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Abstrat

The paper onsiders onditional Gaussian

networks. As onjugate loal priors, we use

the Dirihlet distribution for disrete vari-

ables and the Gaussian-inverse Gamma dis-

tribution for ontinuous variables, given a

on�guration of the disrete parents. We as-

sume parameter independene and omplete

data. Further, the network-sore is alu-

lated. We then develop a loal master prior

proedure, for deriving parameter priors in

CG networks. The loal master proedure

satis�es parameter independene, parameter

modularity and likelihood equivalene.

1 Introdution

The aim of this paper is to present a method for learn-

ing the parameters and the struture of a Bayesian

network with disrete and ontinuous variables. In

Hekerman, Geiger & Chikering (1995) and Geiger &

Hekerman (1994) this was done for respetively dis-

rete networks and Gaussian networks.

We de�ne the loal probability distributions suh that

the joint distribution of the random variables is a on-

ditional Gaussian (CG) distribution. We do not allow

disrete variables to have ontinuous parents, so the

network fatorizes into a disrete part and a mixed

part. The loal onjugate parameter priors are for the

disrete part of the network spei�ed as Dirihlet dis-

tributions and for the mixed part of the network as

Gaussian-inverse Gamma distributions for eah on-

�guration of disrete parents.

To learn the struture of a CG network, we �nd the

network-sore p(d;D). Further, we derive a method for

�nding the prior distribution of the parameters in pos-

sible strutures, from marginal priors alulated from

an imaginary database. The method satis�es param-

eter independene, parameter modularity and likeli-

hood equivalene. Further, if used on networks with

only disrete or ontinuous variables, it oinides with

the methods developed in Hekerman et al. (1995) and

Geiger & Hekerman (1994).

2 Bayesian networks

A Bayesian network is a graphial model that enodes

the joint probability distribution for a set of variables.

For terminology and theoretial aspets on graphial

models, see Lauritzen (1996). In this paper we de�ne

it as

� A Direted Ayli Graph (DAG) D = (V;E),

where V is a �nite set of verties and E is a �nite

set of direted edges between the verties. The

DAG de�nes the struture of the Bayesian net-

work.

� To eah vertex v 2 V in the graph orresponds

a random variable X

v

. The set of variables asso-

iated with the graph D is then X = (X

v

)

v2V

.

Often we do not distinguish between a variable

X

v

and the orresponding vertex v.

� To eah vertex v with parents pa(v), there

is attahed a loal probability distribution,

p(x

v

jx

pa(v)

). The set of loal probability distri-

butions for all variables in the network is denoted

P .

� The possible lak of direted edges in D enodes

these onditional independenies between the ran-

dom variables X through the fatorization of the

joint probability distribution,

p(x) =

Y

v2V

p(x

v

jx

pa(v)

): (1)

A Bayesian network for a set of random variables X

is thus the pair (D;P). In order to speify a Bayesian



network, we must therefore speify a DAG D and a

set P of loal probability distributions.

3 Bayesian networks for mixed

variables

In this paper we are interested in speifying networks

for random variables X of whih some are disrete and

some are ontinuous (qualitative/quantitative). So we

onsider a DAG D = (V;E) with variables/verties

V = � [ �, where � and � are the sets of dis-

rete and ontinuous variables, respetively. The or-

responding random variables X an then be denoted

X = (X

v

)

v2V

= (I; Y ) = ((I

Æ

)

Æ2�

; (Y



)

2�

), i.e. we

use I and Y for the sets of disrete and ontinuous

variables respetively. We denote the set of levels for

eah disrete variable Æ 2 � as I

Æ

.

In this paper we do not allow disrete variables to have

ontinuous parents. This is to ensure availability of ex-

at loal omputation methods, see Lauritzen (1992)

and Lauritzen & Jensen (1999). So the set of edges E

satis�es E � (� � �)

{

; where { denotes the omple-

ment. Now we need to speify the set of loal probabil-

ity distributions P . As we have no disrete hildren of

ontinuous parents, the joint probability distribution

fatorizes as follows:

p(x) = p(i; y) =

Y

Æ2�

p(i

Æ

ji

pa(Æ)

)

Y

2�

p(y



ji

pa()

; y

pa()

):

Note that i

pa()

and y

pa()

denote observations of the

disrete and ontinuous parents respetively, i.e. i

pa()

is an abbreviation of i

pa()\�

et.

We see that the joint probability distribution fatorizes

into a purely disrete part and a mixed part. First we

look at the disrete part.

3.1 The disrete part of the network

We assume that the loal probability distributions are

just unrestrited disrete distributions with

p(i

Æ

ji

pa(Æ)

) � 0 8 Æ 2 �:

A way to parameterize this is to say that

�

i

Æ

ji

pa(Æ)

= p(i

Æ

ji

pa(Æ)

; �

Æji

pa(Æ)

); (2)

where �

Æji

pa(Æ)

= (�

i

Æ

ji

pa(Æ)

)

i

Æ

2I

Æ

:

Furthermore

P

i

Æ

2I

Æ

�

i

Æ

ji

pa(Æ)

= 1 and 0 � �

i

Æ

ji

pa(Æ)

�

1.

So using this parameterization, the disrete part of the

joint probability distribution is given by

p(ij(�

Æji

pa(Æ)

)

Æ2�

) =

Y

Æ2�

p(i

Æ

ji

pa(Æ)

; �

Æji

pa(Æ)

): (3)

3.2 The mixed part of the network

Now we onsider the mixed part. We assume that

the loal probability distributions are Gaussian linear

regressions on the ontinuous parents, with parameters

depending on the on�guration of the disrete parents.

So let the parameters in the distribution be given by

�

ji

pa()

= (f

ji

pa()

; �

ji

pa()

; �

2

ji

pa()

). Then

(Y



ji

pa()

; y

pa()

; �

ji

pa()

) �

N (f

ji

pa()

+ �

ji

pa()

y

pa()

; �

2

ji

pa()

); (4)

where �

ji

pa()

are the regression oeÆients, f

ji

pa()

is the onditional mean, and �

2

ji

pa

is the onditional

variane. The mixed part of the joint distribution an

now be written as

p(yji; (�

ji

pa()

)

2�

) =

Y

2�

p(y



ji

pa()

; y

pa()

; �

ji

pa()

): (5)

Further, the joint probability distribution p(i; yj�),

where

� = ((�

Æji

pa(Æ)

)

i

pa(Æ)

2I

pa(Æ)

; (�

ji

pa()

)

i

pa()

2I

pa()

)

is given by the produt of (3) and (5). Notie that

when the loal probability distributions are given by

(2) and (4), the joint probability distribution for X is

a CG distribution (onditional Gaussian) with density

of the form

p(i)j2��

i

j

�

1

2

expf�

1

2

(y �m

i

)

T

�

�1

i

(y �m

i

)g:

For eah i, m

i

is the unonditional mean, that is un-

onditional on ontinuous variables and �

i

is the o-

variane matrix for the ontinuous variable in the net-

work. In Shahter & Kenley (1989) formulas for alu-

lating �

i

from the loal probability distributions an

be found. A Bayesian network where the joint prob-

ability distribution is a CG distribution is in the fol-

lowing alled a CG network.

4 Learning the parameters in a CG

network

When onstruting a Bayesian network, there is, as

mentioned in Setion 2, two things to onsider, namely

speifying the DAG and speifying the loal probabil-

ity distributions. In this setion we assume that the

struture of the DAG is known and the distribution

type is determined as in the previous setion. Now

we onsider the spei�ation of the parameters in the

distributions.



4.1 Some simplifying properties

Here we de�ne the prior distributions of the param-

eters suh that they are onjugate for the observa-

tions in question. Further, we assume that the pa-

rameters assoiated with one variable is independent

of the parameters assoiated with the other variables.

This assumption was introdued by Spiegelhalter &

Lauritzen (1990) and we denote it global parameter

independene. In addition to this, we will assume that

the parameters are independent for eah on�guration

of the disrete parents, whih we denote as loal pa-

rameter independene. So if the parameters have the

property of global parameter independene and loal

parameter independene, then

p(�) =

Y

Æ2�

Y

i

pa(Æ)

2I

pa(Æ)

p(�

Æji

pa(Æ)

)

�

Y

2�

Y

i

pa()

2I

pa()

p(�

ji

pa()

);

(6)

and we will refer to (6) simply as parameter indepen-

dene.

A onsequene of parameter independene is that, for

eah on�guration of the disrete parents, we an up-

date the parameters in the loal distributions indepen-

dently. This also means, that if we have loal onju-

gay, i.e. the distribution of �

Æji

pa(Æ)

and �

ji

pa()

be-

longs to a onjugate family, then beause of parameter

independene, we have global onjugay, i.e. the dis-

tribution of p(�) belongs to a onjugate family. Fur-

ther we will assume that the database d of ases, from

whih the parameters are updated, is omplete, i.e. we

have no missing observations. Due to parameter in-

dependene, the fatorizations in (3) and (5), and the

assumption of omplete data, the parameters stay in-

dependent given data. We all this property posterior

parameter independene. In other words, the proper-

ties of loal and global independene are onjugate.

4.2 Learning in the disrete ase

In the disrete part of the network we assumed that the

loal probability distributions are unrestrited disrete

distributions de�ned as in (2). As pointed out in the

previous setion we an, beause of the assumption of

parameter independene, �nd the posterior distribu-

tion of �

Æji

pa(Æ)

for eah Æ and eah on�guration of

pa(Æ) independently.

Let x



2 d be a ase in a database d = fx

1

; : : : ; x

n

g,

where the on�guration of the parents is i



pa(Æ)

. As the

network an be partitioned in a pure disrete part and

a mixed part, we an just onsider the disrete part of

the ase, namely i



.

A onjugate family for observations from (2), is the

family of Dirihlet distributions. Let the prior distri-

bution of �

Æji



pa(Æ)

be a Dirihlet distribution D with

parameters �

Æji



pa(Æ)

= (�

i

Æ

ji



pa(Æ)

)

i

Æ

2I

Æ

, also written as

(�

Æji



pa(Æ)

) � D(�

Æji



pa(Æ)

):

The probability density funtion for this Dirihlet dis-

tribution is given by

p(�

Æji



pa(Æ)

) /

Y

i

Æ

2I

Æ

(�

i

Æ

ji



pa(Æ)

)

�

i

Æ

ji



pa(Æ)

�1

:

By using Bayes' theorem, the posterior distribution is

found to be

(�

Æji



pa(Æ)

ji



) � D(�

Æji



pa(Æ)

+ n

Æji



pa(Æ)

);

where the vetor n

Æji



pa(Æ)

= (n

i

Æ

ji

pa(Æ)

)

i

Æ2I

Æ

ontains

zeros exept at the plae where n

i

Æ

ji



pa(Æ)

= n

i



Æ

ji



pa(Æ)

=

1. These numbers are also alled ounts as, when

we update all the parameters reursively through the

database d, n

i

Æ

ji



pa(Æ)

denotes the number of observa-

tions in d where Æ and pa(Æ) have that partiular on-

�guration.

4.3 Learning in the mixed ase

In the mixed ase we an write the loal probability

distributions as

(Y



ji

pa()

; y

pa()

; �

ji

pa()

) �

N (�

+f

ji

pa()

z

pa()

; �

2

ji

pa()

);

where

�

+f

ji

pa()

=

�

f

ji

pa()

�

ji

pa()

�

and z

pa()

=

�

1

y

pa()

�

Notie that both these vetors have dimension k + 1,

where k is the number of ontinuous parents to .

As we assumed loal independene for the disrete par-

ents, we an, as in the disrete ase, update the pa-

rameters for eah on�guration of the disrete parents

independently. So onsider a ase x



2 d where the

on�guration of the disrete parents is i



pa()

. In the

following we do not use the index  on the parameters,

as it will blur the notation.

A standard onjugate family for these observations is

the family of Gaussian-inverse gamma distributions.

Let the prior joint distribution of �

+f

ji

pa()

and �

2

ji

pa()

be as follows. The onditional prior distribution of

�

+f

ji

pa()

given �

2

ji

pa()

is a multivariate Gaussian dis-

tribution and the marginal distribution of �

2

ji

pa()

is



an inverse gamma distribution. The parameters are

given as below.

(�

+f

ji

pa()

j�

2

ji

pa()

) �N

k+1

(�

ji

pa()

; �

2

ji

pa()

�

�1

ji

pa()

)

(�

2

ji

pa()

) �I�

 

�

ji

pa()

;

1

�

ji

pa()

!

:

The parameters in the posterior distributions are eas-

ily found by Bayes' theorem, (DeGroot 1970).

5 Learning the struture of a CG

network

Up until now we have assumed that the DAG D is

known. In some situations this is not the ase. Here

we will show how we an selet one or more DAG's

among the possible DAG's. A way to �nd out how

well a DAG represents the onditional independenies

among the random variables in a Bayesian network, is

to measure how likely the DAG is, given that we have

observed a dataset d. That is, we an �nd the posterior

probability of the DAG, p(Djd). From Bayes' theorem

we have that

p(Djd) / p(djD)p(D):

As the normalizing onstant does not depend upon

struture, an often used measure, whih gives the rel-

ative probability, is the network-sore

p(D; d) = p(djD)p(D):

In the next setion we will derive the network-sore for

CG networks.

5.1 The network-sore for a CG network

In order to alulate the network-sore for a spei�

DAG D, we need to know the prior probability and

the likelihood of the DAG. In this paper we do not

onsider how to �nd the prior probability of a DAG,

but just note that we for example an let all DAG's be

equally likely. The likelihood of the DAG D is given

by

p(djD) =

Z

�2�

p(dj�;D)p(�jD)d�; (7)

where � is the parameter spae. Again we an onsider

the problem for the disrete part and the mixed part

of the network separately. The disrete part is easily

found to be

Y

Æ2�

Y

i

pa(Æ)

2I

pa(Æ)

�(�

+

Æ

ji

pa(Æ)

)

�(�

+

Æ

ji

pa(Æ)

+ n

+

Æ

ji

pa(Æ)

)

�

Y

i

Æ

2I

Æ

�(�

i

Æ

ji

pa(Æ)

+ n

i

Æ

ji

pa(Æ)

)

�(�

i

Æ

ji

pa(Æ)

)

: (8)

In the mixed part of the network, the loal

marginal likelihoods are non-entral t distributions

with �

ji

pa()

degrees of freedom, loation ve-

tor z

pa()

�

ji

pa()

and sale parameter s

ji

pa()

=

�

ji

pa()

�

ji

pa()

(1 + (z

pa()

)

t

�

�1

ji

pa()

z

pa()

), see e.g. DeGroot

(1970). So the mixed part is given by

Y

2�

Y

i

pa()

2I

pa()

Y

x



2d

�((�

ji

pa()

+ 1)=2)

�(�

ji

pa()

=2)(�

ji

pa()

s

ji

pa()

�)

1

2

� (1 +Q)

(�

ji

pa()

+1)

2

; (9)

where

Q =

(y





� z



pa()

�

ji

pa()

)

2

�

ji

pa()

(1 + (z



pa()

)

t

�

�1

ji

pa()

z



pa()

)

;

and � is the gamma funtion. The network-sore for

a CG network is thus the produt of the prior prob-

ability for the DAG D and the terms in (8) and (9).

Notie that the network-sore has the property that it

fatorizes into a produt over terms involving only a

single node and its parents. This property is alled de-

omposability. So the network-sore for CG networks

is deomposable.

6 The master prior proedure

In the previous setion we derived an expression for

the network-sore for CG networks. To alulate this

sore, we must speifying the loal probability distri-

butions and the loal prior distributions for the pa-

rameters for eah network under evaluation. In the

papers Hekerman et al. (1995) and Geiger & Hek-

erman (1994) a method for �nding the prior distribu-

tions for the parameters in respetively the pure dis-

rete and the pure Gaussian ase is developed. The

work is based on priniples of likelihood equivalene,

parameter modularity, and parameter independene.

It leads to a method where the parameter priors for

all possible networks are dedued from one joint prior

distribution, in the following alled a master prior dis-

tribution. In this paper we will build on their method

for �nding a method, whih an be used on networks

with mixed variables. We will therefore in the follow-

ing desribe their method for the pure ases.

6.1 The master prior in the disrete ase

In the pure disrete ase, or the disrete part of a

mixed network, the following is a well known lassi-

al result.

Let A be a subset of � and let B = � n A. Let the

disrete variables i have the joint distribution

p(ij	) = 	

i

:



Notie here, that the set 	 = (	

i

)

i2I

ontains the

parameters for the joint distribution, ontrary to � in

Setion 3, whih ontains the parameters for the on-

ditional loal distributions.

In the following let z

i

A

=

P

j:j

A

=i

A

z

j

, where z is any

parameter. Then the marginal distribution of i

A

is

given by

p(i

A

j	) = 	

i

A

;

and the onditional distribution of i

B

given i

A

is

p(i

B

ji

A

;	) =

	

i

	

i

A

= 	

i

A

ji

B

Further if the joint prior distribution for the parame-

ters 	 is Dirihlet, that is

p(	) � D(�); (10)

where � = (�

i

)

i2I

, then the marginal distribution of

	

A

is Dirihlet, i.e.

p(	

A

) � D(�

A

);

with �

A

= (�

i

A

)

i

A

2I

A

. The onditional distribution

of 	

Bji

A

is

p(	

Bji

A

) � D(�

Bji

A

)

with �

i

A

ji

B

= �

i

. Furthermore the parameters are

independent, that is

p(	) =

Y

i

A

2I

A

p(	

Bji

A

)p(	

A

): (11)

From the above result we see, that for eah possible

parent/hild relationship, we an �nd the marginal pa-

rameter prior p(	

Æ[pa(Æ)

). Further, from this marginal

distribution we an, for eah on�guration of the

parents, �nd the onditional loal prior distribution

p(	

Æji

pa(Æ)

). Notie that 	

Æji

pa(Æ)

= �

Æji

pa(Æ)

, where

�

Æji

pa(Æ)

was spei�ed for the onditional distributions

in Setion (3.1). Further, beause of parameter inde-

pendene, given by (11), we an �nd the joint param-

eter prior for any network as the produt of the loal

priors involved.

To use this method, we must therefore speify the joint

Dirihlet distribution, i.e. the master Dirihlet prior.

6.1.1 The master Dirihlet prior

We will now show how to onstrut the master Dirih-

let prior. This was �rst done in Hekerman et al.

(1995) and here we follow their method. We start by

speifying a prior Bayesian network (D;P) as we be-

lieve it to be. From this we alulate the joint distribu-

tion p(ij	) = 	

i

: As an be seen from (10), to speify

a master Dirihlet distribution, we must speify the

parameters � = (�

i

Æ

)

i2I

. Consider now the following

relation for the Dirihlet distribution.

p(i) = E(	

i

) =

�

i

n

;

with n =

P

i2I

�

i

. Now we use the probabilities in the

prior network as an estimate of E(	

i

), so we only need

to determine n in order to alulate the parameters

�

i

. We determine n by using the notion of an imag-

inary database. We imagine that we have a database

of ases, from whih we from total ignorane have up-

dated the distribution of 	. The sample size of this

imaginary database is thus n. Therefore we refer to

the estimate of n as the imaginary sample size, and it

expresses how muh on�dene we have in the prior

network.

6.2 The master prior in the Gaussian ase

We have a similar result for the Gaussian ase. Let A

be a subset of � and let B = � nA. If

(yjm;�) � N (m;�);

then

(y

A

jm;�) � N (m

A

;�

AA

)

and

(y

B

jy

A

;m

BjA

; �

BjA

;�

BjA

) �

N (m

BjA

+ �

BjA

y

A

;�

BjA

);

where

� =

�

�

AA

�

AB

�

BA

�

BB

�

; �

BjA

= �

BB

��

BA

�

�1

AA

�

AB

;

m

BjA

= m

B

� �

BjA

m

A

and �

BjA

= �

BA

�

�1

AA

:

Further, if

(mj�) � N (�;

1

�

�) and (�) � IW(�;�);

where the parametri matrix � is partitioned as �,

then

� (�

AA

) � IW(�;�

AA

)

� (�

BjA

) � IW(�+ jAj;�

BjA

)

� (m

BjA

; �

BjA

j�

BjA

) � N (�

BjA

;�

BjA


 �

�1

BjA

)

� m

A

;�

AA

?? m

BjA

; �

BjA

�

BjA

where

�

BjA

= (�

B

� �

BA

�

�1

AA

�

A

;�

BA

�

�1

AA

);



and

�

�1

BjA

=

0

�

1

�

��

T

A

�

�1

AA

�

�1

AA

�

A

�

�1

AA

1

A

;

and 
 denotes the Kroneker produt. Notie that the

dimension of �

BjA

is (jBj; jBj � jAj).

As in the disrete ase, this result shows us how to de-

due the loal probability distributions and the loal

prior distributions from the joint distributions. Fur-

ther we an, again beause of parameter independene,

speify the joint parameter prior for any Gaussian net-

work as the produt of the loal priors. Notie again

that the parameters found here for a node given its

parents, oinides with the parameters spei�ed in Se-

tion 3.2.

6.2.1 The master Gaussian-inverse Wishart

prior

Before we show how to onstrut the master prior,

we need the following result. The Gaussian-inverse

Wishart prior is onjugate to observations from a

Gaussian distribution, (DeGroot 1970). So let the

probability distribution and the prior distribution be

given as above. Then, given the database d =

fy

1

; : : : ; y

n

g, the posterior distributions are

(mj�; d) � N (�

0

;

1

�

0

�) and (�jd) � IW(�

0

;�

0

);

where

�

0

= � + n

�

0

=

��+ ny

� + n

(12)

�

0

= �+ n

�

0

= �+ ssd+

�n

� + n

(�� y)(�� y)

t

;

with

y =

1

n

n

X

i=1

y

i

and ssd =

n

X

i=1

(y

i

� y)(y

i

� y)

From these updating formulas we see that �

0

and �

0

are updated with the number of ases in the database.

Further �

0

is a weighted average of the prior mean and

the sample mean, eah weighted by their sample sizes.

Finally � is updated with the ssd, whih expresses how

muh eah observation di�ers from the sample mean,

and an expression for how muh the prior mean di�ers

from the sample mean.

To speify the master prior, we need to speify the four

parameters �, �, � and �. As for the disrete vari-

ables we start by speifying a prior Bayesian network,

(D;P). From this we an dedue a prior joint prob-

ability distribution p(yjm;�) = N (m;�). We now

imagine that the mean m and the variane � were

alulated from an imaginary database, so that they

atually are the sample mean and the sample vari-

ane. Further we assume that before we observed this

imaginary database, we were totally ignorant about

the parameters. We an now use the formulas in (12)

to \update" the parameters on the basis of our imagi-

nary database. As we have not seen any ases before,

� and � are estimated by the imaginary sample size.

Further

� = m and � = ssd = (� � 1)�:

In Geiger & Hekerman (1994), � and � are found in

a slightly di�erent way.

6.3 Properties of the master prior proedure

The method for �nding prior parameter distributions

desribed in the previous setion, has some properties,

whih we will desribe here. In the following we use 	

as parameters de�ned for joint distribution, i.e. 	 an

be the parameter for the disrete variables or in the

ontinuous ase, 	 = (m;�).

Clearly a onsequene of using the method is that the

parameters are independent. Further it an be seen,

that if a node v has the same parents in two DAG's

D

1

and D

2

, then

p(	

vjpa(v)

jD

1

) = p(	

vjpa(v)

jD

2

)

This property is referred to as parameter modular-

ity. Now the disrete and Gaussian distributions have

the property that if the joint probability distribution

p(x) an be fatorized aording to a DAG D, then it

an also be fatorized aording to all other DAG's,

whih represents the same set of ondtional indepen-

denies as D. A set of DAG's, D

e

, whih represents

the same independene onstraints is referred to as in-

dependene equivalent DAG's. So let D

1

and D

2

be

independene equivalent DAG's, then

p(xj	; D

1

) = p(xj	; D

2

):

This means, that from observations alone we an not

distinguish between di�erent DAG's in an equivalene

lass. In the papers Hekerman et al. (1995) and

Geiger & Hekerman (1994) it is for respetively the

disrete and Gaussian ases shown, that when using

the master prior proedure for onstrution parame-

ter priors, the marginal likelihood for data is also the

same for independene equivalent networks, i.e.

p(djD

1

) = p(djD

2

)

This equivalene is referred to as likelihood equiva-

lene. Note that likelihood equivalene imply, that if

D

1

andD

2

are independene equivalent networks, then

they have the same joint prior for the parameters, i.e.

p(	jD

1

) = p(	jD

2

).



7 Loal masters for mixed networks

In this setion we will show how to speify prior dis-

tributions for the parameters in a CG network. In the

mixed ase, the marginal of a CG distribution is not

always a CG distribution. In fat it is only a CG dis-

tribution if we marginalize over ontinuous variables

or if we marginalize over a set B of disrete variable,

where B ?? � j � n B, see Frydenberg (1990). Con-

sider the following example. We have a network of two

variables i and y and the joint distribution is given by

p(i; y) = p(i)N (m

i

; �

2

i

)

Then the marginal distribution of y is given as a mix-

ture of normal distributions

p(y) =

X

i2I

p(i)N (m

i

; �

2

i

);

so there is no simple way of using this diretly for

�nding the loal priors.

7.1 The suggested solution

The suggested solution is very similar to the solution

for the pure ases. We start by speifying a prior

Bayesian network (D;P) and then alulate the joint

probability distribution

p(i; yjH) = p(ij	)N (m

i

;�

i

);

with H = (	; (m

i

)

i2I

; (�

i

)

i2I

), i.e. from the ondi-

tional parameters in the loal distributions in the prior

network, we alulate the parameters for the joint dis-

tribution. Then we translate this prior network into

an imaginary database, with imaginary sample size n,

where n depends on how ertain we are of the prior

network. From the probabilities in the disrete part

of the network, we an, as in the pure disrete ase,

alulate �

i

for all on�gurations of i. Now �

i

repre-

sents how many observation of I = i we have in the

imaginary database. We assume, that eah time we

have observed the disrete variables I , we have ob-

served the ontinuous variables Y and therefore we set

�

i

= �

i

= �

i

. Now for eah on�guration of i we letm

i

be the sample mean in the imaginary database, and �

i

the sample variane. Further, as for the pure Gaussian

ase, we use m

i

= �

i

and �

i

= (�

i

� 1)�

i

. We have

now spei�ed all the parameters needed to de�ne the

joint prior distributions for the parameters, so

p(	) = D(�)

p(m

i

j�

i

) = N (�

i

;

1

�

i

�

i

)

p(�

i

) = IW(�

i

;�

i

);

But we an not use these distributions to derive priors

for other networks, so instead we use the imaginary

database to derive loal master distributions.

Let for eah family A = v [ pa(v) the marginal prob-

ability distribution be given by

p(x

A

jH

A

) = CG(	

i

A\�

; (m

i

A\�

)

A\�

; (�

i

A\�

)

A\�

):

Then we suggest that the marginal prior distributions,

also alled the loal masters, are found in the following

way:

Let z

i

A\�

=

P

j:j

A\�

=i

A\�

z

j

. Then

(	

A\�

) � D(�

A\�

)

((�

i

A\�

)

A\�

) � IW(�

i

A\�

; (

~

�

i

A\�

)

A\�

)

and

((m

i

A\�

)

A\�

j(�

i

A\�

)

A\�

) �

N ((�

i

A\�

)

A\�

;

1

�

i

A\�

(�

i

A\�

)

A\�

);

where

�

i

A\�

=

(

P

j:j

A\�

=i

A\�

�

j

�

j

)

�

i

A\�

;

and

~

�

i

A\�

= �

i

A\�

+

X

j:j

A\�

=i

A\�

�

j

(�

j

� �

i

A\�

)(�

j

� �

i

A\�

)

t

The equations in the above result is well known in

the analysis of variane theory. The marginal mean

is found as a weighted average of the mean in every

group, where a group here is given as a on�guration of

the disrete parents we marginalize over. The weights

are the number of observations in eah group. The

marginal ssd is given as the within group variation

plus the between group variation. Notie that with

this method it is possible to speify mixed networks,

where the mean in the mixed part of the network does

not depend on the disrete parents, but the variane

does (and vie versa).

From the loal masters we an now, by onditioning

as in the pure ases, derive the loal priors needed

to speify the prior parameter distribution for a CG

network. So the only di�erene between the master

proedure and the loal master proedure is in the

way the marginal distributions are found.

7.2 Properties of the loal master proedure

The loal master proedure oinides with the master

proedure in the pure ases. Further, the properties



of the loal master proedure in the mixed ase, are

the same as of the master prior proedure in the pure

ases.

Parameter independene and parameter modularity

follows immediately from the de�nition of the pro-

edure. To show likelihood equivalene, we need the

following result from Chikering (1995). Let D

1

and

D

2

be two DAG's and let R

D

1

;D

2

be the set of edges

by whih D

1

and D

2

di�er in diretionality. Then,

D

1

and D

2

are independene equivalent if and only if

there exists an sequene of jR

D

1

;D

2

j distint ar rever-

sals applied to D

1

with the following properties:

� After eah reversal, the resulting network stru-

ture is a DAG, i.e. it ontains no direted yles

and it is independene equivalent to D

2

.

� After all reversals, the resulting DAG is idential

to D

2

.

� If w ! v is the next ar to be reversed in the

urrent DAG, then w and v have the same parents

in both DAG's, with the exeption that w is also

a parent of v in D

1

.

Note that as we only reverse jR

D

1

;D

2

j distint ars,

we only reverse ars in R

D

1

;D

2

. For mixed networks

this means that we only reverse ars between disrete

variables or between ontinuous variables, as the only

ars that an di�er in diretionality are these. So we

an use the above result for mixed networks.

From the above we see, that we an show likelihood

equivalene by showing that p(djD

1

) = p(djD

2

) for two

independene equivalent DAG's D

1

and D

2

that di�er

only by the diretion of a single ar. As p(xjH;D

1

) =

p(xjH;D

2

) in CG networks, we an show likelihood

equivalene by showing that p(H jD

1

) = p(H jD

2

).

In the following let v ! w in D

1

and w ! v in D

2

.

Further let r be the set of ommon disrete and on-

tinuous parents for v and w. Of ourse if v and w are

disrete variables, then r only ontains disrete vari-

ables. The relation between p(H jD

1

) and p(H jD

2

) is

given by:

p(H jD

1

)

p(H jD

2

)

=

p(H

vjw[r

; D

1

)p(H

wjr

; D

1

)

p(H

wjv[r

; D

2

)p(H

vjr

; D

2

)

=

p(H

v[wjr

; D

1

)

p(H

v[wjr

; D

2

)

(13)

When using the loal Master proedure, the terms in

(13) are equal. This is evident, as we �nd the on-

ditional priors from distributions over families A, in

this ase A = v [ w [ r, whih is the same for both

networks. Therefore likelihood equivalene follows.
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