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Abstra
t

The paper 
onsiders 
onditional Gaussian

networks. As 
onjugate lo
al priors, we use

the Diri
hlet distribution for dis
rete vari-

ables and the Gaussian-inverse Gamma dis-

tribution for 
ontinuous variables, given a


on�guration of the dis
rete parents. We as-

sume parameter independen
e and 
omplete

data. Further, the network-s
ore is 
al
u-

lated. We then develop a lo
al master prior

pro
edure, for deriving parameter priors in

CG networks. The lo
al master pro
edure

satis�es parameter independen
e, parameter

modularity and likelihood equivalen
e.

1 Introdu
tion

The aim of this paper is to present a method for learn-

ing the parameters and the stru
ture of a Bayesian

network with dis
rete and 
ontinuous variables. In

He
kerman, Geiger & Chi
kering (1995) and Geiger &

He
kerman (1994) this was done for respe
tively dis-


rete networks and Gaussian networks.

We de�ne the lo
al probability distributions su
h that

the joint distribution of the random variables is a 
on-

ditional Gaussian (CG) distribution. We do not allow

dis
rete variables to have 
ontinuous parents, so the

network fa
torizes into a dis
rete part and a mixed

part. The lo
al 
onjugate parameter priors are for the

dis
rete part of the network spe
i�ed as Diri
hlet dis-

tributions and for the mixed part of the network as

Gaussian-inverse Gamma distributions for ea
h 
on-

�guration of dis
rete parents.

To learn the stru
ture of a CG network, we �nd the

network-s
ore p(d;D). Further, we derive a method for

�nding the prior distribution of the parameters in pos-

sible stru
tures, from marginal priors 
al
ulated from

an imaginary database. The method satis�es param-

eter independen
e, parameter modularity and likeli-

hood equivalen
e. Further, if used on networks with

only dis
rete or 
ontinuous variables, it 
oin
ides with

the methods developed in He
kerman et al. (1995) and

Geiger & He
kerman (1994).

2 Bayesian networks

A Bayesian network is a graphi
al model that en
odes

the joint probability distribution for a set of variables.

For terminology and theoreti
al aspe
ts on graphi
al

models, see Lauritzen (1996). In this paper we de�ne

it as

� A Dire
ted A
y
li
 Graph (DAG) D = (V;E),

where V is a �nite set of verti
es and E is a �nite

set of dire
ted edges between the verti
es. The

DAG de�nes the stru
ture of the Bayesian net-

work.

� To ea
h vertex v 2 V in the graph 
orresponds

a random variable X

v

. The set of variables asso-


iated with the graph D is then X = (X

v

)

v2V

.

Often we do not distinguish between a variable

X

v

and the 
orresponding vertex v.

� To ea
h vertex v with parents pa(v), there

is atta
hed a lo
al probability distribution,

p(x

v

jx

pa(v)

). The set of lo
al probability distri-

butions for all variables in the network is denoted

P .

� The possible la
k of dire
ted edges in D en
odes

these 
onditional independen
ies between the ran-

dom variables X through the fa
torization of the

joint probability distribution,

p(x) =

Y

v2V

p(x

v

jx

pa(v)

): (1)

A Bayesian network for a set of random variables X

is thus the pair (D;P). In order to spe
ify a Bayesian



network, we must therefore spe
ify a DAG D and a

set P of lo
al probability distributions.

3 Bayesian networks for mixed

variables

In this paper we are interested in spe
ifying networks

for random variables X of whi
h some are dis
rete and

some are 
ontinuous (qualitative/quantitative). So we


onsider a DAG D = (V;E) with variables/verti
es

V = � [ �, where � and � are the sets of dis-


rete and 
ontinuous variables, respe
tively. The 
or-

responding random variables X 
an then be denoted

X = (X

v

)

v2V

= (I; Y ) = ((I

Æ

)

Æ2�

; (Y




)


2�

), i.e. we

use I and Y for the sets of dis
rete and 
ontinuous

variables respe
tively. We denote the set of levels for

ea
h dis
rete variable Æ 2 � as I

Æ

.

In this paper we do not allow dis
rete variables to have


ontinuous parents. This is to ensure availability of ex-

a
t lo
al 
omputation methods, see Lauritzen (1992)

and Lauritzen & Jensen (1999). So the set of edges E

satis�es E � (� � �)

{

; where { denotes the 
omple-

ment. Now we need to spe
ify the set of lo
al probabil-

ity distributions P . As we have no dis
rete 
hildren of


ontinuous parents, the joint probability distribution

fa
torizes as follows:

p(x) = p(i; y) =

Y

Æ2�

p(i

Æ

ji

pa(Æ)

)

Y


2�

p(y




ji

pa(
)

; y

pa(
)

):

Note that i

pa(
)

and y

pa(
)

denote observations of the

dis
rete and 
ontinuous parents respe
tively, i.e. i

pa(
)

is an abbreviation of i

pa(
)\�

et
.

We see that the joint probability distribution fa
torizes

into a purely dis
rete part and a mixed part. First we

look at the dis
rete part.

3.1 The dis
rete part of the network

We assume that the lo
al probability distributions are

just unrestri
ted dis
rete distributions with

p(i

Æ

ji

pa(Æ)

) � 0 8 Æ 2 �:

A way to parameterize this is to say that

�

i

Æ

ji

pa(Æ)

= p(i

Æ

ji

pa(Æ)

; �

Æji

pa(Æ)

); (2)

where �

Æji

pa(Æ)

= (�

i

Æ

ji

pa(Æ)

)

i

Æ

2I

Æ

:

Furthermore

P

i

Æ

2I

Æ

�

i

Æ

ji

pa(Æ)

= 1 and 0 � �

i

Æ

ji

pa(Æ)

�

1.

So using this parameterization, the dis
rete part of the

joint probability distribution is given by

p(ij(�

Æji

pa(Æ)

)

Æ2�

) =

Y

Æ2�

p(i

Æ

ji

pa(Æ)

; �

Æji

pa(Æ)

): (3)

3.2 The mixed part of the network

Now we 
onsider the mixed part. We assume that

the lo
al probability distributions are Gaussian linear

regressions on the 
ontinuous parents, with parameters

depending on the 
on�guration of the dis
rete parents.

So let the parameters in the distribution be given by

�


ji

pa(
)

= (f


ji

pa(
)

; �


ji

pa(
)

; �

2


ji

pa(
)

). Then

(Y




ji

pa(
)

; y

pa(
)

; �


ji

pa(
)

) �

N (f


ji

pa(
)

+ �


ji

pa(
)

y

pa(
)

; �

2


ji

pa(
)

); (4)

where �


ji

pa(
)

are the regression 
oeÆ
ients, f


ji

pa(
)

is the 
onditional mean, and �

2


ji

pa


is the 
onditional

varian
e. The mixed part of the joint distribution 
an

now be written as

p(yji; (�


ji

pa(
)

)


2�

) =

Y


2�

p(y




ji

pa(
)

; y

pa(
)

; �


ji

pa(
)

): (5)

Further, the joint probability distribution p(i; yj�),

where

� = ((�

Æji

pa(Æ)

)

i

pa(Æ)

2I

pa(Æ)

; (�


ji

pa(
)

)

i

pa(
)

2I

pa(
)

)

is given by the produ
t of (3) and (5). Noti
e that

when the lo
al probability distributions are given by

(2) and (4), the joint probability distribution for X is

a CG distribution (
onditional Gaussian) with density

of the form

p(i)j2��

i

j

�

1

2

expf�

1

2

(y �m

i

)

T

�

�1

i

(y �m

i

)g:

For ea
h i, m

i

is the un
onditional mean, that is un-


onditional on 
ontinuous variables and �

i

is the 
o-

varian
e matrix for the 
ontinuous variable in the net-

work. In Sha
hter & Kenley (1989) formulas for 
al
u-

lating �

i

from the lo
al probability distributions 
an

be found. A Bayesian network where the joint prob-

ability distribution is a CG distribution is in the fol-

lowing 
alled a CG network.

4 Learning the parameters in a CG

network

When 
onstru
ting a Bayesian network, there is, as

mentioned in Se
tion 2, two things to 
onsider, namely

spe
ifying the DAG and spe
ifying the lo
al probabil-

ity distributions. In this se
tion we assume that the

stru
ture of the DAG is known and the distribution

type is determined as in the previous se
tion. Now

we 
onsider the spe
i�
ation of the parameters in the

distributions.



4.1 Some simplifying properties

Here we de�ne the prior distributions of the param-

eters su
h that they are 
onjugate for the observa-

tions in question. Further, we assume that the pa-

rameters asso
iated with one variable is independent

of the parameters asso
iated with the other variables.

This assumption was introdu
ed by Spiegelhalter &

Lauritzen (1990) and we denote it global parameter

independen
e. In addition to this, we will assume that

the parameters are independent for ea
h 
on�guration

of the dis
rete parents, whi
h we denote as lo
al pa-

rameter independen
e. So if the parameters have the

property of global parameter independen
e and lo
al

parameter independen
e, then

p(�) =

Y

Æ2�

Y

i

pa(Æ)

2I

pa(Æ)

p(�

Æji

pa(Æ)

)

�

Y


2�

Y

i

pa(
)

2I

pa(
)

p(�


ji

pa(
)

);

(6)

and we will refer to (6) simply as parameter indepen-

den
e.

A 
onsequen
e of parameter independen
e is that, for

ea
h 
on�guration of the dis
rete parents, we 
an up-

date the parameters in the lo
al distributions indepen-

dently. This also means, that if we have lo
al 
onju-

ga
y, i.e. the distribution of �

Æji

pa(Æ)

and �


ji

pa(
)

be-

longs to a 
onjugate family, then be
ause of parameter

independen
e, we have global 
onjuga
y, i.e. the dis-

tribution of p(�) belongs to a 
onjugate family. Fur-

ther we will assume that the database d of 
ases, from

whi
h the parameters are updated, is 
omplete, i.e. we

have no missing observations. Due to parameter in-

dependen
e, the fa
torizations in (3) and (5), and the

assumption of 
omplete data, the parameters stay in-

dependent given data. We 
all this property posterior

parameter independen
e. In other words, the proper-

ties of lo
al and global independen
e are 
onjugate.

4.2 Learning in the dis
rete 
ase

In the dis
rete part of the network we assumed that the

lo
al probability distributions are unrestri
ted dis
rete

distributions de�ned as in (2). As pointed out in the

previous se
tion we 
an, be
ause of the assumption of

parameter independen
e, �nd the posterior distribu-

tion of �

Æji

pa(Æ)

for ea
h Æ and ea
h 
on�guration of

pa(Æ) independently.

Let x




2 d be a 
ase in a database d = fx

1

; : : : ; x

n

g,

where the 
on�guration of the parents is i




pa(Æ)

. As the

network 
an be partitioned in a pure dis
rete part and

a mixed part, we 
an just 
onsider the dis
rete part of

the 
ase, namely i




.

A 
onjugate family for observations from (2), is the

family of Diri
hlet distributions. Let the prior distri-

bution of �

Æji




pa(Æ)

be a Diri
hlet distribution D with

parameters �

Æji




pa(Æ)

= (�

i

Æ

ji




pa(Æ)

)

i

Æ

2I

Æ

, also written as

(�

Æji




pa(Æ)

) � D(�

Æji




pa(Æ)

):

The probability density fun
tion for this Diri
hlet dis-

tribution is given by

p(�

Æji




pa(Æ)

) /

Y

i

Æ

2I

Æ

(�

i

Æ

ji




pa(Æ)

)

�

i

Æ

ji




pa(Æ)

�1

:

By using Bayes' theorem, the posterior distribution is

found to be

(�

Æji




pa(Æ)

ji




) � D(�

Æji




pa(Æ)

+ n

Æji




pa(Æ)

);

where the ve
tor n

Æji




pa(Æ)

= (n

i

Æ

ji

pa(Æ)

)

i

Æ2I

Æ


ontains

zeros ex
ept at the pla
e where n

i

Æ

ji




pa(Æ)

= n

i




Æ

ji




pa(Æ)

=

1. These numbers are also 
alled 
ounts as, when

we update all the parameters re
ursively through the

database d, n

i

Æ

ji




pa(Æ)

denotes the number of observa-

tions in d where Æ and pa(Æ) have that parti
ular 
on-

�guration.

4.3 Learning in the mixed 
ase

In the mixed 
ase we 
an write the lo
al probability

distributions as

(Y




ji

pa(
)

; y

pa(
)

; �


ji

pa(
)

) �

N (�

+f


ji

pa(
)

z

pa(
)

; �

2


ji

pa(
)

);

where

�

+f


ji

pa(
)

=

�

f


ji

pa(
)

�


ji

pa(
)

�

and z

pa(
)

=

�

1

y

pa(
)

�

Noti
e that both these ve
tors have dimension k + 1,

where k is the number of 
ontinuous parents to 
.

As we assumed lo
al independen
e for the dis
rete par-

ents, we 
an, as in the dis
rete 
ase, update the pa-

rameters for ea
h 
on�guration of the dis
rete parents

independently. So 
onsider a 
ase x




2 d where the


on�guration of the dis
rete parents is i




pa(
)

. In the

following we do not use the index 
 on the parameters,

as it will blur the notation.

A standard 
onjugate family for these observations is

the family of Gaussian-inverse gamma distributions.

Let the prior joint distribution of �

+f


ji

pa(
)

and �

2


ji

pa(
)

be as follows. The 
onditional prior distribution of

�

+f


ji

pa(
)

given �

2


ji

pa(
)

is a multivariate Gaussian dis-

tribution and the marginal distribution of �

2


ji

pa(
)

is



an inverse gamma distribution. The parameters are

given as below.

(�

+f


ji

pa(
)

j�

2


ji

pa(
)

) �N

k+1

(�


ji

pa(
)

; �

2


ji

pa(
)

�

�1


ji

pa(
)

)

(�

2


ji

pa(
)

) �I�

 

�


ji

pa(
)

;

1

�


ji

pa(
)

!

:

The parameters in the posterior distributions are eas-

ily found by Bayes' theorem, (DeGroot 1970).

5 Learning the stru
ture of a CG

network

Up until now we have assumed that the DAG D is

known. In some situations this is not the 
ase. Here

we will show how we 
an sele
t one or more DAG's

among the possible DAG's. A way to �nd out how

well a DAG represents the 
onditional independen
ies

among the random variables in a Bayesian network, is

to measure how likely the DAG is, given that we have

observed a dataset d. That is, we 
an �nd the posterior

probability of the DAG, p(Djd). From Bayes' theorem

we have that

p(Djd) / p(djD)p(D):

As the normalizing 
onstant does not depend upon

stru
ture, an often used measure, whi
h gives the rel-

ative probability, is the network-s
ore

p(D; d) = p(djD)p(D):

In the next se
tion we will derive the network-s
ore for

CG networks.

5.1 The network-s
ore for a CG network

In order to 
al
ulate the network-s
ore for a spe
i�


DAG D, we need to know the prior probability and

the likelihood of the DAG. In this paper we do not


onsider how to �nd the prior probability of a DAG,

but just note that we for example 
an let all DAG's be

equally likely. The likelihood of the DAG D is given

by

p(djD) =

Z

�2�

p(dj�;D)p(�jD)d�; (7)

where � is the parameter spa
e. Again we 
an 
onsider

the problem for the dis
rete part and the mixed part

of the network separately. The dis
rete part is easily

found to be

Y

Æ2�

Y

i

pa(Æ)

2I

pa(Æ)

�(�

+

Æ

ji

pa(Æ)

)

�(�

+

Æ

ji

pa(Æ)

+ n

+

Æ

ji

pa(Æ)

)

�

Y

i

Æ

2I

Æ

�(�

i

Æ

ji

pa(Æ)

+ n

i

Æ

ji

pa(Æ)

)

�(�

i

Æ

ji

pa(Æ)

)

: (8)

In the mixed part of the network, the lo
al

marginal likelihoods are non-
entral t distributions

with �


ji

pa(
)

degrees of freedom, lo
ation ve
-

tor z

pa(
)

�


ji

pa(
)

and s
ale parameter s


ji

pa(
)

=

�


ji

pa(
)

�


ji

pa(
)

(1 + (z

pa(
)

)

t

�

�1


ji

pa(
)

z

pa(
)

), see e.g. DeGroot

(1970). So the mixed part is given by

Y


2�

Y

i

pa(
)

2I

pa(
)

Y

x




2d

�((�


ji

pa(
)

+ 1)=2)

�(�


ji

pa(
)

=2)(�


ji

pa(
)

s


ji

pa(
)

�)

1

2

� (1 +Q)

(�


ji

pa(
)

+1)

2

; (9)

where

Q =

(y







� z




pa(
)

�


ji

pa(
)

)

2

�


ji

pa(
)

(1 + (z




pa(
)

)

t

�

�1


ji

pa(
)

z




pa(
)

)

;

and � is the gamma fun
tion. The network-s
ore for

a CG network is thus the produ
t of the prior prob-

ability for the DAG D and the terms in (8) and (9).

Noti
e that the network-s
ore has the property that it

fa
torizes into a produ
t over terms involving only a

single node and its parents. This property is 
alled de-


omposability. So the network-s
ore for CG networks

is de
omposable.

6 The master prior pro
edure

In the previous se
tion we derived an expression for

the network-s
ore for CG networks. To 
al
ulate this

s
ore, we must spe
ifying the lo
al probability distri-

butions and the lo
al prior distributions for the pa-

rameters for ea
h network under evaluation. In the

papers He
kerman et al. (1995) and Geiger & He
k-

erman (1994) a method for �nding the prior distribu-

tions for the parameters in respe
tively the pure dis-


rete and the pure Gaussian 
ase is developed. The

work is based on prin
iples of likelihood equivalen
e,

parameter modularity, and parameter independen
e.

It leads to a method where the parameter priors for

all possible networks are dedu
ed from one joint prior

distribution, in the following 
alled a master prior dis-

tribution. In this paper we will build on their method

for �nding a method, whi
h 
an be used on networks

with mixed variables. We will therefore in the follow-

ing des
ribe their method for the pure 
ases.

6.1 The master prior in the dis
rete 
ase

In the pure dis
rete 
ase, or the dis
rete part of a

mixed network, the following is a well known 
lassi-


al result.

Let A be a subset of � and let B = � n A. Let the

dis
rete variables i have the joint distribution

p(ij	) = 	

i

:



Noti
e here, that the set 	 = (	

i

)

i2I


ontains the

parameters for the joint distribution, 
ontrary to � in

Se
tion 3, whi
h 
ontains the parameters for the 
on-

ditional lo
al distributions.

In the following let z

i

A

=

P

j:j

A

=i

A

z

j

, where z is any

parameter. Then the marginal distribution of i

A

is

given by

p(i

A

j	) = 	

i

A

;

and the 
onditional distribution of i

B

given i

A

is

p(i

B

ji

A

;	) =

	

i

	

i

A

= 	

i

A

ji

B

Further if the joint prior distribution for the parame-

ters 	 is Diri
hlet, that is

p(	) � D(�); (10)

where � = (�

i

)

i2I

, then the marginal distribution of

	

A

is Diri
hlet, i.e.

p(	

A

) � D(�

A

);

with �

A

= (�

i

A

)

i

A

2I

A

. The 
onditional distribution

of 	

Bji

A

is

p(	

Bji

A

) � D(�

Bji

A

)

with �

i

A

ji

B

= �

i

. Furthermore the parameters are

independent, that is

p(	) =

Y

i

A

2I

A

p(	

Bji

A

)p(	

A

): (11)

From the above result we see, that for ea
h possible

parent/
hild relationship, we 
an �nd the marginal pa-

rameter prior p(	

Æ[pa(Æ)

). Further, from this marginal

distribution we 
an, for ea
h 
on�guration of the

parents, �nd the 
onditional lo
al prior distribution

p(	

Æji

pa(Æ)

). Noti
e that 	

Æji

pa(Æ)

= �

Æji

pa(Æ)

, where

�

Æji

pa(Æ)

was spe
i�ed for the 
onditional distributions

in Se
tion (3.1). Further, be
ause of parameter inde-

penden
e, given by (11), we 
an �nd the joint param-

eter prior for any network as the produ
t of the lo
al

priors involved.

To use this method, we must therefore spe
ify the joint

Diri
hlet distribution, i.e. the master Diri
hlet prior.

6.1.1 The master Diri
hlet prior

We will now show how to 
onstru
t the master Diri
h-

let prior. This was �rst done in He
kerman et al.

(1995) and here we follow their method. We start by

spe
ifying a prior Bayesian network (D;P) as we be-

lieve it to be. From this we 
al
ulate the joint distribu-

tion p(ij	) = 	

i

: As 
an be seen from (10), to spe
ify

a master Diri
hlet distribution, we must spe
ify the

parameters � = (�

i

Æ

)

i2I

. Consider now the following

relation for the Diri
hlet distribution.

p(i) = E(	

i

) =

�

i

n

;

with n =

P

i2I

�

i

. Now we use the probabilities in the

prior network as an estimate of E(	

i

), so we only need

to determine n in order to 
al
ulate the parameters

�

i

. We determine n by using the notion of an imag-

inary database. We imagine that we have a database

of 
ases, from whi
h we from total ignoran
e have up-

dated the distribution of 	. The sample size of this

imaginary database is thus n. Therefore we refer to

the estimate of n as the imaginary sample size, and it

expresses how mu
h 
on�den
e we have in the prior

network.

6.2 The master prior in the Gaussian 
ase

We have a similar result for the Gaussian 
ase. Let A

be a subset of � and let B = � nA. If

(yjm;�) � N (m;�);

then

(y

A

jm;�) � N (m

A

;�

AA

)

and

(y

B

jy

A

;m

BjA

; �

BjA

;�

BjA

) �

N (m

BjA

+ �

BjA

y

A

;�

BjA

);

where

� =

�

�

AA

�

AB

�

BA

�

BB

�

; �

BjA

= �

BB

��

BA

�

�1

AA

�

AB

;

m

BjA

= m

B

� �

BjA

m

A

and �

BjA

= �

BA

�

�1

AA

:

Further, if

(mj�) � N (�;

1

�

�) and (�) � IW(�;�);

where the parametri
 matrix � is partitioned as �,

then

� (�

AA

) � IW(�;�

AA

)

� (�

BjA

) � IW(�+ jAj;�

BjA

)

� (m

BjA

; �

BjA

j�

BjA

) � N (�

BjA

;�

BjA


 �

�1

BjA

)

� m

A

;�

AA

?? m

BjA

; �

BjA

�

BjA

where

�

BjA

= (�

B

� �

BA

�

�1

AA

�

A

;�

BA

�

�1

AA

);



and

�

�1

BjA

=

0

�

1

�

��

T

A

�

�1

AA

�

�1

AA

�

A

�

�1

AA

1

A

;

and 
 denotes the Krone
ker produ
t. Noti
e that the

dimension of �

BjA

is (jBj; jBj � jAj).

As in the dis
rete 
ase, this result shows us how to de-

du
e the lo
al probability distributions and the lo
al

prior distributions from the joint distributions. Fur-

ther we 
an, again be
ause of parameter independen
e,

spe
ify the joint parameter prior for any Gaussian net-

work as the produ
t of the lo
al priors. Noti
e again

that the parameters found here for a node given its

parents, 
oin
ides with the parameters spe
i�ed in Se
-

tion 3.2.

6.2.1 The master Gaussian-inverse Wishart

prior

Before we show how to 
onstru
t the master prior,

we need the following result. The Gaussian-inverse

Wishart prior is 
onjugate to observations from a

Gaussian distribution, (DeGroot 1970). So let the

probability distribution and the prior distribution be

given as above. Then, given the database d =

fy

1

; : : : ; y

n

g, the posterior distributions are

(mj�; d) � N (�

0

;

1

�

0

�) and (�jd) � IW(�

0

;�

0

);

where

�

0

= � + n

�

0

=

��+ ny

� + n

(12)

�

0

= �+ n

�

0

= �+ ssd+

�n

� + n

(�� y)(�� y)

t

;

with

y =

1

n

n

X

i=1

y

i

and ssd =

n

X

i=1

(y

i

� y)(y

i

� y)

From these updating formulas we see that �

0

and �

0

are updated with the number of 
ases in the database.

Further �

0

is a weighted average of the prior mean and

the sample mean, ea
h weighted by their sample sizes.

Finally � is updated with the ssd, whi
h expresses how

mu
h ea
h observation di�ers from the sample mean,

and an expression for how mu
h the prior mean di�ers

from the sample mean.

To spe
ify the master prior, we need to spe
ify the four

parameters �, �, � and �. As for the dis
rete vari-

ables we start by spe
ifying a prior Bayesian network,

(D;P). From this we 
an dedu
e a prior joint prob-

ability distribution p(yjm;�) = N (m;�). We now

imagine that the mean m and the varian
e � were


al
ulated from an imaginary database, so that they

a
tually are the sample mean and the sample vari-

an
e. Further we assume that before we observed this

imaginary database, we were totally ignorant about

the parameters. We 
an now use the formulas in (12)

to \update" the parameters on the basis of our imagi-

nary database. As we have not seen any 
ases before,

� and � are estimated by the imaginary sample size.

Further

� = m and � = ssd = (� � 1)�:

In Geiger & He
kerman (1994), � and � are found in

a slightly di�erent way.

6.3 Properties of the master prior pro
edure

The method for �nding prior parameter distributions

des
ribed in the previous se
tion, has some properties,

whi
h we will des
ribe here. In the following we use 	

as parameters de�ned for joint distribution, i.e. 	 
an

be the parameter for the dis
rete variables or in the


ontinuous 
ase, 	 = (m;�).

Clearly a 
onsequen
e of using the method is that the

parameters are independent. Further it 
an be seen,

that if a node v has the same parents in two DAG's

D

1

and D

2

, then

p(	

vjpa(v)

jD

1

) = p(	

vjpa(v)

jD

2

)

This property is referred to as parameter modular-

ity. Now the dis
rete and Gaussian distributions have

the property that if the joint probability distribution

p(x) 
an be fa
torized a

ording to a DAG D, then it


an also be fa
torized a

ording to all other DAG's,

whi
h represents the same set of 
ondtional indepen-

den
ies as D. A set of DAG's, D

e

, whi
h represents

the same independen
e 
onstraints is referred to as in-

dependen
e equivalent DAG's. So let D

1

and D

2

be

independen
e equivalent DAG's, then

p(xj	; D

1

) = p(xj	; D

2

):

This means, that from observations alone we 
an not

distinguish between di�erent DAG's in an equivalen
e


lass. In the papers He
kerman et al. (1995) and

Geiger & He
kerman (1994) it is for respe
tively the

dis
rete and Gaussian 
ases shown, that when using

the master prior pro
edure for 
onstru
tion parame-

ter priors, the marginal likelihood for data is also the

same for independen
e equivalent networks, i.e.

p(djD

1

) = p(djD

2

)

This equivalen
e is referred to as likelihood equiva-

len
e. Note that likelihood equivalen
e imply, that if

D

1

andD

2

are independen
e equivalent networks, then

they have the same joint prior for the parameters, i.e.

p(	jD

1

) = p(	jD

2

).



7 Lo
al masters for mixed networks

In this se
tion we will show how to spe
ify prior dis-

tributions for the parameters in a CG network. In the

mixed 
ase, the marginal of a CG distribution is not

always a CG distribution. In fa
t it is only a CG dis-

tribution if we marginalize over 
ontinuous variables

or if we marginalize over a set B of dis
rete variable,

where B ?? � j � n B, see Frydenberg (1990). Con-

sider the following example. We have a network of two

variables i and y and the joint distribution is given by

p(i; y) = p(i)N (m

i

; �

2

i

)

Then the marginal distribution of y is given as a mix-

ture of normal distributions

p(y) =

X

i2I

p(i)N (m

i

; �

2

i

);

so there is no simple way of using this dire
tly for

�nding the lo
al priors.

7.1 The suggested solution

The suggested solution is very similar to the solution

for the pure 
ases. We start by spe
ifying a prior

Bayesian network (D;P) and then 
al
ulate the joint

probability distribution

p(i; yjH) = p(ij	)N (m

i

;�

i

);

with H = (	; (m

i

)

i2I

; (�

i

)

i2I

), i.e. from the 
ondi-

tional parameters in the lo
al distributions in the prior

network, we 
al
ulate the parameters for the joint dis-

tribution. Then we translate this prior network into

an imaginary database, with imaginary sample size n,

where n depends on how 
ertain we are of the prior

network. From the probabilities in the dis
rete part

of the network, we 
an, as in the pure dis
rete 
ase,


al
ulate �

i

for all 
on�gurations of i. Now �

i

repre-

sents how many observation of I = i we have in the

imaginary database. We assume, that ea
h time we

have observed the dis
rete variables I , we have ob-

served the 
ontinuous variables Y and therefore we set

�

i

= �

i

= �

i

. Now for ea
h 
on�guration of i we letm

i

be the sample mean in the imaginary database, and �

i

the sample varian
e. Further, as for the pure Gaussian


ase, we use m

i

= �

i

and �

i

= (�

i

� 1)�

i

. We have

now spe
i�ed all the parameters needed to de�ne the

joint prior distributions for the parameters, so

p(	) = D(�)

p(m

i

j�

i

) = N (�

i

;

1

�

i

�

i

)

p(�

i

) = IW(�

i

;�

i

);

But we 
an not use these distributions to derive priors

for other networks, so instead we use the imaginary

database to derive lo
al master distributions.

Let for ea
h family A = v [ pa(v) the marginal prob-

ability distribution be given by

p(x

A

jH

A

) = CG(	

i

A\�

; (m

i

A\�

)

A\�

; (�

i

A\�

)

A\�

):

Then we suggest that the marginal prior distributions,

also 
alled the lo
al masters, are found in the following

way:

Let z

i

A\�

=

P

j:j

A\�

=i

A\�

z

j

. Then

(	

A\�

) � D(�

A\�

)

((�

i

A\�

)

A\�

) � IW(�

i

A\�

; (

~

�

i

A\�

)

A\�

)

and

((m

i

A\�

)

A\�

j(�

i

A\�

)

A\�

) �

N ((�

i

A\�

)

A\�

;

1

�

i

A\�

(�

i

A\�

)

A\�

);

where

�

i

A\�

=

(

P

j:j

A\�

=i

A\�

�

j

�

j

)

�

i

A\�

;

and

~

�

i

A\�

= �

i

A\�

+

X

j:j

A\�

=i

A\�

�

j

(�

j

� �

i

A\�

)(�

j

� �

i

A\�

)

t

The equations in the above result is well known in

the analysis of varian
e theory. The marginal mean

is found as a weighted average of the mean in every

group, where a group here is given as a 
on�guration of

the dis
rete parents we marginalize over. The weights

are the number of observations in ea
h group. The

marginal ssd is given as the within group variation

plus the between group variation. Noti
e that with

this method it is possible to spe
ify mixed networks,

where the mean in the mixed part of the network does

not depend on the dis
rete parents, but the varian
e

does (and vi
e versa).

From the lo
al masters we 
an now, by 
onditioning

as in the pure 
ases, derive the lo
al priors needed

to spe
ify the prior parameter distribution for a CG

network. So the only di�eren
e between the master

pro
edure and the lo
al master pro
edure is in the

way the marginal distributions are found.

7.2 Properties of the lo
al master pro
edure

The lo
al master pro
edure 
oin
ides with the master

pro
edure in the pure 
ases. Further, the properties



of the lo
al master pro
edure in the mixed 
ase, are

the same as of the master prior pro
edure in the pure


ases.

Parameter independen
e and parameter modularity

follows immediately from the de�nition of the pro-


edure. To show likelihood equivalen
e, we need the

following result from Chi
kering (1995). Let D

1

and

D

2

be two DAG's and let R

D

1

;D

2

be the set of edges

by whi
h D

1

and D

2

di�er in dire
tionality. Then,

D

1

and D

2

are independen
e equivalent if and only if

there exists an sequen
e of jR

D

1

;D

2

j distin
t ar
 rever-

sals applied to D

1

with the following properties:

� After ea
h reversal, the resulting network stru
-

ture is a DAG, i.e. it 
ontains no dire
ted 
y
les

and it is independen
e equivalent to D

2

.

� After all reversals, the resulting DAG is identi
al

to D

2

.

� If w ! v is the next ar
 to be reversed in the


urrent DAG, then w and v have the same parents

in both DAG's, with the ex
eption that w is also

a parent of v in D

1

.

Note that as we only reverse jR

D

1

;D

2

j distin
t ar
s,

we only reverse ar
s in R

D

1

;D

2

. For mixed networks

this means that we only reverse ar
s between dis
rete

variables or between 
ontinuous variables, as the only

ar
s that 
an di�er in dire
tionality are these. So we


an use the above result for mixed networks.

From the above we see, that we 
an show likelihood

equivalen
e by showing that p(djD

1

) = p(djD

2

) for two

independen
e equivalent DAG's D

1

and D

2

that di�er

only by the dire
tion of a single ar
. As p(xjH;D

1

) =

p(xjH;D

2

) in CG networks, we 
an show likelihood

equivalen
e by showing that p(H jD

1

) = p(H jD

2

).

In the following let v ! w in D

1

and w ! v in D

2

.

Further let r be the set of 
ommon dis
rete and 
on-

tinuous parents for v and w. Of 
ourse if v and w are

dis
rete variables, then r only 
ontains dis
rete vari-

ables. The relation between p(H jD

1

) and p(H jD

2

) is

given by:

p(H jD

1

)

p(H jD

2

)

=

p(H

vjw[r

; D

1

)p(H

wjr

; D

1

)

p(H

wjv[r

; D

2

)p(H

vjr

; D

2

)

=

p(H

v[wjr

; D

1

)

p(H

v[wjr

; D

2

)

(13)

When using the lo
al Master pro
edure, the terms in

(13) are equal. This is evident, as we �nd the 
on-

ditional priors from distributions over families A, in

this 
ase A = v [ w [ r, whi
h is the same for both

networks. Therefore likelihood equivalen
e follows.
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