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Abstract

Experts in educational assessment can often

identify the skills needed to provide a solu-

tion for a test item and which patterns of

those skills produce better expected perfor-

mance. The method described here combines

judgements about the structure of the condi-

tional probability table (e.g., conjunctive, or

compensatory) with Item Response Theory

methods for partial credit scoring (Samejima,

1969) to produce a conditional probability ta-

ble or a prior distribution for a learning al-

gorithm. The structural judgements induce

a projection of each con�guration of parent

skill variables onto a single latent response-

propensity �. This is then used to calculate

a probability for each cell in the table.

1 Introduction

In an ongoing educational assessment program, a large

part of the work goes into bringing new tasks (or

"items" or "problems") into the assessment. If test

results are used for decisions that have a high per-

ceived impact on the examinee, the problem is exac-

erbated by the need to retire tasks after a limited ex-

posure. A large part of the work in producing a task

for operational use is statistically calibrating it; that

is calculating the \weights of evidence" that will be

used to update beliefs about the latent abilities we

wish to measure. In a Bayesian approach to testing,

these weights are determined by the conditional prob-

abilities of obtaining various observable features of the

solution|i.e., states of observable variables|given the

con�guration of latent ability variables.

Obtaining numbers for these tables is in general hard

work. We could learn them from pretest data, but

�
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the need for a su�ciently large sample size for every

con�guration of parents makes it expensive to get re-

liable values using a purely empirical model. Noisy-or

and similar models use structural judgements about

the conditional probability table to reduce the num-

ber of required parameters; Mislevy et al. (1999) ap-

ply this approach. However, even eliciting priors for

a limited number of probabilities is di�cult. When

assigning conditional probability tables or priors for

conditional probability tables, we would like to take

advantage of the wealth of experience available from

applications using the univariate Item Response The-

ory (IRT) model. To this end we take an approach

based on structured latent class models (Formann,

1985), and extend a Bayesian framework for model-

ing IRT parameters in terms of expert judgment and

collateral information about items (Mislevy, Sheehan,

and Wingersky, 1983).

1.1 Graphical model of educational

assessment

For student s, let S

s;1

; : : : ; S

s;N

be a collection of vari-

ables measuring that student's knowledge, skills or

abilities in some domain of interest. At any point in

time, we represent our knowledge about that student's

pro�ciency by a probability distribution. The prior

distribution Pr(S

s

) is usually based on the distribu-

tion of these skills in the population of interest. We

are interested in drawing inferences from Pr(S

s

jX

s

),

where X

s

= fX

s;1

; : : : ; X

s;M

g is the collection of ob-

servations made from the student's responses on a col-

lection of M tasks. The student model variables S

s

are purely latent; the observations and prior assump-

tions about the relationship between the observations

and the student model variables are required for infer-

ence. Almond and Mislevy (1999) describe this general

framework.

The case we address in this paper is the multivariate

latent class model. Here all the student model vari-

ables S

s;n

are discrete. In this case, we can represent



the distribution Pr(S

s

) with a Bayesian network. For

the models developed below, it is useful to order the

states in order of increasing level of pro�ciency.

If we knew Pr(X

s

jS

s

) we obviously could apply Bayes

theorem to calculate Pr(S

s

jX

s

). Usually we assume

that the observations from di�erent tasks are condi-

tionally independent given the student model vari-

ables (see Almond and Mislevy, 1999 for a discus-

sion). What we need is a collection of evidence models

Pr(X

s;m

jS

s

). In most cases, X

s;m

is conditionally in-

dependent of all observation variables from other tasks

and all but a subset of student-model variables. Thus,

Pr(X

s;m

jS

s

) = Pr(X

s;m

jS

s;m

), where S

s;m

� S

s

. We

call S

s;m

the footprint of evidence model m.

In the Bayesian network case, the evidence model m is

a conditional probability table. If we wish to elicit an

unstructured prior for Pr(X

s;m

jS

s;m

), we must specify

jS

s;m

j Dirchlet distributions, where jS

s;m

j is the size

of the state space of the footprint of Task m. This

can be a daunting task. For instance, there are about

a hundred observable variables in the Biomass exam-

ple discussed below, most with three possible values,

many with size 18 footprints|over �ve thousand indi-

vidual probabilities altogether. In the simple special

case of IRT we have a long history of building evi-

dence models. The goal of this paper is draw on that

experience to formulate structured models for more

ambitious structures for Pr(X

s;m

jS

s;m

).

1.2 Models for partial credit scoring

The most common IRT case posits a single continu-

ous skill variable, �

s

, and binary response variables.

The relationship between the observation and the skill

variable is a logistic regression. This model is used

for equating many well known college entrance exams,

including the SAT, the GRE, and TOEFL. Various pa-

rameterizations are found in the literature. The two

parameter logistic (2PL) model, for example, is

logit

�

Pr(X

s;m

j�

s

)

�

= a

m

(�

s

+ b

m

):

Samejima's graded response model (1969) extends this

model to an observable X

s;m

that can take on one

of the ordered values x

0

� � � � � x

K

. We de�ne for

k = 1; : : : ;K we de�ne:

Pr(X

s;m

� x

k

j�

s

) = P

�

k

(�

s

) = logit

�1

�

a

m

(�

s

+ b

m;k

)

�

:

(1)

The category probabilities Pr(X

s;m

= x

k

j�

s

) can be

calculated from the di�erences of the cumulative prob-

abilities given by equations (1). Figure 1 illustrates re-

sponse category probabilities for a three-category task,

with a

m

= 1, b

m;1

= �1, and b

m;1

= +1. For very low

values of �, the lowest level of response is most likely,

then as � increases, probabilities increase for higher-

valued responses in an orderly manner. A single value

of � speci�es the full conditional distribution of all pos-

sible responses.
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Figure 1: A graded-response IRT model.

2 The � projection method

We are interested in �nding models for Pr(X

s;m

jS

s;m

)

in the case where Pr(S

s

) is a Bayesian network and

X

s;m

is an ordered discrete variable. We employ the

following device. First we pick a �xed set of values

for a

m

and b

m

= fb

m;1

; : : : ; b

m;K

g. Then we de�ne

a mapping function f(S

s;m

) =

~

�

s;m

. We can now ap-

ply Samejima's graded response model to �ll out the

tables.

We gain two advantages with this transformation of

the problem. First, in the multivariate case our ex-

perts may be comfortable describing the functional

form for f

m

(�) even if they are uncomfortable with

specifying a conditional probability table (e.g., \You

have to know how to do A, but then you can solve

the problem if you can carry out either procedure B

or procedure C").

Second, we have transformed the problem to a scale

that is familiar to experts in educational measurement.

Thus, they will more comfortable with elicitation pro-

cess on this scale. The scale of IRT models is often

set by standardizing the distribution of �, and in this

metric a value of -1 for b indicates an item that is some-

what easy for the examinees, 0 a typical item, and +1

a somewhat di�cult item; further, a parameters typi-

cally range from about .3 to 3. When the expert says

she expects an item to be easy for the intended popu-

lation, or that responses will be fairly strongly related

to pro�ciency, we have a good idea of what the a and

b parameters will be. If we are planning to re�ne the

evidence models with pretest data we can elicit ini-

tial opinions in the form of linguistic parameters (e.g.,

\hard" or \easy") that are assigned to one of a number



of numerical priors prede�ned by psychometricians.

We describe this setup for the one dimensional and

multidimensional cases below, then show how the same

approach can also be used to relax the assumption of

independent observations.

2.1 Evidence models with univariate

footprints

When S

s;m

= fS

s;n

g, the projection function g

m

(�)

can be any monotonic function of S

s;n

. Assuming that

the levels of S

s;n

are roughly equally spaced we could

use a linear function on the index, g

m

(label

i

) = c

m

i+

d

m

. This model gives us just two parameters to elicit

no matter how many states of S

s;n

or X

s;m

there are.

The intuition is that

~

�

s;m

is the student's pro�ciency

speci�c to solving Task m. The function g

m

(�) is the

projection of S

s;n

onto that space. The constant pa-

rameter d

m

is related to the average di�culty of the

item, and the slope c

m

depends on the sensitivity with

which response probabilities discriminate among lev-

els of S

s;n

|that is, the di�erence in the conditional

probabilities for levels of S

s;n

and hence the weights

of evidence for the task.

Table 1 gives conditional response probabilities for

a task with three ordered possible outcomes, and a

single skill variable with three ordered states. The

item parameters used for Figure 1 are again used,

and g

m

(label

i

) = 1i � 2. That is, the states

flow; medium; highg are mapped to � values of -1, 0,

and +1 respectively.

2.2 Evidence models with multivariate

footprints

Now suppose that S

s;m

= fS

s;n

1

; : : : ; S

s;n

J

g. We con-

struct the projection function as

f

m

(S

s;m

) = g

m

�

h

m;1

(S

s;n

1

); : : : ; h

m;J

(S

s;n

J

)

�

:

Here each h

m;j

(S

s;n

j

) =

~

�

s;m;j

is a projection of the

marginal in
uence of skill S

s;n

j

on Task m. The struc-

ture function g

m

(

~

�

s;m;1

; : : : ;

~

�

s;m;J

) describes how the

skills interact to produce pro�ciency in solving this

particular task. As in the univariate case, if we assume

the skill levels are roughly equally spaced we can de-

scribe that relationship with two parameters per skill:

c

m;j

and d

m;j

.

The structure function g

m

(�) describes how the

skills interact. Some common choices are compen-

satory (sum)|skills compensate for each other,|

conjunctive(min)|all skills are necessary for solving

the problem,|and disjunctive(max)|any of the skills

can be used to solve the problem. We have also ex-

perimented with some asymmetric combination func-

tions. Of particular interest is the inhibitor model in

which one skill must be at a threshold value before the

other skills play a role at all. Experts are often able

to suggest the functional form of g

m

(�); this is particu-

larly so when they have constructed tasks deliberately

to evoke certain skills in certain combinations. Sec-

tion 3.0 provides examples of the mathematical struc-

tures for some g

m

(�) functions we used in the Biomass

project.

2.3 Dependent Evidence

One limitation of the IRT model is that all of the evi-

dence is considered independent given the pro�ciency

of the student. This assumption breaks down in the

presence of complex tasks which yield multiple obser-

vations, for example, a reading passage followed by

several questions. In this example, students who hap-

pened to be familiar with the topic of the passage

would do better across all of the questions at any pro-

�ciency level.

In the Bayesian network model, we can formalize this

notion by introducing into the evidence model an in-

dependent context skill variable C

m

to represent famil-

iarity with the topic or context of Task m. When we

model the responses for Task m, C

m

is treated as an

extra parent of the observations from Task m. After

absorbing all evidence from Task m this variable can

be discarded with the rest of the evidence model. The

example in Section 3.1 illustrates the use of a context

variable. (See Bradlow, Wainer, and Wang, 1999, dis-

cuss a similar model from an alternative perspective.)

3 A numerical example

3.1 The Biomass Project

Biomass was a project carried out at Educational Test-

ing Service in 2000. A computer-based prototype as-

sessment was developed for secondary-school biology,

with an emphasis on inquiry skills and model-based

reasoning in the context of microevolution and trans-

mission genetics. The student model S in the Biomass

prototype consisted of �fteen variables. It is shown as

Figure 2. The ovals represent the SM variables, the

squares represent probability distributions, and the

edges represent the dependence relationships among

variables. Four multistage investigative tasks were

developed, which required a total of forty-eight evi-

dence models to manage incoming information about

students' pro�ciencies. An evidence model contained

between one and ten observable variables X

m

, and has

from one to four student-model variables in its foot-

print.



S

s

~

�

s

P

�

1

P

�

2

Pr(low) Pr(medium) Pr(high)

low -1.00 0.50 0.12 0.50 0.38 0.12

medium 0.00 0.73 0.27 0.27 0.46 0.27

high +1.00 0.88 0.50 0.12 0.38 0.50

Table 1: A univariate model for a task with three ordered response categories.
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Figure 2: The student model for the Biomass project.

For each evidence model, we elicited the opinions of

the experts who developed the tasks as to (a) the

structure of the relationship among student model par-

ents for each observable|i.e., compensatory, conjunc-

tive, inhibition; (b) whether the task was harder than

usual, easier than usual, or typical in di�culty for

the intended population of students; (c) whether tasks

within an evidence model should be considered con-

ditionally dependent; and (d) the relative importance

of skills, for observable variables with more than one

student-model parent. The following sections present,

for selected observables, the outcomes of these conver-

sations and the resulting conditional probability ma-

trices.

3.2 Agouti 1: Conditional Dependence

Figure 3 shows the evidence model for the �rst task

in the Agouti mouse scenario, which concerns inquiry

skills and knowledge about transmission genetics. The

examinee must build a formal representation for the

mode of inheritance for hair color in a population of

mice, working from the results of some crosses and a

colloquial description of a �ctitious student's hypothe-

sis. Seven features of the examinee's solution are eval-

uated, re
ecting its accuracy, internal consistency, and

correctness in using the representational conventions.

(For brevity, only four are shown in the �gure. The

others are similar.)

The experts intend for all of these observables to

bear on a single student-model variable, Disciplinary

Knowledge of the Mendelian Model|DKMendel for

short. Because all of these observable variables are as-

MendModRep(1)
DKMendel


MendModRep(2)


MendModGen(1)


MendModGen(2)


+


+


+


+

Context


Figure 3: An evidence model with seven (four shown)

conditionally dependent observations.

pects of the same problem solution, they are to be

modeled as conditionally dependent, hence the ad-

ditional `Context' parent of the observable variables.

They indicated that the �rst of the seven, say X

A1;1

,

was easier than typical. X

A1;1

has three ordered lev-

els that rate an examinee's solution as to the chromo-

some type he has indicated. From these verbal spec-

i�cations, we created the following structure for the

conditional probability table for X

A1;1

.

The two parents of X

A1;1

, denoted S

s;A1

1

and S

s;A1

2

,

are DKMendel and Context. Their ranges are

flow; medium; highg and flow; highg. Experts told us

the �rst observable is easier than typical, so we set

c

A1;1

= 1 and d

A1;1

= �1; that is,

h

A1;1

(S

s;A1

1

) =

~

�

s;A1;1

= 1i� 1 :

Thus flow; medium; highg are mapped to

~

� values of

0, 1, and 2, which will lead to higher probabilities for

higher level responses. For Context, we set c

A1;2

= 1

and d

A1;2

= �1:5, so

h

A1;2

(S

s;A1

2

) =

~

�

s;A1;2

= i� 1:5 :

Thus flow; highg are mapped to

~

� values of -.5 and

+.5. In order to e�ect conditional dependence with-

out a�ecting the marginal in
uence of DKMendel, we

want to center the prior distribution of Context around

zero. The proposed speci�cations for c

A1;2

and d

A1;2

accomplish this. Looking ahead toward re�ning distri-

butions from data, we will generally want to be able

to revise c while keeping the distribution centered. If

the index values of Context are f1; 2g, we can estimate

c and set d = �1:5c.

As described in Section 2.3, the structure function that

combines the in
uence of these two factors is compen-



satory, or summative; that is,

~

�

s;A1

=

2

X

n=1

c

A1;n

S

A1

n

+ d

A1;n

:

Table 2 shows the resulting conditional probabilities.

3.3 Agouti 4: An Inhibition Relationship

Figure 4 shows the evidence model for a subsequent

task in the Agouti mouse scenario. After having pro-

posed a hypothesis for the mode of inheritance of the

mice, the question is what to do next. Our experts

told us that the examinee's answer depends mainly

on her understanding of the inquiry process|it is

time to cross some mice, to provide data to test the

hypothesis|but the examinee has to know at least

enough about the Mendelian model to understand the

problem. This means the relationship between inquiry

skill (WKInqry) and DKMendel with respect to the

observable is now inhibition; the examinee must get

`over the hurdle' of having DKMendel at least medium

before WKInqry can come into play.

WKInqry


DKMendel


EffMeth


Figure 4: An evidence model with two parents in an

inhibition relationship.

The experts indicated that the di�culty of this prob-

lem is typical, so we set c

A4;1

= 1 and d

A4;1

= 2 for

the marginal projection function for WKInqry. That

is,

h

A4;1

(S

s;A4

1

) =

~

�

s;A4;1

= i� 2 ;

and flow; medium; highg maps to

~

� values of -1, 0, and

1. For DKMendel, we employed a di�erent kind of

marginal function:

h

A4;2

(S

s;A4

2

) =

~

�

s;A4;2

=

�

0 if i = 0

1 if i = f1; 2g

:

In other words, it is 0 if the examinee is not at least

medium on DKMendel, and 1 if she is. The inhibiting

in
uence of DKMendel is then e�ected by the struc-

tural function

g

A4

�

~

�

s;A4;1

;

~

�

s;A4;2

�

=

�

1�

~

�

s;A4;2

��

c

A4;1

�

� 1

�

+ d

A4;1

�

+

~

�

s;A4;2

~

�

s;A4;1

:

Table 3 gives the resulting conditional probabilities.

3.4 Lizard 1: Disjunction + Conditional

Dependence

Figure 5 shows the evidence model Bayes net fragment

for Segment 1 in the \lizard scenario." This task ad-

dresses whether a student can judge the strength of

an argument for discon�rming, supporting, or prov-

ing that speci�c mechanisms of evolution are operat-

ing in a problem context. The three nodes on the

right represent observable variables|taken together,

X

s;L1

. Domain experts designed these questions to

elicit evidence from the student about Knowledge

of Microevolution (DKMechEv) and Inquiry (WKIn-

qry). All the student-models and observables in this

task have three ordered values, which we again call

flow; medium; highg.

MEFactors(1)


MEFactors(2)


MEFactors(3)


Context


DKMechEv


WKInqry


+


+


+


Figure 5: An evidence model with two student model

parents and conditional dependence among observable

variables.

The domain experts indicated that (a) the relationship

between these skills, concerning their e�ect on the ob-

servables, was disjunctive; (b) response probabilities

were more sensitive to WKInqry than on DKMechEv;

and (c) the observables should be modeled as condi-

tionally dependent, because all of the observables are

evaluations of the same set of actions in a common

problem setting. We thus have three parents for each

observable, namely, WKInqry, DKMechEv, and Con-

text. (Note that Context for Lizard L1 is actually a

di�erent variable than Context for Agouti 1.)

In accordance with the experts' verbal prior expec-

tations, we set the following values for the marginal

projections. For WKInqry, h

L1;1

(S

s;L1

1

) =

~

�

s;L1;1

=

1:5i � 3. For DKMechEv, h

L1;2

(S

s;L1

2

) =

~

�

s;L1;2

=

1:0i � 2. And for Context, h

L1;3

(S

s;L1

3

) =

~

�

s;L1;3

=

i � 1:5. The structural function takes the maximum

of

~

�

s;L1;1

and

~

�

s;L1;2

, followed by a compensatory re-

lationship with

~

�

s;L1;3

:

g

L1

�

~

�

s;L1;1

;

~

�

s;L1;2

;

~

�

s;L1;3

�

=

max

�

~

�

s;L1;1

;

~

�

s;L1;2

�

+

~

�

s;L1;3

:

The resulting conditional probabilities appear in Ta-

ble 4.



DKMendal

~

�

1

Context

~

�

2

~

� P

�

1

P

�

2

Pr(low) Pr(medium) Pr(high)

low 0.00 low -0.5 -0.50 0.62 0.18 0.38 0.44 0.18

low 0.00 high 0.5 0.50 0.82 0.38 0.18 0.44 0.38

medium 1.00 low -0.5 0.50 0.82 0.38 0.18 0.44 0.38

medium 1.00 high 0.5 1.50 0.92 0.62 0.08 0.30 0.62

high 2.00 low -0.5 1.50 0.92 0.62 0.08 0.30 0.62

high 2.00 high 0.5 2.50 0.97 0.82 0.03 0.15 0.82

Table 2: Conditional probability distributions for a three-valued observable variable, with one student-model

parent and one context parent in a compensatory relationship.

WKInqry

~

�

1

DKMendel

~

�

2

~

� P

�

1

P

�

2

Pr(low) Pr(medium) Pr(high)

low -1.00 low 0.00 -1.00 0.50 0.12 0.50 0.38 0.12

low -1.00 medium 1.00 -1.00 0.50 0.12 0.50 0.38 0.12

low -1.00 high 1.00 -1.00 0.50 0.12 0.50 0.38 0.12

medium 0.00 low 0.00 -1.00 0.50 0.12 0.50 0.38 0.12

medium 0.00 medium 1.00 0.00 0.73 0.27 0.27 0.46 0.27

medium 0.00 high 1.00 0.00 0.73 0.27 0.27 0.46 0.27

high 1.00 low 0.00 -1.00 0.50 0.12 0.50 0.38 0.12

high 1.00 medium 1.00 1.00 0.88 0.50 0.12 0.38 0.50

high 1.00 high 1.00 1.00 0.88 0.50 0.12 0.38 0.50

Table 3: Conditional probability distributions for a three-valued observable variable, illustrating an inhibition

relationship.

WKInqry

~

�

1

DKMechEv

~

�

2

Context

~

�

3

~

� P

�

1

P

�

2

Pr(low) Pr(med) Pr(high)

low -1.50 low -1.00 low -0.50 -1.50 0.38 0.08 0.62 0.30 0.08

low -1.50 low -1.00 high 0.50 -0.50 0.62 0.18 0.38 0.44 0.18

low -1.50 medium 0.00 low -0.50 -0.50 0.62 0.18 0.38 0.44 0.18

low -1.50 medium 0.00 high 0.50 0.50 0.82 0.38 0.18 0.44 0.38

low -1.50 high 1.00 low -0.50 0.50 0.82 0.38 0.18 0.44 0.38

low -1.50 high 1.00 high 0.50 1.50 0.92 0.62 0.08 0.30 0.62

medium 0.00 low -1.00 low -0.50 -0.50 0.62 0.18 0.38 0.44 0.18

medium 0.00 low -1.00 high 0.50 0.50 0.82 0.38 0.18 0.44 0.38

medium 0.00 medium 0.00 low -0.50 -0.50 0.62 0.18 0.38 0.44 0.18

medium 0.00 medium 0.00 high 0.50 0.50 0.82 0.38 0.18 0.44 0.38

medium 0.00 high 1.00 low -0.50 0.50 0.82 0.38 0.18 0.44 0.38

medium 0.00 high 1.00 high 0.50 1.50 0.92 0.62 0.08 0.30 0.62

high 1.50 low -1.00 low -0.50 1.00 0.88 0.50 0.12 0.38 0.50

high 1.50 low -1.00 high 0.50 2.00 0.95 0.73 0.05 0.22 0.73

high 1.50 medium 0.00 low -0.50 1.00 0.88 0.50 0.12 0.38 0.50

high 1.50 medium 0.00 high 0.50 2.00 0.95 0.73 0.05 0.22 0.73

high 1.50 high 1.00 low -0.50 1.00 0.88 0.50 0.12 0.38 0.50

high 1.50 high 1.00 high 0.50 2.00 0.95 0.73 0.05 0.22 0.73

Table 4: Conditional probability distributions for a three-valued observable variable, illustrating an a disjunctive

relationship over two student-model variables and conditional dependence with tasks from the same segment.



4 Next steps

Section 3 showed how we used expert judgment to

obtain initial values for conditional probabilities in

Biomass evidence models. The next step will be to

gather empirical data to re�ne these probabilities. Fol-

lowing Mislevy et al. (1999) we are planning to use

Markov Chain Monte Carlo to �t the parameters, pos-

sibly using BUGS (Spiegelhalter et al., 1995).

We are exploring three approaches for this latter step.

In the �rst, we would use the output of the "projec-

tion plus graded response" model to produce Dirch-

let priors for the conditional probability tables, then

update each conditional probability directly from ob-

servations; that is, without further constraint on the

likelihood functions. However, as we expect that many

of the entries will be quite sparse, this will probably

not lead to good results (e.g., unstable, or violating

monotonicity relationships). A second possibility is

to follow Mislevy et al. (1999) and use the structure

function to tie similar elements of the conditional prob-

ability matrix together. However, this does not allow

us to learn information about the relative scaling of

the skills in each task. We expect the most promis-

ing approach is to assign priors to c

m;j

and d

m;j

based

on the verbally-valued assessments of our experts, and

then learn these parameters directly (recalling that

the d parameters for Context variables are not esti-

mated). Again we can draw on thirty years of expe-

rience with IRT models to propose `reasonable' prior

distributions. As starting point, we will posit indepen-

dent normal priors on ds and lognormal priors on cs,

with means set at the numerical translations of verbal

priors and standard deviations of 1. (Our preliminary

work here shows that it is help to \center" the label

indexes around 0; i.e., to use �1; 0; 1 instead of 1; 2; 3.)

If we had additional collateral information about the

tasks, such as format and content elements that were

systematically related to their di�culty, we could use

that to reduce the pretest sample size (Mislevy, Shee-

han and Wingersky, 1993). In this case we could use

the collateral information in our model of c

m;j

, d

m;j

or

b

m

. Adams, Wilson, and Wang (1997) have proposed

a model along these lines for continuous latent vari-

ables, which could be adapted to the structured latent

class situation we have discussed here.

5 Conclusion

As interest in increasingly ambitious assessment tasks

grows, knowing how to make sense of the resulting

complex response data has become a bottleneck. We

cannot rely on purely empirical methods to establish

relationships between complex observations and mul-

tivariate constructs. This research illustrates a way to

use expert judgment to produce initial values for the

conditional probability tables for tasks in multivariate

latent class models. It builds on experience with uni-

variate graded-response IRT models to ease the bur-

den on subject matter experts, and is amenable to the

framework of Bayesian estimation for re�ning these

judgments as data accumulate.
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