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Abstract
We tested a causal discovery algorithm on a
database of pneumonia patients. The output of
the causal discovery algorithm is a list of
statements “A causes B”, where A and B are
variables in the database, and a score indicating
the degree of confidence in the statement. We
compared the output of the algorithm with the
opinions of physicians about whether A caused B
or not. We found that the doctors opinions were
independent of the output of the algorithm.
However, an examination of the output of results
suggested a simple, well motivated modification
of the algorithm which would bring the output of
the algorithm into high agreement with the
physicians opinions.

1 THE PROBLEM
To make rational public policy decisions related to
medicine requires knowledge of causal relations among
variables. For example, in determining how many lives
would be saved by treating everyone with pneumonia in
hospitals, it is not enough to simply look at the
probability of survival given hospitalization versus the
probability of survival given no hospitalization. The
reason is that generally the sicker patients are sent to the
hospital, so that the influence of the hospitalization on
the death rate is confounded with possibly unmeasured
variables influencing how sick someone is. However, in
many cases, it is not feasible to perform randomized trials
for both ethical and practical reasons. Often, if we are to
infer causal relations, we must do so from background
knowledge and observational data.

We can describe this problem of causal inference
somewhat more formally in the following way. A directed
acyclic graph (DAG) G with a set of vertices V  can be
used to represent causal relations between variables, where
an edge from A to B in G means that A is a direct cause of
B relative to V; under this interpretation we call the DAG
a causal DAG. (We assume that a causal DAG does not
contain pairs of variables in which one is defined in terms
of the other, or both are defined in terms of some third
variable; this assumption is discussed at greater length in
section 7.) If we assign a prior probability to each causal
DAG, and a prior probability to the parameters of each

causal DAG (representing the strengths of the causal
connections), then given a database of patient records, it is
possible to calculate the posterior probability of each
causal DAG. The ideal Bayesian method of searching for
causal relations among variables would be to simply write
out the posterior probability of each causal DAG; the
posterior probability of some variable X causing another
variable Y could then be derived from the posterior
probabilities of the DAGs. In practice, however, if the
number of variables in a database is large, then it is not
computationally feasible to calculate the posterior
probability of each causal DAG, due to the astronomically
large number of such DAGs.

2 PARTIAL SOLUTION
The following theorem follows simply from Cooper
(1997) and Spirtes et al. (1995). (A measured variable V is
exogenous if there is no variable which is a direct cause
of V. A variable is exogenous in a causal DAG if
there is no arrow directed into it.) We assume that there is
no causal relation between the sampling mechanism and
the measured variables (i.e., there is no selection bias).

Theorem: With probability 1 in the large sample limit,
if

• each causal DAG containing the variables
<E,A,B> in which E is exogenous has a non-zero prior
probability,

• the prior probability of the parameters of each
DAG is absolutely continuous with the BDe metric
(Heckerman, et al., 1994),

• E is exogenous, and

• E → A → B has the highest posterior
probability among all DAGs containing the variables
<E,A,B> in which E is exogenous,

then in the true causal DAG, A is an ancestor of B (i.e. A
is a cause of B) and there are no latent causes (i.e.,
unmeasured confounders) of A and B.

The importance of this theorem is that it gives a sufficient
(but not necessary) condition for A being a cause of B,
even without evaluating huge numbers of DAGs, and even
when it is not known whether or not there may be
unmeasured confounders.

There is a simple heuristic which can be used to reduce the
number of triples for which the posterior probabilities are



calculated. In particular, if E → A → B has the highest
posterior probability among all DAGs containing the
variables <E,A,B> in which E is exogenous, then (1) E,
A and B are all highly dependent, and (2) E is independent
of A given B (see Spirtes, et al. 1993.) We calculate the
posteriors of DAGs only for triples of variables with these
two properties. A more precise statement of the algorithm
is given in the next section.

3 INSTRUMENTAL VARIABLE (IV)
ALGORITHM

The IV algorithm takes as input background knowledge
about which variables are exogenous, and a database
consisting of patient records. An exogenous variable is
also called an instrumental variable. The algorithm
outputs a list of causal conclusions of the form “A causes
B”. The algorithm consists of the following steps:

1. Select a subset of variables E that are known to be
exogenous. In the case of the pneumonia data (see below),
the exogenous variables we used were race, age, and
gender.

2. For each vertex E in E, search for measured variables A
and B such that A is highly dependent on E, B is highly
dependent on A, and E is independent of B given A. In the
case of the data, we defined “highly dependent” to mean
that the p value of the g2 statistic measuring the
dependence of discrete variables was less than 0.01, and “E
is independent of B given A” means that the p value of the
g2 statistic measuring the conditional dependence of E and
B given A is greater than 0.5.

3. For each triple of vertices <E,A,B> selected in step 2,
for each DAG G that can be constructed out of the triple
in which E is exogenous, calculate the posterior
probability of G. If no DAG has a higher posterior
probability than the DAG E → A → B then output “A
causes B.”

We assume each DAG compatible with the exogeneity of
E has an equal prior probability. For each DAG, the prior
probability over the parameters we used is the BDe prior
described in Heckerman et al. (1994). The BDe prior
assumes:

• that the data are complete, and

• that for any distinct variables X1 and X2, the set of
parameters associated with X1 and its parents are
independent of the set of  parameters associated with
X2 and its parents, and

• that for any two DAGs in which X1 has the same
parents the distribution over the parameters associated
with X1 and its parents are the same, and

• in a complete graph, the prior distribution over the
parameters associated with a variable and its parents
are Dirichlet.

Assuming equal prior probabilities for each DAG, we
calculate the score as the natural  log of the ratio of P(G1 |

D) and P(G2 | D) where G1 and G2 are the DAGs with the
highest and second highest posteriors, respectively. (In
Table 1, this is the number in the column labeled Score.)
This gives a rough idea how much the data D supports the
conclusion that A causes B; the ratio between the highest
and second highest posterior is generally large enough that
this is a good approximation to carrying out the full
calculation of the posterior.

4 DATA
The IV algorithm was tested on a pneumonia database of
community acquired pneumonia patients (see Fine 1997
for details), which is called the pneumonia PORT
database. Based on chart review, hundreds of data items
were collected for each of the 2287 patients in the
database.

A large number of variables had some missing values. A
number of variables that had missing values were filled in
with “normal” values. Even after this filling in, however,
a number of other variables still had missing values. We
selected a subset of 107 of the PORT variables for which
a significant proportion of the population (1317 out of
2287 total) had no missing values for any variable in the
subset. Step 2 of the IV algorithm was run on the subset
of 107 variables for which the 1317 patients had complete
records. However, for step 3 we did not use the
subpopulation of 1317 that had no missing values.
Rather, for each triple of variables chosen in step 3, the
posterior of each causal DAG was calculated on the
subpopulation of the patients who had no missing values
for any variable in that triple; thus for particular triples,
the sample size was slightly different, because there were
different members of the population had missing values
for different variables.

5 RESULTS
The IV algorithm was applied to the PORT database. The
results obtained are shown in Table 1, listed in decreasing
order of their scores (see Section 3). One pair was removed
from the suggested list for reasons explained in section 7.



Table 1

Instrument Cause Effect Score

age coronary
artery disease

myocardial
infarction

18.41

age current
employment

status

intravenous drug
use (non-prescribed)

14.52

age nausea vomiting 9.28

gender # of comorbid
conditions

dire outcome (i.e.,
mortality or serious

complications

8.47

gender sputum cough 7.99

age current
employment

status

chronic obstructive
pulmonary disease

7.55

age current
employment

status

prior
hospitalization
within 30 days

4.87

age current
employment

status

a history of chronic
obstructive

pulmonary disease
requiring prior ICU

admission

4.42

age current
employment

status

days since last
hospital discharge

0.56

6 PRELIMINARY ANALYSIS
As a preliminary test of the program’s output, we asked a
practicing physician at the University of Pittsburgh who
sees pneumonia patients in his practice (Dr. Richard
Ambrosino) to evaluate the output of the IV algorithm.
Dr. Ambrosino had a close working knowledge of the
pneumonia PORT database variables used in this study,
because he had done prior (non-causal) research with this
data. He was not, however, familiar with the IV
algorithm. We presented this physician judge with a set of
pairs of variables, some output by the algorithm as
bearing a cause-effect relation to each other, and some
chosen at random; the order of the pairs of variables was
listed randomly. We asked the physician to classify each
pair of variables into one of three classes: “Confident that
A does cause B”, “Don’t know whether A causes B”, or
“Confident that A does not cause B.” The results were that
for all 10 pairs of variables suggested by the IV
algorithm, the physician judge was confident that the
relationship was cause and effect. For the randomly chosen
pairs of variables, he was confident that the relationship
between 5 of the 22 pairs was cause and effect; he was
confident that 10 were not cause and effect; and in 7 he
was not sure. Given this distribution of causal relations

among the random pairs, Fisher’s exact test of the
independence of being chosen by the algorithm and being
judged to be causal had a p-value of .0002 and can be
strongly rejected.

In order to eliminate the hypothesis that the physician
judge was simply taking all highly correlated pairs of
variables as cause and effect, we submitted for his
evaluation 15 more pairs of variables that were randomly
selected from pairs of highly correlated variables (i.e. the
g2 statistic had a p-value of less than 0.01.) For these
randomly chosen pairs of variables, the physician judge
was confident that the relationship between 9 of 15 pairs
was cause and effect; he was confident that 4 were not
cause and effect; and 2 he was not sure of. Given this
distribution of causal relations among the random pairs, if
one chose 10 pairs of variables at random, an exact test of
the independence of being chosen by the algorithm and
being judged to be causal had a p-value of .0827, which is
marginally significant.

7 ANALYSIS
The basic question we attempted to answer was: “Is the
probability of A causing B given that the program says
that A causes B higher than the probability of A causing
B given that the program does not say that A causes B?”

However, there is a possible confounding factor that has
to be considered. A necessary (but not sufficient) condition
for the program to choose a pairs of variables is that they
are highly associated (each pair passes a statistical test for
association.) It is possible that the probability of A
causing B among highly associated pairs of variables is
much higher than the probability of A causing B among a
random selection of pairs of variables. A second question
that we attempted to answer was “Among highly
associated pairs of variables, is the probability of A
causing B given that the program says that A causes B
higher than the probability of A causing B given that the
program does not say that A causes B?”

One problem we faced was what to do with pairs of
variables that are logically, rather than causally related.
For example, the number of comorbid conditions is
defined as the disjunction of cancer, swallowing
difficulties, heart disease, etc. Sometimes two variables
are both defined in terms of a third variable; e.g. agepresb
and agepres6 are two different discretizations of age. When
variables are logically related, there is generally a
correlation between them, even though they are not
causally related. The IV algorithm does not distinguish
between logically related and causally related variables. In
general, we assume that it is easy to find out whether two
variables are logically related, so we do not count such
pairs as either a success or an error. One of the pairs the
program output was swalldia and cnumcomo. Cnumcomo
is defined as the disjunction of a number of conditions
including swalldia, so we eliminated it from consideration.

In order to answer the main question, we chose a number
of highly associated variable pairs that had not been



selected by the program to be compared to the pairs of
variables that were selected by the program. When the
algorithm measures association between a pair of variables
A and B it uses the p-value of the g2 statistic. Under the
assumption of independence, the g2 statistic is defined as
the sum over all cells of the observed value in each cell
times the natural log of the ratio of the observed value in
the cell to the expected value in the cell. Asymptotically,
the g2 statistic is distributed as a χ2 distribution. However,
we did not use the p-value of the g2 statistic when
selecting variable pairs not chosen by the algorithm.
When two associations are both large, even if the
difference between the two associations is also large, the
differences in the p-values of the two associations may be
extremely small (i.e. the two p-values would both be zero
to many decimal places.) For that reason, in judging the
association between A and B, instead of using p-values,
we used a standard adjustment of the g2 statistic. The
adjustment divides the g2 statistic by the product of the
sample size, and the minimum of the number of
categories in A minus 1 and the number of categories in B
minus 1. (The sample size differed somewhat between
variable pairs, because in computing the association
between A and B, we used the subpopulation that had no
missing values for A and B. Since the subpopulations
used varied with the variables, they had slightly different
sample sizes.)

We selected variable pairs to compare with the variable
pairs selected by the algorithm in two different ways. First
we selected the 9 variables pairs with the highest adjusted
g2 measure of association, that were not logically related,
and that had not been selected by the algorithm. Second,
we attempted to match each of the 9 variable pairs A and
B selected by the algorithm with a random variable pair
that was not selected by the program, whose variables
were not logically related to each other, and that had the
same adjusted g2 measure of association to three decimal
places as A and B. However, it turned out that the two
highest adjusted g2 measure of association for the pairs of
variables selected by the program could not be matched in
this way, because there were no variable pairs fitting the
description. Instead for two highest adjusted g2 measure of
association for the pairs of variables selected by the
program we simply chose variable pairs that matched the
adjusted g2 measure of association as closely as possible.
When this was done, it turned out that three of the
variable pairs selected by the first method were the same
as three of the variable pairs selected by the second
method. So overall, there were 15 pairs of variables that
we selected to contrast with the variable pairs selected by
the algorithm.

A second problem to be faced is that we do not have a
“gold standard” for when A causes B. We decided to use
physicians opinions about the causal relations as our
“gold standard.” We enlisted the help five faculty
physicians who practice internal medicine at the
University of Pittsburgh and/or the Oakland VA Hospital
(in Pittsburgh, PA) and who see pneumonia patients in
their practices. These physicians were given a list of pairs

of variables A and B, and were asked to assess whether in
their opinion A causes B (encoded as 1), A does not cause
B (encoded as 3), or they do not know whether or not A
causes B (encoded as 2). If in their opinion A causes B,
they were asked whether in their opinion there is also a
common cause of A and B, no common cause of A and B,
or they do not know whether there is a common cause of
A and B. The exact formulation of the question, and the
instruction to the physicians is given in the Appendix. In
order to see whether the physicians as a group were
reliable, we performed the following score of inter-rater
reliability (Fleiss, 1981).

Let k be the number of categories into which ratings are
made (in this case k = 3.) Let m  be the number of raters
(5) and n be the sample size (24). pj is the proportion of
ratings in category j, and qj is 1 – pj. xij is the number of
ratings on subject i in category j. In that case

κ = −

−

−

==

=

∑∑

∑
1

1

2 2

11

1

nm x

nm m p q

ij
j

k

i

n

j j
j

k

( )

and the standard error is

2

1
1

1

2

1

p q nm m

p q p q q p

j j
j

k

j j
j

k

j j
j

k

j j

( )

( )

−
×

⎛

⎝
⎜

⎞

⎠
⎟ − −

=

= =

∑

∑ ∑

If there is no subject-to-subject variation in the proportion
of positive ratings (and the proportion is not 0 or 1) then
there is more disagreement within subjects than between
subjects, and κ assumes the minimum value of –1/(m-1).
κ assumes the value 0 when the observed rate of
agreement is that expected from chance. κ assumes the
value 1 when there is perfect agreement among the raters.
In this case, κ =.352 and the standard error is .0461.
Hence the ratio of κ and the standard error is 7.64 and the
hypothesis that κ  = 0 can be strongly rejected. However,
while a κ > .75 is considered excellent agreement, and κ >
.40 represents good agreement, κ =.352 is generally
considered poor agreement. However, it should be pointed
out that when one rater assigns “cause” and a second rater
assigns “don’t know”, this is in some sense not an actual
disagreement.

We pooled the physicians opinions in three different ways.
One variable that represented the physicians pooled
opinions was Sum: for each question this was the sum of
the values recorded by the physicians. A second variable
was Vote, which was calculated in two steps: The first
step removed all of the “don’t know” answers, and in the
second step, if a majority of the opinions left were
“causal”, the vote was “causal”, if a majority of the
opinions left were “not causal”, the vote was “not causal”;
and otherwise the vote was “don’t know”. The third



variable was Agree, which is more conservative than
Vote: Agree is 1 if Sum is less than 7, Agree is 3 if Sum
is greater than 13, and otherwise Agree is 2. Table 2
shows the results (where IV algorithm = 0 if and only if
the pair was not selected by the IV algorithm.)

Table 2

IV algorithm IV algorithm

Vote 0 1 Agree 0 1

1 9 4 1 5 3

2 0 2 2 6 4

3 6 3 3 4 2

These tables indicate that “not causal” occurs a smaller
percentage of the time among the pairs suggested by the
IV algorithm than among the pairs not suggested by the
IV algorithm. However, a chi-squared statistical test of the
hypothesis that being selected by the IV algorithm is
independent of Vote has a p-value of .197, and a test of
the hypothesis that being selected by the IV algorithm is
independent of Agree has a p-value of .965. Fisher’s exact
test of the two independencies yields similar results.
Neither of these is significant.

8 IMPROVING THE IV ALGORITHM
We used these results to improve the IV algorithm by
changing it so that it does not select those ordered variable
pairs that the physicians were most dubious were causal.
Among the pairs selected by the IV algorithm, the pairs
that the physicians were most dubious about are shown in
Table 3.

There are a number of obviously relevant features that the
more dubious pairs output by the IV algorithm have in
common. (In the following the values of discrete variables
are for convenience encoded as integers.)

• 4 of the 5 dubious causal relations have the 4 lowest
scores.

• If the Bayes Information Criterion were used to score
the models rather than the posterior probability, 2 of
the dubious causal relations (the 2 with the lowest
scores) would not have been suggested by the
algorithm at all.

• All of the dubious effects contained categories with
relatively few members: intravenous drug use  (33
have value 1), days since last discharge (38 with value
0, 25 with value 1, 7 with value 2), chronic
obstructive pulmonary disease (45 with value 1),
prior hospitalization (136 with value 1), and chronic

obstructive pulmonary disease intensive care unit
admission (20 with value 1). This is in contrast with
the effects chosen by the IV algorithm that the
doctors agreed with: myocardial infarction (245 with
value 1), vomiting (594 with value 1), prior cough
(564 with value 1), and dire outcome (261 with value
1.) It is possible that these low counts either effect
the statistical tests (as indicated in the next item) or
that they are rare enough that doctors simply are not
aware of actual causal relations.

Table 3

Cause Effect Vote Agree Sum

current
employment
status

intravenous drug
use (non-
prescribed)

2 2 10

current
employment
status

chronic
obstructive
pulmonary disease

3 3 15

current
employment
status

days since last
discharge from
hospital

2 2 10

current
employment
status

prior
hospitalization
within 30 days

3 3 12

current
employment
status

history of chronic
obstructive
pulmonary disease
requiring prior
admission to ICU

3 3 14

• When conducting statistical tests of the association of
the cause with the effect, on four of the five dubious
effects (intravenous drug use, days since last hospital
discharge, chronic obstructive pulmonary disease, and
a history of chronic obstructive pulmonary disease
requiring prior ICU admission) S-Plus issued a
warning that the chi-squared test of independence may
not be appropriate because the expected value of some
cells was less than 5. It did not issue this warning on
any of the 4 non-dubious effects.

Another obvious feature that all of the dubious pairs have
in common is that the cause is current employment
status. However, examination of current employment
status revealed nothing unusual about its distribution,
other than it had 4 categories, which is more than most of
the variables in the database. In combination with the low
counts in some of the categories of the dubious “effects”,
this produces statistical problems in testing dependence of
the “cause” and the “effect”.



These features suggest that the performance of the IV
algorithm could be improved by eliminating pairs of
variables for which the test of independence is dubious
because some expected cell sizes are less than 5, and/or by
raising the score threshold of what is considered a positive
result for the algorithm.

There is a tradeoff here in changing the output of the IV
algorithm to output fewer variable pairs; this leads to less
information being output. The algorithm is already
outputting relatively few pairs of variables, and the
suggested changes would output even fewer.

If the IV algorithm were modified in these ways, it would
choose only pairs of variables that the physicians were
confident were causally related.

Because we have suggested changes to the algorithm in
response to an examination of the data, we cannot
properly test the algorithm on this data set. We plan to
test the modified algorithm on other data sets.

9 APPENDIX: THE BACKGROUND
SECTION OF THE CAUSALITY
ASSESSMENT FORM

We are investigating statistical methods that attempt to
uncover causal relationships from medical data. As a
preliminary evaluation of these methods, we would very
much appreciate your judgments of the 24 pairs below.
Some of the pairs were generated by the statistical method
and some were obtained by other means, including random
generation. The order in which a pair appears has been
randomized, so that the order contains no information
about how a pair was generated.

The following is an example of the format in which the
pairs of variables are listed.

Example:

A. patient has a fever during hospital admission
B. patient dies within 30 days of admission
___ (1) Confident that A does causally influence B.
        In this case please also indicate whether you are:

a. ___ Confident A and B also are being
              influenced by a common cause.

b. ___ Don't know whether A and B are
              being influenced by a common cause.

c. ___ Confident A and B are not being
              influenced by a common cause.
___ (2) Don't know whether A causally influences B or  
             not.
___ (3) Confident that A does not causally influence B.

The first line in the example contains a purported causal
influence, which is always labeled as variable A. The
second line contains the purported effect, which is always
labeled as variable B. The remaining lines contain your
judgment about the actual relationship between the two

variables; you should mark exactly one of the entries
labeled (1), (2), or (3). If you mark (1), then please further
mark exactly one of (a), (b), or (c).

Note that we would say that fever "causally influences"
mortality, even if fever actually prevents death within 30
days; that is, we count a variable that either promotes or
suppresses another variable as a causal influence.
Furthermore, to say that fever causally influences death
within 30 days does not mean that it alone causally
influences death within 30 days; simply that possibly in
conjunction with other conditions found in the population
it  causally influences death within 30 days.

In asking (for example) whether fever causally influences
death within 30 days, we mean to ask roughly:

If it were possible to do a randomized clinical trial in
which the treatment group were assigned to have a
fever induced, and the control group were assigned to
have a normal temperature maintained, are you
confident that the number of deaths within 30 days of
admission would be significantly different in the two
groups?

We realize that it may not be practical, clinically useful,
or even ethical to experimentally test some of the 24
relationships in the list given below. We are asking you,
however, to provide your best judgment about what the
relationship would be found to be, if such experiments
were done, hypothetically.

We also realize that the assessments we are
requesting leave matters somewhat vague, such as your
confidence that a relationship is causal and your estimate
of the strength of any relationship judged to be causal. We
believe that to specify things too exactly would make for
lengthy and somewhat unintuitive assessments; we would
like to initially obtain simple assessments of causal
relations.  

In forming your causal assessments, assume a
population of patients in North America who have
community acquired pneumonia and are being seen at
initial presentation.
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