)(≥swi and ∑∫
=

∞

∞−
=

N

i
i dssw

1

1)(

and, at least initially, we will fix∫
∞

∞−
= Ni dssw 1)(. We now

estimate P(Y*=1) under a different sampling scenario. If
we sample an observation from D such that the
probability of selecting observation i is equal to

∫
∞

∞−
dsswi)(and then draw a number S from

)()|(swisP i∝ we wish to compute P(S>yi). Derivations

of the estimates follow in the next section.

4.2. PARAMETER ESTIMATION FOR NAÏVE
BAYES REGRESSION

We propose the following estimators for the components
of (5), the naïve Bayes regression model. These
derivations rely on the sampling scenario just described in
section 4.1. Particularly, the probability of selecting an

observation is ∫
∞

∞−
= dsswiP i)()(and)()|(swisP i∝ .

∑∫

∑ ∫∫

∑ ∫∫

∑

=

∞

=

∞

∞−

∞

∞− ∫

=

∞

∞−

∞

∞−

=

=

⋅


 >=

⋅


 =>=

===

∞
∞−

N

i
y i

N

i
idssw

sw
i

N

i
ii

N

i
i

i

i

i

dssw

dsswdsysI

dsswdsisPisSYSP

iPiSYPYP

1

1
)(

)(

1

*

1

**

)(

)()(

)()|(),|(

)()|1)(()1(ˆ

∑∫

∑∫∑∫

∑∫

=
∞−

=

∞

=

∞

∞−

=

∞

=

−=

−==

N

i

y

i

N

i
y i

N

i
i

N

i
y i

i

i

i

dssw

dsswdssw

dsswYP

1

11

1

*

)(

)()(

)(1)0(ˆ

We see here that the estimation of the prior incorporating
the weights is the total weight that the observations place
on the region [yi, ∞], for P(Y*=1), and on [-∞, yi] for
P(Y*=0). In the case where wi(s)=N-1⋅I(0<s<1) the above
expression reduces to (7). The conditional density of S|Y*

follows using similar techniques.

∑∫

∑

∑∫

∑ ∫

∑ ∫

∑

=

∞

=

=

∞

<

=

∞

∞−

=

⋅<
==

=

=

<<
=

=

=∩<
==<

N

i
y i

N

i
ii

N

i
y i

syi

s

y i

N

i
ii

N

i

i

i

i
i

dssw

swsyI

YSP

dssw

dssw

YP

dsswisSyP

YP

iPiYsSP

YsSP

1

1*

1

:

*
1

*
1

*

*

')'(

)()(
)1|(ˆ

')'(

')'(

)1(

)()|(

)1(

)()|1(
)1|(ˆ

The conditional density for S|Y* is proportional to the sum
of the mass each observation puts on s over observations
with responses less than s. A similar computation for Y*=0
yields…

∑∫

∑ ∫

=
∞−

>
−

==<
N

i

y

i

syi

y

s i

i

i

i

dssw

dssw

YsSP

1

:*

')'(

')'(1

)0|(ˆ and

∑∫

∑

=
∞−

=
⋅>

==
N

i

y

i

N

i
ii

i

dssw

swsyI

YSP

1

1*

')'(

)()(

)0|(ˆ

Lastly, for the model components of Xj…

Case 1: X is discrete

∑∫

∑ ∫

∑

=

∞

=

∞

=

=

=

=∩=
===

N

i
y i

xxi
y i

N

i
ii

i

i
i

dssw

dssw

YP

iPiSYxXP

YxXP

1

:

*
1

*

*

)(

)(

)1(

)()|1)((
)1|(ˆ

∑∫

∑ ∫

=
∞−

=
∞−

===
N

i

y

i

xxi

y

i

i

i

i

dssw

dssw

YxXP

1

:*

)(

)(

)0|(ˆ

Case 2: X is continuous

∑∫

∑ ∫

∑

=

∞

=

∞

=

<
=

=

=∩<
==<

N

i
y i

N

i
y ii

N

i
ii

i

i

dssw

dsswxxI

YP

iPiSYxXP

YxXP

1

1

*
1

*

*

)(

)()(

)1(

)()|1)((

)1|(ˆ

∑∫

∑ ∫

∑

=
∞−

=
∞−

=

<
=

=

=∩<
==<

N

i

y

i

N

i

y

ii

N

i
ii

i

i

dssw

dsswxxI

YP

iPiSYxXP

YxXP

1

1

*
1

*

*

)(

)()(

)0(

)()|0)((

)0|(ˆ

The form of the cdf P(X < x | Y) when X is a continuous
predictor, resulting from the discreteness of the observed
xi, introduces an unfortunate complexity to the estimation
problem. Therefore, the naïve Bayes computation may
require some form of non-parametric density estimation,
either discretization or a density-smoothing algorithm.

Although we found the above derivation more intuitive,
we can also derive these results by directly maximizing a
weighted likelihood on the observations in D* indexed by
(i, S),

∏
=

∞

∞−
=

N

i

dssNw
ii

ixssyPL
1

)(*)|,),(()(θθ π (8)

where θ are the model components we wish to estimate
and ππ denotes the product-integral (Dollard and Friedman
[1979]). From (8), the log weighted likelihood is

∑∫
=

∞

∞−
⋅⋅=

N

i
iii dsxssyPswNl

1

*)|,),((log)()(θθ .

Lastly, utilizing the naïve Bayes assumption to factor P(⋅)
and subsequently maximizing l(θ), the estimators
previously derived follow.

4.3. THE BOOSTED NAÏVE BAYES
REGRESSION ALGORITHM

The establishment of weight functions on each
observation leads directly to the application of boosting.
The manipulation of weights is a central idea of boosting
and, as previously mentioned, their manipulation
improves misclassification rates and, therefore in this
application, regression error.

When we constrain ourselves to Y ∈ [0, 1] as F&S do, the
weight functions for each observation on the first iteration
may be uniform on [0, 1]. Extensions of this method from
[0, 1] to the real line involve modifying the weight
function so that they have finitely integrable tails (e.g. a
function that decays exponentially from s=yi). We suggest
initially using Laplace distribution weight functions of the
form)/||exp()(σii yyyw −−∝ . Letting σ be fairly large

with respect to the spread of the data so that the Laplace
distribution is flat may let the boosting algorithm drive
the modification of the weight functions. F&S consider
only Y ∈ [0, 1] and propose initializing the weight
function to be ||)(ii yyyw −∝ . This seems to be a poor

choice of weight function since it ties the weight function
to be 0 at y=yi and increases the weight on regions far

from yi. The most difficult region to classify must be the
neighborhood around yi. If the classifier performs well at
all then predicting whether yi is smaller than s when s is
much larger than yi should be an easy task. The usual idea
behind boosting is to downweight the easy to classify
regions. Little to our surprise, in experiments with the
algorithm when initialized to be uniform on [0,1] boosting
increased the mass of the weight function in the
neighborhood between the predicted y’s and the true yi’s,
the region of misclassification in D*. This phenomenon is
precisely opposite to F&S’s choice of initial weighting.
Figure 2 shows a typical collection of weight functions
after a few iterations, all of which are peaked, Laplace-
like around the true value.

y

w
(y

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

02
0.

00
06

y

w
(y

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

02
0.

00
06

y

w
(y

)
0.0 0.2 0.4 0.6 0.8 1.0

0.
00

02
0.

00
06

y

w
(y

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

02
0.

00
06

Figure 2: Example weight functions

The total weighted empirical misclassification rate on
iteration t is

∑ ∫

∑ ∫
∫
∫

∑

∑

=

=

∞

∞−∞

∞−

=

=

=

=

<<∪<<=

≠=

≠=

N

i

y

y i

N

i
i

i

y

y i

N

i
iiiiD

N

i
iiD

Dt

i

i

i

i

dyyw

dyyw
dyyw

dyyw

iPiySyySyP

iPiSxhSYP

SXhSYP

1

ˆ

1

ˆ

1

1

**

**

)(

)(
)(

)(

)()|ˆˆ(

)()|),()((

)),()((

*

*

*ε

Figure 1 compiles the preceding results into the boosted
naïve Bayes regression algorithm. The reweighting in step
4 of the algorithm can be rather complicated since the
naïve Bayes classifier puts out a probabilistic prediction.
If we abandon the added information available in the
probability estimates in step 4 and instead merely

use)),|1(ˆ(2
1* >= sXYPI i then the weight update is much

simpler. With this 0-1 prediction the update step scales
the weight function by β except on the interval between yi

and iŷ (note that the discontinuity in the indicator

function occurs at iŷ). This is the update scheme used in

AdaBoost.R. To implement this alternate scheme, the

algorithm stores the)(ˆ t
iy and βt on each boosting

iteration. The integrals in the estimation of the naïve
Bayes model and the integral at step 2 of the boosting
procedure then become computable in closed form as
integrals of piecewise scaled sections of the Laplace
distribution. How this change would affect the
performance is currently unclear.

5. EXPERIMENTAL RESULTS

5.1. METHODS

Our experimental work with boosted naïve Bayes
regression uses a discrete approximation to the algorithm
developed in the previous section. We actually construct
D* with S as a finite sequence of evenly spaced values
(m=100 in our experiments) and fit the boosted naïve
Bayes model. Experimenting in this way gave some
intuition on the performance of the method and how
AdaBoost modifies the weights of hard to classify regions.
We show empirically that the boosted naïve Bayes
regression can capture many interesting regression
surfaces. Because our experimentation used this discrete
approximation, we are only able to handle a response
bounded on [0, 1]. Therefore, in all experiments we
shifted and scaled the response to the unit interval. For the
continuous predictors we used a non-parametric density
estimator to estimate P(Xj | Y*) and P(S | Y*). LOCFIT

(Loader [1997]) is a local density estimator that can
handle observation weights.

For each simulated test function we generated 100
observations as a training dataset and 100 observations for
a validation set. For the two real datasets we randomly
selected half of the observations as training and the
remaining half as a validation set. From the training
dataset we fit the boosted naïve Bayes regression model, a
least-squares plane, a generalized additive model, and a
CART model. We replicated each experiment ten times
and measured performance on the validation set using
mean squared bias.

∑
=

−=
N

i
ii yy

1

2)ˆ(bias squaredmean

As the boosting iterated, log βt always approached zero so
that each additional iteration contributed less and less to
error improvement. We ran the boosting iteration until log
βt was fairly small. This stopping criterion generally did
not affect the performance on the validation set.

We tested using the following functions.
A. A plane

2,1],1,0[~

)05.0,0(~ where,3.06.0 21

=
++=

jUx

Nxxy

j

εε

Input: sequence of examples 〈(x1,y1),…, (xn,yn)〉 where yi ∈ ¸ and T, the number of boosting iterations

Initialize: wi(y) as a Laplace density function with mean yi and scale σ.

For t = 1, 2, …, T

1. Using wi(y), estimate the components of the naïve Bayes regression model, ht(x).

2. Calculate the loss of the model ∑ ∫
=

=
N

i

xh

y it

it

i

dssw
1

)(
)(ε

3. Set
t

t
t ε

ε
β

−
=

1

4. Update the weight functions so that for each observation the region [yi, ht(xi)] is more heavily weighted as







>⋅
≤⋅=

=

=−
+

i
sXYP

t
t
i

i
sXYP

t
t
it

i
yssw

yssw
sw

i

i

),|1(

),|1(1
1

*

*

)(

)(
)(

β
β

5. Normalize the weights so that ∑∫
=

∞

∞−
=

N

i
i dssw

1

1)(.

Output the model:













=

=
+

=
=≤

=
=

= ∑∑∑∑
= ===

d

j

T

t j
t

j
t

t

T

t
t

t

t

T

t
t

S

t
S

t
y YXP

YXP

YP

YP

YyP

YyP
yY

1 1
*

*

1
*

*

1
*

*

)0|(

)1|(
log

)0(

)1(
log

)1|(

)0|(
log:infˆ ααα

where

∑
=

=
T

t
t

t
t

1

log

log

β

β
α

 Figure 1: The boosted naive Bayes regression algorithm

B. Friedman #1 (Friedman, et al [1983])

10,,1],1,0[~

)1,0(510)(20)sin(10 54
2

2
1

321

�=
+++−+=

jUx

Nxxxxxy

j

π

C. Friedman #2 (Friedman [1991])

),0(N
1

2
1

2

42
32

2
1 σ+


















−+=

xx
xxxy

D. Friedman #3 (Friedman [1991])

),0(N

1

tan
1

42
32

1 σ+
−

= −

x

xx
xx

y

For both C and D σ is tuned so that the true underlying
function explains 91% of the variability in y and

]11,1[~

]1,0[~

]560,40[~

]100,0[~

4

3

2

1

Ux

Ux

Ux

Ux

ππ

E. Bank dataset (George and McCulloch [1993])
This dataset contains financial information on 233 banks
in the greater New York area. We selected eleven of the
variables for predicting the number of new accounts sold
in a fixed time period.

F. Body fat dataset (Penrose, et al [1985])
This dataset contains physical measurements on 252 men.
From a set of non-invasive body measurements we
attempt to predict body fat percentage.

For all the datasets we linearly scaled the response so that
y fell in the interval [0, 1].

5.2. PERFORMANCE RESULTS

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

BNB.R GAM LM CART

m
e

an
 s

qu
ar

e
d

b
ia

s

0
.0

1
0

.0
2

0
.0

3

BNB.R GAM LM CART

m
e

an
 s

qu
ar

e
d

b
ia

s

(a) (b)

0
.0

0
4

0
.0

0
8

0
.0

1
2

0
.0

1
6

BNB.R GAM LM CART

m
e

an
 s

qu
ar

e
d

b
ia

s

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

BNB.R GAM LM CART

m
e

an
 s

qu
ar

e
d

b
ia

s

(c) (d)

Figure 2: Performance comparison on (a) the plane (b)
Friedman #1 (c) Friedman #2 and (d) Friedman #3

In the first example, the plane, the least-squares linear
model is the best predictive model to fit. Naturally, any
other model cannot outperform the ordinary least squares
plane in terms of generalization error, but we desire that
the boosted naïve Bayes regression model would still
perform relatively well. Figure 2(a) shows that indeed
BNB.R did not perform as well as LM or GAM but its
performance was satisfactory.

Friedman, et al [1983] proposed Friedman #1 to test
learning noisy functions that are additive with
interactions. Furthermore, it introduces five variables, x6

to x10, which are purely extraneous variables. We found
that BNB.R outperformed the linear model and CART but
GAM still preceded its performance. Figure 2(b) shows
the performance over 10 validation datasets.

Table 3: Performance results

Function Model
Mean squared
bias

Standard
deviation

BNB.R 0.0044 0.0005
GAM 0.0034 0.0005
LM 0.0033 0.0005

Plane

CART 0.0083 0.0010
BNB.R 0.0087 0.003
GAM 0.0064 0.001
LM 0.0132 0.003

Friedman #1

CART 0.0248 0.007
BNB.R 0.0072 0.002
GAM 0.0060 0.002
LM 0.0132 0.003

Friedman #2

CART 0.0091 0.002
BNB.R 0.0106 0.002
GAM 0.0099 0.001
LM 0.0182 0.003

Friedman #3
N=100

CART 0.0194 0.006
BNB.R 0.009 0.0016
GAM 0.009 0.0011
LM 0.016 0.0025

Friedman #3
N=200

CART 0.012 0.0018
BNB.R 0.010 0.0031
GAM 0.018 0.0201
LM 0.005 0.0017

Bank

CART 0.009 0.0008
BNB.R 0.017 0.002
GAM 0.014 0.005
LM 0.010 0.001

Body fat

CART 0.014 0.002

Friedman [1991] proposed learning functions Friedman
#2 and #3, the impedance and phase shift of a specific
circuit where x1, x2, x3, and x4 relate to a resistor,
generator, inductor, and capacitor. Figure 2(c) and Figure
2(d) show the performance on Friedman #2 and #3. On
function Friedman #2 BNB.R outperformed the linear
model and CART and performed a little worse than

GAM. Among all the simulated function experiments
BNB.R was most competitive with GAM on Friedman #3.

Table 3 summarizes the performance results including the
performance on the real datasets. On the bank dataset
GAM performed especially poorly and BNB.R was third
to LM and CART. Unlike the simulated examples, these
datasets don’t have a controlled error structure. At this
point we are uncertain how sensitive BNB.R is to very
noisy data. We also briefly investigated how changes in
the sample size affect the performance by including a
second analysis of Friedman #3 with N=200. CART, as a
Bayes risk consistent regression procedure, naturally
gains substantially in performance. GAM and BNB.R
improve slightly, although not by a significant amount.

Lastly, we present one univariate function. Although
BNB.R seems most appealing on multivariate regression
problems, we include one example that is easily
visualized. Figure 3 shows the fit of BNB.R to a linear
threshold/saturation model. While the estimation
procedure is smooth in D*, this does not necessarily
translate into smoothness in D and the BNB.R fit is
visibly jagged. However, it does appear to being fitting
correctly.

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Boosted naïve Bayes regression on a linear
threshold/saturation model.

6. CONCLUSIONS

In this paper we brought together ideas from boosting,
naïve Bayes learning, additive modeling, and induced
regression models from classification models. We derived
the BNB.R algorithm to fit a boosted naïve Bayes
regression model. Using a discrete approximation to
BNB.R, we compared its performance to three other
interpretable multivariate regression procedures that are
widely used. Although the results show that at this stage
of development BNB.R is not as competitive as other,
more established methods we believe that the novelty and
the unexpected satisfactory performance warrants further
research.

The most important aspect from a research perspective is
that applying the boosted naïve Bayes classifier in this
fashion provides an early link between the advances
boosting has made for classification problems to its
potential application in regression contexts. Changes in
the base classifier, an improved implementation, and
further research into the properties of boosting may
introduce a new rich class of regression models.

Acknowledgements

A grant from the National Science Foundation supported
this work (DMS 9704573).

References

Bauer, E. and R. Kohavi [1998]. “An Empirical
Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants,” Machine Learning, vv,
1-33.

Breiman, L. [1998]. “Arcing classifiers,” The Annals of
Statistics, 26(3):801-849.

Breiman, L. [1997]. “Prediction Games and Arcing
Algorithms,” Technical Report 504, December 1997,
Statistics Department, University of California, Berkeley.

Dollard, J.D. and C.N. Friedman [1979]. Product
Integration with Applications to Differential Equations,
Addison-Wesley Publishing Company.

Drucker, H. [1997]. “Improving Regressors using
Boosting Techniques,” Proceedings of the Fourteenth
International Conference on Machine Learning, pp. 107-
115.

Duan, N. and K.C. Li [1991]. “Slicing regression: A link
free regression method,” Annals of Statistics, 19:505-530.

Elkan, C. [1997]. “Boosting and Naïve Bayes Learning,”
Technical Report No. CS97-557, September 1997, UCSD.

Freund, Y. and R. Schapire [1997]. “A decision-theoretic
generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences,
55(1):119-139.

Friedman, J.H., T. Hastie, and R. Tibshirani [1998].
“Additive logistic regression: a statistical view of
boosting,” Technical Report.
http://www-stat.stanford.edu/~trevor/Papers/boost.ps.

Friedman, J.H. [1991]. “Multivariate Adaptive Regression
Splines” (with discussion), Annals of Statistics 19(1):1-
82.

Friedman, J.H., E. Grosse, W. Stuetzle [1983].
“Multidimensional additive spline approximation,” SIAM
Journal on Scientific and Statistical Computing, 4:291.

Friedman, J.H. and W. Stuetzle [1981]. “Projection
pursuit regression,” Journal of the American Statistical
Association, 76:817-823.

George, E.I. and R.E. McCulloch [1993]. “Variable
selection via Gibbs sampling,” Journal of the American
Statistical Association, 88:881-889.

Good, I.J. [1965]. The Estimation of Probabilities: An
Essay on Modern Bayesian Methods, MIT Press.

Hastie, T.J. and R.J. Tibshirani [1990]. Generalized
Additive Models, Chapman and Hall.

Loader, C. [1997]. “LOCFIT: An introduction,” Statistical
Computing and Graphics Newsletter, April 1997.
Available at
http://cm.bell-labs.com/cm/ms/departments/sia/project.

Penrose, K.W., A.G. Nelson, and A.G. Fisher [1985].
“Generalized body composition prediction equation for
men using simple measurement techniques,” Medicine
and Science in Sports and Exercise, vol. 17(2):189.

Ridgeway, G., D. Madigan, T. Richardson, J. O'Kane
[1998]. “Interpretable Boosted Naive Bayes
Classification,” Proceedings, Fourth International
Conference on Knowledge Discovery and Data Mining.

Spiegelhalter, D.J. and R.P. Knill-Jones [1984].
“Statistical and Knowledge-based Approaches to Clinical
Decision-support Systems, with an Application in
Gastroenterology” (with discussion), Journal of the Royal
Statistical Society (Series A), 147, 35-77.

Zheng, Z. and G.I. Webb [1998]. “Lazy Bayesian Rules,”
Technical Report TR C98/17, School of Computing and
Mathematics, Deakin University, Geelong, Victoria,
Australia.

