Learning in High Dimensions: Modular Mixture Models

Hagai Attias
hagaia@microsoft.com
Microsoft Research, USA

Abstract

We present a new approach to learning prob-
abilistic models for high dimensional data.
This approach divides the data dimensions
into low dimensional subspaces, and learns
a separate mixture model for each subspace.
The models combine in a principled manner
to form a flexible modular network that pro-
duces a total density estimate. We derive and
demonstrate an iterative learning algorithm
that uses only local information.

1 Introduction

High dimensional data pose a challenge that ma-
chine learning researchers are facing increasingly of-
ten. Many domains which have come to the attention
of this community, such as audio and video processing,
text modeling, computational biology, and finance, are
characterized by high data dimensionality. This raises
problems which are much less significant in lower di-
mensions. Among these problems is the often expo-
nential increase in the number of parameters required
for constructing models, which leads to overfitting and
to an exponential increase in the computational re-
sources required to learn these models. Another prob-
lem is the fast increase in the number of local minima
of the error surfaces, which makes training consider-
ably more difficult.

Several approaches to efficient learning in high dimen-
sions have been proposed, among them are multires-
olution kd-trees [1], mixture of tree distributions [2],
and acceleration methods for the EM algorithm for
sparse data [3]. Here we describe a new approach
termed modular mizture models (MMM). This ap-
proach is based on fitting separate low-dimensional
models to subsets of the data dimensions, and com-
bining these models in a flexible modular structure to
get a total density estimator.

2 Modular Mixture Models

The problem of learning in high dimension is addressed
in this paper within the framework of probabilistic
models (see, e.g., [6]). In this framework, one specifies
a model, and infers the model parameters from a given
dataset via Bayes’ rule. For sufficiently large datasets,
this inference is usually performed using maximum
likelihood. The structure of the model may also be
inferred from data. Once a model is obtained, it can
be applied to solve classification and regression prob-
lems.

To describe real world data well, models are usually
required to be sufficiently rich. The class of mixture
models offers a convenient solution. For continuous
data, it is known that a mixture of Gaussian distri-
butions can model them to any desired accuracy, pro-
vided that the number of mixture components is suffi-
ciently large. The parameters of a mixture model may
be learned efficiently using the EM algorithm.

However, for high dimensional data the number of pa-
rameters in a mixture of Gaussians model may become
prohibitively large. Using m components in ! dimen-
sions would require the order of ml? parameters. For
e.g. handwritten digit recognition problems, the num-
ber of parameters could easily reach several millions.
Such a high number would create severe problems of
overfitting and bad local maxima. Whereas feature
extraction methods may decrease this number, finding
an effective general method for identifying the relevant
features in a given dataset is a difficult open problem.

The idea of modular mixture models is to divide the
data space into low-dimensional subspaces, and fit a
separate mixture model to each subspace. Such a mix-
ture model is termed a module. Thus we have a set of
modules, where each module estimates the density of
its inputs. Fitting a mixture model to low dimensional
data is relatively easy to do efficiently.

The problem is, how should the different modules com-

bine to give a total density estimator. If the subspaces
are non-overlapping, one could simply take a product
over the module densities to be the total density. How-
ever, the resulting model ignores correlations between
subspaces, originating, e.g., from multiscale character-
istics of the data, and the estimator it produces may
be highly suboptimal.

MMM combine these modules using additional, hidden
modules. We refer to the modules describing the data
as visible modules. Each visible module is assigned a
single parent module, which is hidden. A hidden mod-
ule has more than one child, and is a tool to model
correlations between the children. The hidden mod-
ules may be combined in the same fashion using yet
additional hidden modules. Hence, MMM creates a
tree of modules with a flexible structure, producing a
single density estimate that takes into account corre-
lations on multiple scales.

In the following, the structure of a module and the
parent-child dependence are specified, and an EM al-
gorithm for estimating the MMM parameters is pre-
sented. An interesting feature of this algorithm is that
its update rules use only local (parent-children) infor-
mation.

3 The Basic Module

The basic module is a mixture model with parent-
dependent mixing proportions. The modules are in-
dexed by i = 1,2,... . Module i has m; states (or com-
ponents), labeled by s; = 1,...,m;. This module de-
scribes an [;-dimensional ’data’ vector denoted by x;,
with coordinates w;;, j = 1,...,1;. In visible modules
(the leaves to the MMM tree), z; actually corresponds
to observed data variables, but in hidden modules z;
are hidden variables. We refer to x; in either case as
input variables. The states s;, of course, are hidden
for both hidden and visible modules.

In the present paper we focus on Gaussian compo-
nents, but the discussion can be extended to include
the exponential family. Given state label s; = s, the
input z; is Gaussian with mean ;s and precision (in-
verse covariance) matrix A,
1 T o
plei=xz|s;=s)=gis(x) = —e (@=pis) As(m—ptia)/2 |
Zis
where z;; = det(A;s/27)*/? is the normalization con-
stant.

Module ¢ depends only on its parent module pa(7).
The child-parent relationship is further restricted to a
dependence of the child state s; on the parent input
Tpa(s)- Hence,

p(x;, s; | all modules) = p(z; | s;)p(s; | xpa(i)) . (D

The child dependence on its parent is parametrized by
the softmax form,

P(si =8| Tpa(i) = @) = wis(x) = —e*s" . (2)

It is understood that a;; has a Oth component, such
that ag;x = ;5,0 + Zj ais,jxj. The normalization con-

. T
stant is z;, = >, e%s”.

4 Combining Modules

A flexible tree of modules is constructed as described
above. The data dimensions are divided into sub-
spaces, and a module is constructed for each subspace.
For simplicity, we will be focusing on non-overlapping
subspaces. Hidden modules are added and each visible
module is assigned a single hidden module as a parent,
while no hidden module remains childless. The process
of constructing the tree by adding new modules as par-
ents of existing ones continues until reaching a single
module.

The joint density of our MMM is obtained by taking
a product over all module densities,

p({zi,s:}) = Hp(xi,si | Zpagiy) - (3)

We will use y to refer collectively to the observed
(data) variables. Denote the set of visible modules
(i.e. modules with no children) by V, and the set com-
prised of the rest by H. Then y = {z;, i € V}. The
joint MMM distribution (3) defines a probabilistic la-
tent variable model for the data via marginalization,
p(y) = > p({x;, s;}), where the sum runs over s; for
all 7, and implies integration over x; for all : € H.

5 A Local Learning Algorithm

In this section we present an algorithm for train-
ing MMM. Exact maximum likelihood is clearly in-
tractable, since it requires integrating the softmax
form (2) over the hidden input variables x;c g, which
cannot be done analytically. In [5], a variational ap-
proach has been developed for a related model. That
approach approximates the conditional distribution
over the continuous hidden variables given the data,
p(zicn | y), by a Gaussian, whose parameters are in-
ferred from the data using an iterative algorithm. Sim-
ilar ideas may be applied in the present context.

However, here we take a simpler approach and use a
MAP estimate for the hidden inputs. The reason is the
same reason for constructing MMM in the first place.
The hidden modules were introduced to combine the

visible modules and model correlations between the
latter. A MAP estimate of the hidden z;’s suffices to
accomplish this aim. In addition, whereas exact or ap-
proximate marginalization would probably produce a
more powerful model for p(y), the same effect would
be obtained by increasing the number of modules and
keeping the MAP estimate. Finally, a MAP estimate
leads to a simple and elegant algorithm with the at-
tractive feature of local learning rules.

The locality results from the fact that using MAP de-
couples the states of the different modules. Conse-
quently, each module separately estimates its param-
eters from its own and its parent’s inputs. Given the
parameter values, the inputs are updated, where the
input to each module uses information only from that
module and its children. This procedure is iterated to
convergence.

To derive the learning algorithm, observe that the
joint conditional distribution over all hidden variables
reduces to the conditional over the module states
times a d-function, p({zicu}, {s:} | ¥) = p({si} |
Y) [Licy 0(xs — 24(y)), where #; are the data depen-
dent MAP estimates.

The joint state conditional further factorizes over the
modules, since p({s;} | y) o< [[p(xi, si | Zpe(iy). Hence

i
we have

p({si} |y) = Hpsz\y (4)

where p(s; = s | y) is the responsibility of state s in
module ¢ for the data vector y. This factorization is
key to the local features of the learning algorithm for
MMM.

Let y™, n = 1,..., N denote the nth observed data
vector. There are three types of quantities that should
be obtained from the dataset:
(i) The parameters 6; = {u;s,
7.

(ii) The input variables 27 to all hidden modules i € H
for data vector n.

(iii) The responsibilities 7% = p(s?
s in module 7 for data vector n.

Ais, a;s} for all modules

= s | y™) of state

Estimating the parameters (i) is usually termed learn-
ing, whereas obtaining the inputs and responsibilities

""" Both tasks are accom-
plished by maximizing the objective function

F=> [logp(x?

n,i,s

=S | xpa(z) 0;) log ’ané (5)

w.r.t. 6;, ', and ;.. The first term inside the sum is
the complete data likelihood, with the module states
averaged over using their responsibilities, as usual in

EM. The second term ensure that 77 = p(s
as required.

r=sly")

Here are the update rules for MMM.

For module i’s means and precisions,

L _ Z 715 2
En ryzs ’
5 - Z 7-" . ()

For module 7’s dependence on its parent, we have the
incremental rule

5azs = 772713 |: ww pa(i)) J;Z‘l(i)' ’ (7)

where 7 is a suitably chosen learning rate.

For module 7’s inputs at the nth data instance, we also
have an incremental rule,

—eZv:;As(x? — ftis)
+ Z Z ’YJS wJS

Jpa(i)=j

oz} =
)] ajs , (8)

where the sum in the second term runs over the chil-
dren of module ¢, and e sets the learning rate.

Finally, for the responsibilities of module i’s states,
n 1 n n
Yis = Zgis(xi)wis(gjpa(i))) 9)

where Z; is set to ensure) v/ = 1.

After initialization (see below), the above iterations
may be performed at any order. The scheme corre-
sponding to ordinary EM directs us to update v, and
z7 in the E-step, where the incremental rule for 7
is iterated to convergence. Then turn to the M-step
and update p;s, A;s and a;5, where again the incre-
mental rule for a;s is iterated to convergence. Any
alternative scheme, in particular early stopping in the
incremental rules, corresponds to generalized EM and
is guaranteed convergence.

6 Top-Down Interpretation

Viewed as a generative model for the data, MMM has
a natural interpretation. Suppose the data vector y, is
an image of a handwritten digit, e.g. 2. Assume a sim-
ple MMM with four visible modules which subdivide
the pixel array into equal non-overlapping parts. Add
one hidden module as the top module, and connect the
visible modules as his children.

Several writing styles may be used for 2, and they cor-
respond to the different states of the top module. Mov-
ing on to the visible modules, each of the four parts of
the image would display one of several possible tem-
plates. These templates are generated by the states of
the module which covers that part of the image. The
variance associated with each template is described by
the Gaussian distribution associated with the corre-
sponding state.

Finally, which combination of template is selected gen-
erally depends on the writing style. For one style, visi-
ble modules 7, j are likely to be in states s; = 1, s; = 2,
whereas for another style these modules are likely to
be in states s; = 3, s; = 2. The style controls the
visible modules via the dependence of their states on
the top module’s input, p(s; | Zpq(i))-

This interpretation holds for arbitrary MMM with any
configuration of hidden modules. Modules higher in
the hierarchy control the coarser structure of the gen-
erated image, and lower modules add finer details.

7 Bottom-Up Interpretation

Viewed as a bottom-up network that processes the ob-
served data, MMM perform a sequence of local clus-
tering and local dimensionality reduction operations.
Clustering, because each visible module i estimates the
density of its inputs x;, by fitting a mixture model to
the data in its image patch.

Dimensionality reduction, because the inputs {z;} to
the parents j = pa(i) form a lower dimensional repre-
sentation of the data {z;}. Notice that the mapping
{z;} = {z;,j = pa(i)} is defined implicitly by the
MMM joint distribution, and is implemented by the
update rules (8,9). This mapping is nonlinear, and is
deterministic due to our use of the MAP estimate. It is
not taken in isolation, but is coupled to the clustering
performed by module ¢ and to the rest of the network.

The sequence we have in mind is therefore (i) local
clustering of inputs x;, (ii) dimensionality reduction
Ti = Tpa(s), (ili) repeat at the next level. Intuitively,
one can view the dimensionality reduction as a lin-
ear transformation applied to the log-responsibilities
log ;s to give the inputs z,4(;), but strictly speaking
this is only an approximation. We revisit this point in
the section on initialization.

8 Considerations for Model Selection

For simplicity, we assume in this section a symmetric
tree structure. Each module has m states and k chil-
dren, and its input dimensionality is . What are the
optimal m, k, and {? This is a model selection question

which, in principle, could be addressed using Bayesian
methods. Here we focus on selecting the dimension [,
and employ two different (but related) heuristic con-
siderations.

The first consideration aims to minimize the number of
parameters. Observe that we could have constructed
the tree without using any hidden inputs x;cp, only
hidden states s;. The states in a given module ¢ would
then have depended directly on the states s,q(;) of its
parent, rather than on the inputs to its parent. A sim-
ple calculation shows that the resulting model would
have had a larger number of parameters than ours if
I < mk/(k+ 2) (precise conditions are omitted), and
thus more prone to overfitting. Thus a small [is en-
couraged.

The second consideration aims at dimensionality re-
duction. One may think of the inputs x; to module j
as arising from the outputs of its children i, pa(i) = j.
These outputs may be, e.g., the indicator variables as-
sociated with the states of each child, or equivalently
the responsibilities 7;s. The dimensionality of these
outputs is (m — 1)k. Now, if the above inequality is
satisfied, it implies the weaker inequality | < (m—1)k.
Hence, minimizing the number of parameters leads to
a large dimensionality reduction.

Assuming the model parameters are fixed, we choose [
as follows. Perform SVD on the log ;. Set a threshold
t, and count the number n; of eigenvalues above the
threshold. Then set | = min(n:, mk/(k + 2)).

9 Initialization

MMM is a parametric model with many hidden vari-
ables. Training thus has complicated dynamics which
are sensitive to initial conditions. In this section we
provide a careful initialization procedure. This proce-
dure is based on the interpretation discussed above.

Let us focus on the visible modules i € V and as-
sume their parameters have already been initialized.
How should the inputs z; to their parent modules
j = pa(i) be initialized? Recall the responsibilities
Yis = Gis(Ti)wis(5)/Zi(wi, x5) (9). Taking the loga-
rithm on both sides, using (2), and rearranging terms,
we have

az;xj = log~is + bis , (10)

where b;s = —log g;s(z;)+1og Z;(z;, ;) +log z;(z;) de-
pends on z; via the normalization constants. Hence,
if we approximate Z; and z; as flat w.r.t. x;, b;s are
constants and the inputs x; can be initialized as lin-
ear combinations of the log responsibilities log~y;s of
the children modules. Selecting the combination coef-
ficients may be viewed as a problem of linear dimen-

sionality reduction, where SVD could be applied.

These considerations lead the following proposal.

(1) Set the inputs x; to the parent modules to zero, and
train the means and precisions of the visible modules
on the data x;.

(ii) For each j, perform SVD on log ;s with pa(i) = 7,
and initialize x; to the first ; principal components.
(iii) Proceed to the parents of modules j and apply the
same procedure.

10 Handwritten Digit Classification

To use MMM for Bayesian classification, we train a
separate MMM for each class ¢. Given a new data
point y, we compute its likelihood logp(y | ¢) = F
from (5) for each model. Notice that, whereas the
model parameters are now fixed, we still have to do
inference using the update rules (8,9). The data point
is assigned to class ¢ = arg Incaxp(c | y). The class

posterior is obtained using Bayes’ rule, p(c | y) «
p(y | ¢)p(c), where the class prior is measured from
the training data.

The algorithm was applied to the Buffalo post office
dataset, which contains 1100 examples for each digit
0 — 9. Each digit is a gray-level 8 x 8 pixel array.
We used 1000-digit batches for training, and a sepa-
rate batch of 100 for testing. For each digit, we used
MMM with 4 visible modules and one hidden module.
The visible modules had I; = 16, m; = 10, and the
hidden one I; = 8, m; = 6. Results gave misclassifica-
tion rate of 1.9%. A single 64-dimensional, 30 compo-
nent mixture of Gaussians model with full covariance
matrices gave a slightly higher rate of 2.1%. More ex-
tensive tests using the MNIST dataset are currently
underway.

11 Discussion

One important restriction on the structure of MMM
imposed in the present paper is that each module has
only one parent. In order to prevent edge effects, it
would be advantageous for parents to share children.
An easy way to achieve this would be allowing the
states s; of module i to depend on the inputs z; of
more than one module j, while taking care to avoid
loops. This would leave the form of the update rules
essentially unmodified.

Another potential cause for edge effects is the require-
ment of non-overlapping data variables, i.e. of x; and
x; for 4,5 € V and 7 # j. This restriction is harder to
overcome, since allowing the z; to depend not only on
s; but also on states of other modules would change the
model parametrization. One proposal is to allow the

inputs of the visible modules to be a linear transfor-
mation of the data, i.e. x; = A;y, where the additional
parameter matrices A; would be estimated by maxi-
mum likelihood. The A; are determined essentially by
second order correlations between the data variables,
and would tend to vanish for pixels that are far apart.

Learning the optimal structure of a MMM from data is
an important issue which has been touched upon here
only lightly. Whereas Bayesian methods for model se-
lection can in principle provide a solution, in practice
there are two major problems. First, exact Bayesian
inference is intractable for mixture models. Second,
even if it were tractable, the space of all possible struc-
tures is prohibitively large. The first problem may be
addressed using variational techniques [4], and the sec-
ond by local search methods [6].

Many other topics in MMM remain, among them ex-
tensions to discrete data, to non-Gaussian mixture
models, and to dynamical systems.

References

[1] Moore, A. (1999). Very fast EM-based mixture
model clustering using multiresolution kd-trees. In
Proc. NIPS-98.

[2] Meila, M. (1998). Learning with mixtures of trees.
PhD thesis, MIT.

[3] Chickering, D.M. & Heckerman, D. (1999). Fast
learning from sparse data. In Proc. UAI-99.

[4] Attias, H. (2000). A variational Bayesian frame-
work for graphical models. In Proc. NIPS-99.

[5] Attias, H. (1999). Learning a hierarchical belief
network of independent factor analyzers. In Proc.
NIPS-98.

[6] Heckerman, D. (1998). A tutorial on learning with
Bayesian networks. In Learning in Graphical Models
(Ed. Jordan, M.IL.).

