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Abstract

The paper considers conditional Gaussian
networks. As conjugate local priors, we use
the Dirichlet distribution for discrete vari-
ables and the Gaussian-inverse Gamma dis-
tribution for continuous variables, given a
configuration of the discrete parents. We as-
sume parameter independence and complete
data. Further, the network-score is calcu-
lated. We then develop a local master prior
procedure, for deriving parameter priors in
CG networks. The local master procedure
satisfies parameter independence, parameter
modularity and likelihood equivalence.

1 Introduction

The aim of this paper is to present a method for learn-
ing the parameters and the structure of a Bayesian
network with discrete and continuous variables. In
Heckerman, Geiger & Chickering (1995) and Geiger &
Heckerman (1994) this was done for respectively dis-
crete networks and Gaussian networks.

We define the local probability distributions such that
the joint distribution of the random variables is a con-
ditional Gaussian (CG) distribution. We do not allow
discrete variables to have continuous parents, so the
network factorizes into a discrete part and a mixed
part. The local conjugate parameter priors are for the
discrete part of the network specified as Dirichlet dis-
tributions and for the mixed part of the network as
Gaussian-inverse Gamma distributions for each con-
figuration of discrete parents.

To learn the structure of a CG network, we find the
network-score p(d, D). Further, we derive a method for
finding the prior distribution of the parameters in pos-
sible structures, from marginal priors calculated from
an imaginary database. The method satisfies param-

eter independence, parameter modularity and likeli-
hood equivalence. Further, if used on networks with
only discrete or continuous variables, it coincides with
the methods developed in Heckerman et al. (1995) and
Geiger & Heckerman (1994).

2 Bayesian networks

A Bayesian network is a graphical model that encodes
the joint probability distribution for a set of variables.
For terminology and theoretical aspects on graphical
models, see Lauritzen (1996). In this paper we define
it as

A Directed Acyclic Graph (DAG) D = (V,E),
where V' is a finite set of vertices and E is a finite
set of directed edges between the vertices. The
DAG defines the structure of the Bayesian net-
work.

e To each vertex v € V in the graph corresponds
a random variable X,. The set of variables asso-
ciated with the graph D is then X = (X,)yev-
Often we do not distinguish between a variable
X, and the corresponding vertex v.

e To each vertex v with parents pa(v), there
is attached a local probability distribution,
P(Ty|Tpa(e)). The set of local probability distri-
butions for all variables in the network is denoted

P.

e The possible lack of directed edges in D encodes
these conditional independencies between the ran-
dom variables X through the factorization of the
joint probability distribution,

p(z) = [] p(@olzpac))- (1)

veV

A Bayesian network for a set of random variables X
is thus the pair (D, P). In order to specify a Bayesian



network, we must therefore specify a DAG D and a
set P of local probability distributions.

3 Bayesian networks for mixed
variables

In this paper we are interested in specifying networks
for random variables X of which some are discrete and
some are continuous (qualitative/quantitative). So we
consider a DAG D = (V, E) with variables/vertices
V. = AUT, where A and T are the sets of dis-
crete and continuous variables, respectively. The cor-
responding random variables X can then be denoted
X = (Xo)ev = (1Y) = ((Is)sea, (Yy)er), ie. we
use I and Y for the sets of discrete and continuous
variables respectively. We denote the set of levels for
each discrete variable 0 € A as Zs.

In this paper we do not allow discrete variables to have
continuous parents. This is to ensure availability of ex-
act local computation methods, see Lauritzen (1992)
and Lauritzen & Jensen (1999). So the set of edges E
satisfies £ C (I' x A)¢, where C denotes the comple-
ment. Now we need to specify the set of local probabil-
ity distributions P. As we have no discrete children of
continuous parents, the joint probability distribution
factorizes as follows:

p(z) =pli,y) = H p(i5|ipa(6)) H p(yvﬁpa(’y);ypa(’y))'
dEA vyerl

Note that ip,() and ypa(,) denote observations of the

discrete and continuous parents respectively, i.e. ip,(+)

is an abbreviation of i,,(,)nA etc.

We see that the joint probability distribution factorizes
into a purely discrete part and a mixed part. First we
look at the discrete part.

3.1 The discrete part of the network

We assume that the local probability distributions are
just unrestricted discrete distributions with

Plislipas) >0V G€A.
A way to parameterize this is to say that

¢ = p(islipa(s)s O5)ipacs) ) (2)

is|ipa(s)
where 05”%(6) = (His‘ipw)),-ﬁezﬁ.

Furthermore =1land 0 < ¥,
1.

<

is€Ls 0i6\ipa(6) slipa(s) —

So using this parameterization, the discrete part of the
joint probability distribution is given by

(il (B35 )aea) = [ Plisliacs)s Oslipais)- (3)
GEA

3.2 The mixed part of the network

Now we consider the mixed part. We assume that
the local probability distributions are Gaussian linear
regressions on the continuous parents, with parameters
depending on the configuration of the discrete parents.
So let the parameters in the distribution be given by

. = . . 2
0’Y|’pa(v) - (f'Y‘lpa(v)’B’Y\lpa(wﬂUfy|ipa(7))' Then

(Y3 lipa(y)> Ypa(v)s ev‘ipa(»y) )~

2
N(f’vlipam + Brlipacn) Ypaly) >C’w\ipam)’ (4)

where 3,; ., are the regression coefficients, f.; . .,
is the conditional mean, and Uil o is the conditional

5
variance. The mixed part of the joint distribution can
now be written as

p(y|7/7 (e'ylipa(w) )’YEF) =

H P(Y~lipa(y) Ypa(y)» O ipacy) ). (5)
~eT

Further, the joint probability distribution p(i,y|f),
where

0 = ((95|ipa(a) )ipa(ﬁ) €Lpa(s)” (07|ipa(v) )ipa(w) EIpam)

is given by the product of (3) and (5). Notice that
when the local probability distributions are given by
(2) and (4), the joint probability distribution for X is
a CG distribution (conditional Gaussian) with density
of the form

pOIRAS] exp{ =3y — m) 57 (y - mo)

For each i, m; is the unconditional mean, that is un-
conditional on continuous variables and ¥; is the co-
variance matrix for the continuous variable in the net-
work. In Shachter & Kenley (1989) formulas for calcu-
lating X; from the local probability distributions can
be found. A Bayesian network where the joint prob-
ability distribution is a CG distribution is in the fol-
lowing called a CG network.

4 Learning the parameters in a CG
network

When constructing a Bayesian network, there is, as
mentioned in Section 2, two things to consider, namely
specifying the DAG and specifying the local probabil-
ity distributions. In this section we assume that the
structure of the DAG is known and the distribution
type is determined as in the previous section. Now
we consider the specification of the parameters in the
distributions.



4.1 Some simplifying properties

Here we define the prior distributions of the param-
eters such that they are conjugate for the observa-
tions in question. Further, we assume that the pa-
rameters associated with one variable is independent
of the parameters associated with the other variables.
This assumption was introduced by Spiegelhalter &
Lauritzen (1990) and we denote it global parameter
independence. In addition to this, we will assume that
the parameters are independent for each configuration
of the discrete parents, which we denote as local pa-
rameter independence. So if the parameters have the
property of global parameter independence and local
parameter independence, then

p@O =1 TI »6siipac)
SEA inacs) ELpal
€A tpa(s) ELpa(s) (6)
X H H POyjipas))>

VET ipa(y) ETpacy)

and we will refer to (6) simply as parameter indepen-
dence.

A consequence of parameter independence is that, for
each configuration of the discrete parents, we can up-
date the parameters in the local distributions indepen-
dently. This also means, that if we have local conju-
gacy, i.e. the distribution of 95|ipa(5) and pra(v) be-
longs to a conjugate family, then because of parameter
independence, we have global conjugacy, i.e. the dis-
tribution of p(f) belongs to a conjugate family. Fur-
ther we will assume that the database d of cases, from
which the parameters are updated, is complete, i.e. we
have no missing observations. Due to parameter in-
dependence, the factorizations in (3) and (5), and the
assumption of complete data, the parameters stay in-
dependent given data. We call this property posterior
parameter independence. In other words, the proper-
ties of local and global independence are conjugate.

4.2 Learning in the discrete case

In the discrete part of the network we assumed that the
local probability distributions are unrestricted discrete
distributions defined as in (2). As pointed out in the
previous section we can, because of the assumption of
parameter independence, find the posterior distribu-
tion of Qg‘ipam for each 6 and each configuration of
pa(d) independently.

Let z¢ € d be a case in a database d = {z!,..., 2"},
where the configuration of the parents is i;a(a)' As the
network can be partitioned in a pure discrete part and
a mixed part, we can just consider the discrete part of
the case, namely °.

A conjugate family for observations from (2), is the
family of Dirichlet distributions. Let the prior distri-
bution of 65“;3(5) be a Dirichlet distribution D with

= (O‘i«s\i;a(g))i66167 also written as

).

The probability density function for this Dirichlet dis-
tribution is given by

aiélic —1
p(ea\igaw)) x H (9i5|i;a(5)) pal)
is€Ls

arameters agj;c
p é‘lpa(é)

(Os)ic,5) ~ D

Q§|ic
pa(s) ( 8l

a(s)

By using Bayes’ theorem, the posterior distribution is
found to be

~ D(a5|ic

pacsy) T Tl

(05\1'6 pa(&))7

sC
pa(6)|Z )

where the vector ngj;e contains

pa(s) - (niJ‘iPa(é))iSEIa
zeros except at the place where islic sy = MigliSas) =
1. These numbers are also called counts as, when
we update all the parameters recursively through the

database d, Mislic s, denotes the number of observa-
1%

tions in d where ¢ and pa(d) have that particular con-
figuration.

4.3 Learning in the mixed case

In the mixed case we can write the local probability
distributions as

(Y5 lipa(y)» Ypa(v) s Orlipac ) ~

+f 2
(ﬁﬂipam 2a(1) 1 O ipacy) )

where
+f — f'Yipa(-y):| and 2 — |: 1 :|
ﬁwpa(’) |:/87ipa('y) pa(7) Ypa(v)

Notice that both these vectors have dimension &k + 1,
where k is the number of continuous parents to 7.

As we assumed local independence for the discrete par-
ents, we can, as in the discrete case, update the pa-
rameters for each configuration of the discrete parents
independently. So consider a case x¢ € d where the
configuration of the discrete parents is igam. In the
following we do not use the index ¢ on the parameters,
as it will blur the notation.

A standard conjugate family for these observations is
the family of Gaussian-inverse gamma distributions.

Let the prior joint distribution of ﬂjl{p ., and o2 vt
a(y a(y

The conditional prior distribution of
is a multivariate Gaussian dis-

2 .
Y lipay)

be as follows.
+f ; 2
/ iven o=,
ﬂ’vllpam & Vlipacq)

tribution and the marginal distribution of o is



an inverse gamma distribution. The parameters are
given as below.

+f 2

2 —1
(B ipaioy [ ipacny) Nt (rlipaiy» O igace Tlipacey)

1
2
(Uw\ipa(w)) ~IT (pﬂipa(w)’ oy ) :
Y lipay)

The parameters in the posterior distributions are eas-
ily found by Bayes’ theorem, (DeGroot 1970).

5 Learning the structure of a CG
network

Up until now we have assumed that the DAG D is
known. In some situations this is not the case. Here
we will show how we can select one or more DAG’s
among the possible DAG’s. A way to find out how
well a DAG represents the conditional independencies
among the random variables in a Bayesian network, is
to measure how likely the DAG is, given that we have
observed a dataset d. That is, we can find the posterior
probability of the DAG, p(D|d). From Bayes’ theorem
we have that

p(D|d) o< p(d|D)p(D).

As the normalizing constant does not depend upon
structure, an often used measure, which gives the rel-
ative probability, is the network-score

p(D,d) = p(d|D)p(D).

In the next section we will derive the network-score for
CG networks.

5.1 The network-score for a CG network

In order to calculate the network-score for a specific
DAG D, we need to know the prior probability and
the likelihood of the DAG. In this paper we do not
consider how to find the prior probability of a DAG,
but just note that we for example can let all DAG’s be
equally likely. The likelihood of the DAG D is given
by

p(dD) = [ pldip, DIp®IDYB, (D

)
where O is the parameter space. Again we can consider
the problem for the discrete part and the mixed part

of the network separately. The discrete part is easily
found to be

II I

0€A ipa(s) €ELpa(s)

F(a+5 |ipa(5))

F(a+5 lipa(s) +ng, lipa(s) )

H F(aiélipa(ﬁ) + niJlipa(J)) (8)

isE€Ts Ll@islipas) )

In the mixed part of the network, the local
marginal likelihoods are non-central ¢ distributions
with p,);. . degrees of freedom, location vec-
tOr  Zpa(y) M lins,, and scale parameter s, . ..

9 lipacs) ¢ —1

ﬁ(l + (zpa(,y)) Tvlipa(q)zpa(’”)’ see e.g. DeGroot

(1970). So the mixed part is given by

L((P+ipacs, T1)/2)
H H HF PAlipacy)

( 2)( )k
. . - 2
YT ipas) €L pacy) v ed L Prlipacs /2 (Prlipacy) Svlipacn T
Plipacy) TP
2

x1+Q) =, (9

where
2
(Y5 = ZpanMlipacs))

= —1
¢V|ipa(w) 1+ (Zl:c)a(v))tTvlipa(w)Zlga(w))

Q

?

and I is the gamma function. The network-score for
a CG network is thus the product of the prior prob-
ability for the DAG D and the terms in (8) and (9).
Notice that the network-score has the property that it
factorizes into a product over terms involving only a
single node and its parents. This property is called de-
composability. So the network-score for CG networks
is decomposable.

6 The master prior procedure

In the previous section we derived an expression for
the network-score for CG networks. To calculate this
score, we must specifying the local probability distri-
butions and the local prior distributions for the pa-
rameters for each network under evaluation. In the
papers Heckerman et al. (1995) and Geiger & Heck-
erman (1994) a method for finding the prior distribu-
tions for the parameters in respectively the pure dis-
crete and the pure Gaussian case is developed. The
work is based on principles of likelihood equivalence,
parameter modularity, and parameter independence.
It leads to a method where the parameter priors for
all possible networks are deduced from one joint prior
distribution, in the following called a master prior dis-
tribution. In this paper we will build on their method
for finding a method, which can be used on networks
with mixed variables. We will therefore in the follow-
ing describe their method for the pure cases.

6.1 The master prior in the discrete case

In the pure discrete case, or the discrete part of a
mixed network, the following is a well known classi-
cal result.

Let A be a subset of A and let B = A\ A. Let the
discrete variables ¢ have the joint distribution

p(i|¥) = ¥;.



Notice here, that the set ¥ = (¥;);cz contains the
parameters for the joint distribution, contrary to € in
Section 3, which contains the parameters for the con-
ditional local distributions.

In the following let z;, = ZMA:“ zj, where z is any
parameter. Then the marginal distribution of i,4 is
given by

p(ZA|ql) =¥;,,
and the conditional distribution of ip given i4 is

U,
—l:\:[li

plislia, ¥) = o
1A

alie
Further if the joint prior distribution for the parame-
ters VU is Dirichlet, that is

p(¥) ~ D(e), (10)

where a = (;)iez, then the marginal distribution of
¥ 4 is Dirichlet, i.e.

p(¥a) ~ D(aa),

with aq = (@4, )iscz.- The conditional distribution
of \I!B\iA is
p(‘IIB\iA) ~ D(aB|iA)

with a;,|;; = «;. Furthermore the parameters are
independent, that is

p(¥) = H P(¥pji,)p(Pa). (11)

iA€LA

From the above result we see, that for each possible
parent/child relationship, we can find the marginal pa-
rameter prior p(¥sypa(s)). Further, from this marginal
distribution we can, for each configuration of the
parents, find the conditional local prior distribution
P(‘I’d\ipam)- Notice that Ws); ;0 = 05)i ;. Where

Slipacsy WaS specified for the conditional distributions
in Section (3.1). Further, because of parameter inde-
pendence, given by (11), we can find the joint param-
eter prior for any network as the product of the local
priors involved.

To use this method, we must therefore specify the joint
Dirichlet distribution, i.e. the master Dirichlet prior.

6.1.1 The master Dirichlet prior

We will now show how to construct the master Dirich-
let prior. This was first done in Heckerman et al.
(1995) and here we follow their method. We start by
specifying a prior Bayesian network (D, P) as we be-
lieve it to be. From this we calculate the joint distribu-
tion p(i|¥) = ¥;. As can be seen from (10), to specify
a master Dirichlet distribution, we must specify the

parameters o = (a, )iez. Consider now the following
relation for the Dirichlet distribution.

Q5

with n = ), a;. Now we use the probabilities in the
prior network as an estimate of E(¥; ), so we only need
to determine n in order to calculate the parameters
;- We determine n by using the notion of an imag-
inary database. We imagine that we have a database
of cases, from which we from total ignorance have up-
dated the distribution of ¥. The sample size of this
imaginary database is thus n. Therefore we refer to
the estimate of n as the imaginary sample size, and it
expresses how much confidence we have in the prior
network.

6.2 The master prior in the Gaussian case

We have a similar result for the Gaussian case. Let A
be a subset of I" and let B =T\ A. If

(y|m7 E) ~ N(ma 2)7

then
(yalm, %) ~ N(ma,¥aa)

and

(yBlya,mp|a, BBla, XBja) ~
N(mpja + Bpjaya, Ep|a),

where

5 ( Yaa Yan

_ _ —1
Ses Spr ); Ypia =X —YXpaYX 4 X¥as,

—1
mpja =mp — fpama and [pa=XpaXy,.

Further, if
1
(m|Z) ~ N, ~%) and (X) ~IWV(p, ®),

where the parametric matrix ® is partitioned as ¥,
then

o (Xa4) ~IW(p,Pas)
* (Xpja) ~IW(p+|A], ®p)a)
e (mpa,BB1al¥Bla) ~ N(1Bja, pja ® Tg\lA)
® ma,Yaa ll mpja, BpjaXip|a
where

ppia = (1B — PrA® apA, PEAR YY),



and 1 Tg—1
. v O IV
TBlA = . = ;
P aka Paa
and ® denotes the Kronecker product. Notice that the
dimension of up4 is (|B],|B| x |4]).

As in the discrete case, this result shows us how to de-
duce the local probability distributions and the local
prior distributions from the joint distributions. Fur-
ther we can, again because of parameter independence,
specify the joint parameter prior for any Gaussian net-
work as the product of the local priors. Notice again
that the parameters found here for a node given its
parents, coincides with the parameters specified in Sec-
tion 3.2.
6.2.1 The master Gaussian-inverse Wishart
prior

Before we show how to construct the master prior,
we need the following result. The Gaussian-inverse
Wishart prior is conjugate to observations from a
Gaussian distribution, (DeGroot 1970). So let the
probability distribution and the prior distribution be
given as above. Then, given the database d =
{y!,...,y"}, the posterior distributions are

(I, d) ~ N (s, ) and (Sld) ~ TW(p, &),

where
yl = v+n
, v+ ny
_ Ty 12
" . (12)
pl = p—l—n
¥ = ®+ssd+t ——(n—7)(p—7),
vV+n
with
1 .
yzﬁ;yi and Ssd:. 1(yi_y)(yi__)
i= =

From these updating formulas we see that v' and p
are updated with the number of cases in the database.
Further 4 is a weighted average of the prior mean and
the sample mean, each weighted by their sample sizes.
Finally ® is updated with the ssd, which expresses how
much each observation differs from the sample mean,
and an expression for how much the prior mean differs
from the sample mean.

To specify the master prior, we need to specify the four
parameters v, u, p and ®. As for the discrete vari-
ables we start by specifying a prior Bayesian network,
(D,P). From this we can deduce a prior joint prob-
ability distribution p(y|m,¥) = N(m,X). We now

imagine that the mean m and the variance ¥ were
calculated from an imaginary database, so that they
actually are the sample mean and the sample vari-
ance. Further we assume that before we observed this
imaginary database, we were totally ignorant about
the parameters. We can now use the formulas in (12)
to “update” the parameters on the basis of our imagi-
nary database. As we have not seen any cases before,
v and p are estimated by the imaginary sample size.
Further

p=m and ®=ssd=(v—-1)Z%.

In Geiger & Heckerman (1994), x4 and ® are found in
a slightly different way.

6.3 Properties of the master prior procedure

The method for finding prior parameter distributions
described in the previous section, has some properties,
which we will describe here. In the following we use ¥
as parameters defined for joint distribution, i.e. ¥ can
be the parameter for the discrete variables or in the
continuous case, ¥ = (m, X).

Clearly a consequence of using the method is that the
parameters are independent. Further it can be seen,
that if a node v has the same parents in two DAG’s
D, and D-, then

p(qlv|pa(v) |D1) = p(qlv|pa(v) |D2)

This property is referred to as parameter modular-
ity. Now the discrete and Gaussian distributions have
the property that if the joint probability distribution
p(z) can be factorized according to a DAG D, then it
can also be factorized according to all other DAG’s,
which represents the same set of condtional indepen-
dencies as D. A set of DAG’s, D¢, which represents
the same independence constraints is referred to as in-
dependence equivalent DAG’s. So let D; and Dy be
independence equivalent DAG’s, then

p(.’L’|‘II,D1) = p($|\I!,D2)

This means, that from observations alone we can not
distinguish between different DAG’s in an equivalence
class. In the papers Heckerman et al. (1995) and
Geiger & Heckerman (1994) it is for respectively the
discrete and Gaussian cases shown, that when using
the master prior procedure for construction parame-
ter priors, the marginal likelihood for data is also the
same for independence equivalent networks, i.e.

p(d|Dy) = p(d|D>)

This equivalence is referred to as likelihood equiva-
lence. Note that likelihood equivalence imply, that if
D, and D, are independence equivalent networks, then
they have the same joint prior for the parameters, i.e.
p(¥|Dy) = p(¥|D,).



7 Local masters for mixed networks

In this section we will show how to specify prior dis-
tributions for the parameters in a CG network. In the
mixed case, the marginal of a CG distribution is not
always a CG distribution. In fact it is only a CG dis-
tribution if we marginalize over continuous variables
or if we marginalize over a set B of discrete variable,
where B 1L I' | A\ B, see Frydenberg (1990). Con-
sider the following example. We have a network of two
variables ¢ and y and the joint distribution is given by

p(i,y) = p(i) N (m;, 07)

Then the marginal distribution of y is given as a mix-
ture of normal distributions

p(y) = 3 )N (my,02),

i€l

so there is no simple way of using this directly for
finding the local priors.

7.1 The suggested solution

The suggested solution is very similar to the solution
for the pure cases. We start by specifying a prior
Bayesian network (D, P) and then calculate the joint
probability distribution

with H = (¥, (m;)iez, (Xi)icz), i.e. from the condi-
tional parameters in the local distributions in the prior
network, we calculate the parameters for the joint dis-
tribution. Then we translate this prior network into
an imaginary database, with imaginary sample size n,
where n depends on how certain we are of the prior
network. From the probabilities in the discrete part
of the network, we can, as in the pure discrete case,
calculate «; for all configurations of 7. Now «; repre-
sents how many observation of I = ¢ we have in the
imaginary database. We assume, that each time we
have observed the discrete variables I, we have ob-
served the continuous variables Y and therefore we set
v; = p; = ;. Now for each configuration of i we let m;
be the sample mean in the imaginary database, and ¥;
the sample variance. Further, as for the pure Gaussian
case, we use m; = p; and ®; = (v; — 1)X;. We have
now specified all the parameters needed to define the
joint prior distributions for the parameters, so

p(¥) = Da)
pmilSs) = N(ui,}iz»
p(X:) = IW(pi, ®s),

But we can not use these distributions to derive priors
for other networks, so instead we use the imaginary
database to derive local master distributions.

Let for each family A = v U pa(v) the marginal prob-
ability distribution be given by
p('TA|HA) = CG(\I!iAnA7 (miAnA)AﬂFa (ZiAnA)AﬁF)'

Then we suggest that the marginal prior distributions,
also called the local masters, are found in the following
way:

Let zj,qa = zj. Then

ZjijAnA=iAnA

(Y ana) ~ D(aana)
((EiAnA)AﬂF) ~ Zw(piAnAa (éiAnA)AmF)

and

((miAnA)AﬁF | (ZiAnA )AﬂF) ~

_ 1
N((:uiAnA)AﬂF; .—(EiAnA)AmF%
tAnA

where

— _ (ZjijAnA:iAnA 'ujyj)

ll'iAnA - Vi )

AnA
and
(I)iAnA = (I)iAnA

>

Jjijana=tana

vi(pg — iy nn) (5 — ﬁz’AnA)t

The equations in the above result is well known in
the analysis of variance theory. The marginal mean
is found as a weighted average of the mean in every
group, where a group here is given as a configuration of
the discrete parents we marginalize over. The weights
are the number of observations in each group. The
marginal ssd is given as the within group variation
plus the between group variation. Notice that with
this method it is possible to specify mixed networks,
where the mean in the mixed part of the network does
not depend on the discrete parents, but the variance
does (and vice versa).

From the local masters we can now, by conditioning
as in the pure cases, derive the local priors needed
to specify the prior parameter distribution for a CG
network. So the only difference between the master
procedure and the local master procedure is in the
way the marginal distributions are found.

7.2 Properties of the local master procedure

The local master procedure coincides with the master
procedure in the pure cases. Further, the properties



of the local master procedure in the mixed case, are
the same as of the master prior procedure in the pure
cases.

Parameter independence and parameter modularity
follows immediately from the definition of the pro-
cedure. To show likelihood equivalence, we need the
following result from Chickering (1995). Let D; and
D5 be two DAG’s and let Rp, p, be the set of edges
by which D; and D- differ in directionality. Then,
D, and D- are independence equivalent if and only if
there exists an sequence of |Rp, p,| distinct arc rever-
sals applied to D; with the following properties:

e After each reversal, the resulting network struc-
ture is a DAG, i.e. it contains no directed cycles
and it is independence equivalent to D-.

o After all reversals, the resulting DAG is identical
to Dz.

e If w — v is the next arc to be reversed in the
current DAG, then w and v have the same parents
in both DAG’s, with the exception that w is also
a parent of v in D;.

Note that as we only reverse |Rp, p,| distinct arcs,
we only reverse arcs in Rp, p,. For mixed networks
this means that we only reverse arcs between discrete
variables or between continuous variables, as the only
arcs that can differ in directionality are these. So we
can use the above result for mixed networks.

From the above we see, that we can show likelihood
equivalence by showing that p(d|D;) = p(d|D2) for two
independence equivalent DAG’s D and D» that differ
only by the direction of a single arc. As p(z|H,D;) =
p(z|H,D3) in CG networks, we can show likelihood
equivalence by showing that p(H|D,) = p(H|D).

In the following let v — w in D; and w — v in Ds.
Further let V be the set of common discrete and con-
tinuous parents for v and w. Of course if v and w are
discrete variables, then V only contains discrete vari-
ables. The relation between p(H|D;) and p(H|D-) is
given by:

p(H|D1) _ p(Hv\wUV7D1)p(Hw\V7D1)
p(H|D>) p(Hyjpuv, D2)p(Hy)v, D2)
H ,D
_ p( vUw|V 1) (13)
p(Hva|V7 DZ)

When using the local Master procedure, the terms in
(13) are equal. This is evident, as we find the con-
ditional priors from distributions over families A, in
this case A = v U w U V, which is the same for both
networks. Therefore likelihood equivalence follows.
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