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Abstra
t

We present produ
ts of hidden Markov mod-

els (PoHMM's), a way of 
ombining HMM's

to form a distributed state time series model.

Inferen
e in a PoHMM is tra
table and eÆ-


ient. Learning of the parameters, although

intra
table, 
an be e�e
tively done using the

Produ
t of Experts learning rule. The dis-

tributed state helps the model to explain data

whi
h has multiple 
auses, and the fa
t that

ea
h model need only explain part of the

data means a PoHMM 
an 
apture longer

range stru
ture than an HMM is 
apable of.

We show some results on modelling 
hara
ter

strings, a simple language task and the sym-

boli
 family trees problem, whi
h highlight

these advantages.

1 Introdu
tion

Hidden Markov models (HMM's) have been very su
-


essful in automati
 spee
h re
ognition where they are

the standard method for modelling and dis
riminating

sequen
es of phonemes. Using the Markov dependen
e

of the hidden state variable, they 
apture the depen-

den
e of ea
h observation on the re
ent history of the

sequen
e. They also have the advantage that there is

a very eÆ
ient algorithm for �tting an HMM to data:

the forward-ba
kward algorithm and the Baum-Wel
h

re-estimation formulas. However, HMM's have been

less widely applied in other areas where statisti
al time

series are used. In statisti
al language modelling, for

example, the most 
ommon model is a fully-observed,

se
ond-order Markov model, known as a trigram.

One limitation of HMM's that makes them inappro-

priate for language modelling is that they represent

�
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the re
ent history of the time series using a single,

dis
rete K-state multinomial. The eÆ
ien
y of the

Baum-Wel
h re-estimation algorithm depends on this

fa
t, but it severely limits the representational power

of the model. The hidden state of a single HMM 
an

only 
onvey log

2

K bits of information about the re-


ent history. If the generative model had a distributed

hidden state representation [6℄ 
onsisting of M vari-

ables ea
h with K alternative states it 
ould 
onvey

M log

2

K bits of information, so the information bot-

tlene
k s
ales linearly with the number of variables

and only logarithmi
ally with the number of alterna-

tive states of ea
h variable.

A se
ond limitation of HMM's is that they have great

diÆ
ulty in learning to 
apture long range dependen-


ies in a sequen
e [1℄. In the 
ase of natural language

there are many examples of word agreements whi
h

span a large portion of a senten
e. As we shall demon-

strate, this is mu
h easier to model in a system that

has distributed hidden state sin
e ea
h variable in the

distributed state 
an be 
on
erned with a spe
i�
 type

of long-range regularity and does not get distra
ted by

having to deal with all the other regularities in the time

series.

2 Produ
ts of HMM's

Extending the hidden state of an HMM 
an be done

in various ways. One is to add several hidden state

variables whi
h have a 
ausal e�e
t on the observed

variables in the model. This is known as a Fa
torial

HMM [2℄ and is shown in Fig. 1.

In a 
ausal belief network ea
h lo
al probability distri-

bution 
an be independently estimated given the pos-

terior distribution of the hidden variables 
onditioned

on the eviden
e. However, it is exponentially expen-

sive to 
ompute this posterior distribution exa
tly be-


ause observing the visible variables indu
es depen-

den
ies among the hidden variables. Ghahramani and

Jordan handle this problem by approximating the pos-
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Figure 1: Fa
torial HMM

terior with a fa
tored, variational distribution.

A very di�erent way of 
ombining multiple HMM's

is to multiply their individual distributions together

and renormalize (Fig. 2). This \Produ
t of Experts"

generative model 
an be represented as an undire
ted

Markov network in whi
h the hidden state variables

are non-
ausally related to the visible variables. This

PoHMM network has the opposite property of the

FHMM, in that 
onditioned on a set of observations,

the hidden state 
hains are independent. So exa
t in-

feren
e 
an easily be performed by using the forward-

ba
kward algorithm in ea
h 
hain separately. How-

ever, learning of the lo
al probability fun
tions is now

more 
omplex, be
ause the lo
al distributions are all

linked by a global partition fun
tion. This may be seen

in the equation for the density of a produ
t model:
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where �

m

is the set of parameters for ea
h HMM in the

produ
t. The existen
e of this summation over all the

possible strings of a given length in the denominator

of the equation makes it intra
table to 
ompute the

exa
t gradient of the log likelihood of the observed

data w.r.t the parameters, so it appears to be very

hard to �t a PoHMM to data. Gibbs sampling 
an

be used to estimate the derivatives of the partition

fun
tion but this is very slow and noisy. Fortunately,

there is an alternative obje
tive fun
tion for learning

whose gradient 
an be approximated a

urately and

eÆ
iently [4℄. It has been shown that optimizing this

alternative obje
tive fun
tion leads to good generative
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Figure 2: Produ
t of HMM's

models for non-sequential data and we show here that

the same approa
h works for PoHMM's.

Maximizing the log likelihood of the data is equiv-

alent to minimizing the Kullba
k-Leibler divergen
e

KL(Q

0

jjQ

1

) between the observed data distribution,

Q

0

, and the equilibrium distribution, Q

1

, produ
ed

by the generative model

1

. Instead of simply minimiz-

ing KL(Q

0

jjQ

1

) we minimize the \
ontrastive diver-

gen
e"KL(Q

0

jjQ

1

) � KL(Q

1

jjQ

1

), where Q

1

is the

distribution over one-step re
onstru
tions of the data

that are produ
ed by running a Gibbs sampler for one

full step, starting at the data. The advantage of using

the 
ontrastive divergen
e as the obje
tive fun
tion for

learning is that the intra
table derivatives of the par-

tition fun
tion 
an
el out and if we are prepared to ig-

nore a term that turns out to be negligible in pra
ti
e

[4℄ it is easy to follow the gradient of the 
ontrastive

divergen
e:

1. Cal
ulate ea
h model's gradient
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) on

a data point using the forward-ba
kward algo-

rithm.

2. For ea
h model take a sample from the posterior

distribution of paths through state spa
e.

3. At ea
h time step, multiply together the distribu-

tions over symbols spe
i�ed by the 
hosen paths

in ea
h HMM. Renormalize to get the re
onstru
-

tion distribution at that time step.

4. Draw a sample from the re
onstru
tion distribu-

tion at ea
h time step to get a re
onstru
ted se-

quen
e. Compute ea
h model's gradient on the

new sequen
e
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We 
all this distribution Q

1

be
ause one way to get

exa
t samples from it is to run a Gibbs sampler for an

in�nite number of iterations



To 
ompute the gradient of the HMM we use an EM

like tri
k. Dire
tly 
omputing the gradient of an HMM

is diÆ
ult due to the fa
t that all the parameters are


oupled through their in
uen
e on the hidden states.

If the HMM were visible and the hidden states were

known then the gradient of the log-likelihood for ea
h

parameter would de
ouple into an expression involving

only lo
al variables. As in EM, we use the posterior

distribution over the hidden states in pla
e of a
tual

values by using the identity:
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This says that if we 
ompute the posterior of the HMM

using the forward ba
kward algorithm we 
an take the

gradient of the 
omplete data log-likelihood using the

suÆ
ient statisti
s of the hidden variables in pla
e of

a
tual values.

A se
ond optimization tri
k whi
h we have used is

to re-parameterize the probabilities of the HMM, us-

ing the softmax fun
tion. Working in this domain al-

lows us to do un
onstrained gradient des
ent over the

real numbers. Doing gradient optimization dire
tly in

the probability domain would involve the more diÆ-


ult proposition of 
onstraining the parameters to the

probability simplex. An added advantage of this re-

paramaterization is that the probabilities 
annot go

to zero anywhere. It is 
learly desirable in the PoE

framework that none of the individual experts assigns

zero probability to an event.

As an example we look at the gradient rule for the

transition probabilities of an HMM, P (S

t

= jjS

t�1

=

i) = A

ij

. If we re-parameterize using the softmax

fun
tion:

A

ij

=

exp(a

ij

)

P

j

exp(a

ij

)

: (4)

Taking the derivative with respe
t to a

ij

yields

�
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As before the angle bra
kets indi
ate an expe
tation

with respe
t to the posterior of the hidden states. This

has the intuitive interpretation that the derivative for

the softmax parameter a

ij

regresses toward the point

where A

ij

is equal to the expe
ted transition probabil-

ity under the posterior. If we set the derivative to zero

and solved this equation dire
tly, we would re
over the

Baum-Wel
h update equation.
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Figure 3: An 'eye-
hart' diagram of the output dis-

tributions of the 2-state HMM in the PoHMM. Ea
h


hart 
orresponds to a single state's output distribu-

tion and the size of ea
h symbol is proportional to the

probability mass on that symbol.
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Figure 4: Eye-
hart diagram of the output distribu-

tions of two of the states of the 30 state HMM

3 Results

To demonstrate the relative merits of a produ
t of

HMM's versus a single HMM, we have applied them

to two problems in text and language modelling. The

�rst of these is modelling strings of English letters, and

the se
ond is a task of dis
riminating sets of simple

English senten
es whi
h exhibit long and short range

dependen
ies.

3.1 Modelling Chara
ter Strings

The �rst experiment involved modelling 
hara
ter

strings from a 
orpus of English text. The problem

was slightly modi�ed to better demonstrate the ad-

vantages of a produ
t model. Rather than training the

model on a single 
ase, or mixed 
ase text, we trained

it on data in whi
h the 
hara
ters in a senten
e were

either all upper 
ase or all lower 
ase. Thus there re-

ally are independent fa
tors underlying this sequen
e:

the binary de
ision of upper 
ase or lower 
ase and the

statisti
s of the letters.

We used 8600 senten
es

2

and 
onverted them to all

upper and all lower 
ase to yield over 17,000 training

senten
es. 56 symbols were allowed: 4 symbols for

spa
e and pun
tuation, 26 upper and 26 lower 
ase

letters. We 
ompared a single HMM with 32 hidden

2

from Thomas Hardy's \Tess of the d'Urbervilles" avail-

able from Proje
t Gutenberg (http://www.gutenberg.net)



states against a produ
t of a 2 state and a 30 state hid-

den Markov model. In the produ
t model the 2 state

HMM learns to di�erentiate upper and lower 
ase. It

`votes' to put probability mass on the upper or lower


ase letters respe
tively (Fig. 3), and it enfor
es the


ontinuity through its transition matrix. Then the

30-state HMM need only learn the 
ase-independent

statisti
s of the 
hara
ters and the fa
t that the up-

per and lower 
ase 
hara
ters are analogous, pla
ing

proportional amounts of probability mass on the two

halves of the symbol set. In Fig. 4 we see an example

of two of the big HMM's 30 hidden states. Its output

distributions are symmetri
 over the upper and lower


ase letters, indi
ating that it has left the modelling of


ase to the smaller 2-state HMM model.

By 
ontrast, the single HMM has to partition its data

spa
e into two parts, one ea
h for upper and lower 
ase.

In e�e
t it has to model the 
aseless letter statisti
s

with a mu
h smaller number of hidden states. This 
an

be seen in Fig. 5a) where the observation distributions

of the 32 states fall into 3 
ategories: pun
tuation,

upper 
ase, and lower 
ase. Similarly we 
an see in

the transition matrix (Fig. 5b) that the upper 
ase

states only transition to upper 
ase states and likewise

for the lower 
ase states.

While we 
annot 
ompute the log likelihood of a string

under the PoHMM we 
an 
ompute the probability of

a single symbol 
onditioned on the other symbols in a

senten
e. This leads to a simple, interesting test of the

models whi
h we refer to as the \symmetri
 Shannon

game". In the original Shannon game [5℄, a predi
tion

of the next symbol in a sequen
e is made given the

previous N symbols. In the symmetri
 Shannon game

the model is given both past and future symbols and

is asked to predi
t the 
urrent one. We 
an 
ompute

this distribution exa
tly sin
e we need only normalize

over the missing symbol and not all strings of symbols.

For models based on dire
ted a
y
li
 graphs, su
h as

an HMM, it is easy to 
ompute the probability of the

next symbol in a sequen
e given the symbols so far.

Somewhat surprisingly, this is not true for undire
ted

models like a PoHMM. If the data after time t is miss-

ing, the posterior distribution over paths through ea
h

HMM up to time t depends on how easily these paths


an be extended in time so as to rea
h agreement on

future data.

Table 6 shows a 
omparison of several PoHMM mod-

els with a single large HMM. They were s
ored on a

set of 60 hold-out senten
es with an equal number of

upper and lower 
ase. The produ
t of a 2-state and

30-state HMM with 2728 parameters, while 
apturing

the 
omponential stru
ture we were hoping for, does

not outperform a single 32 state HMM whi
h has been

roughly mat
hed for the number of parameters (2848

parameters). This is mainly an optimization problem,

be
ause if we train a 2-state model alone and a 30-state

model on uni-
ase text, and then use their parameters

to initialize the PoHMM then it does mu
h better than

the single HMM. If we use a produ
t of many, simple

HMM's then the optimization problem is eased. A

produ
t of 10, 4-state HMM's, whi
h has still fewer

parameters (2440), performs as well as a hand initial-

ized produ
t of 2 HMM's. In
reasing, the number of

HMM's in the produ
t provides further improvements

while the parameters and 
omputation time s
ale lin-

early with the number of HMM's in the model.

Model Sym. Shannon (bits)

PoHMM 40 x 4-states 1.96

PoHMM 20 x 4-states 2.06

PoHMM 10 x 4-states 2.13

PoHMM (2-state +

30-state, pre-initialized) 2.14

32 State HMM 2.46

PoHMM (2-state + 30-state

random initialization) 2.73

Figure 6: Symmetri
 Shannon s
ores for several

PoHMM models and a single large HMM

3.2 Modelling Simple Senten
es
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Figure 7: Dis
rimination diagrams of the 
orre
t and

two in
orre
t senten
e sets under ea
h model. Cir
les

below the line indi
ate that the model assigns higher

probability to the 
orre
t senten
e than the 
orrupted

senten
e. Cir
les on the line indi
ate that the model


annot dis
riminate the two. (Note there is some over-

lap of the 
ir
les in the HMM plots.)

In the se
ond task, mat
hing the models for the num-

ber of parameters, we use a single HMM with 32 states

and a produ
t of 10, 6 and 7 state HMM's to model

a set of English senten
es of the form, \Yes I am "

or \No she is not". There are 14 legal senten
es in
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Figure 5: The 32 state HMM a) the observation probabilities of the HMM b) a diagram of the transition matrix

where the area of the square indi
ates the probability of going to a state.

the grammar, in
luding all 
ombinations of yes and no

with the pronouns (I,you,he,she,it,we,they) and their


orresponding 
onjugation of the verb \to be". The

senten
es feature two kinds of agreement. There is

short range agreement between the subje
t and the

verb whi
h are always adja
ent, and there is longer

range agreement between the \no" and \not" or \yes"

and the null symbol whi
h appear at the beginning

and end of the senten
e, respe
tively. To test whether

the two types of models 
ould 
apture these 
orrela-

tions, we 
reated two sets of ungrammati
al senten
es

in whi
h either the verbs were wrong or the ending of

the senten
e did not mat
h the beginning. We 
om-

pared relative log-likelihoods of these senten
es under

ea
h model, and the results are shown in Fig. 7. Both

models 
an dis
riminate the ungrammati
al senten
es

where short range stru
ture is 
orrupted, but the single

HMM 
annot dis
riminate the 
ases where the longer

range stru
ture is 
orrupted.

3.3 Family Trees

The �nal example appli
ation of PoHMM's is one of

symboli
 inferen
e in two family trees [3℄. In the fam-

ily trees problem we 
onsider two families { one En-

glish and the other Italian. There are twelve people

in ea
h family. In addition there are twelve familial

relationships su
h as father, daughter, un
le et
. The

data set is 
omposed of a set of triplets of the form

person relation person. While the number of allowed

triplets in the dataset 
overs only a small number of all

the possible triplets, it is possible to generalize from

training examples to unseen testing examples be
ause

there are a small number of intera
ting 
onstraints on

Christopher = Penelope = Christine

=

= Maria = Emma

= Pietro

JamesVictoria

Andrew

Aurelio Bortolo

Giannina Doralice = Marcello

Charles=JenniferArthur=Margaret

Pierino=Grazia

Colin Charlotte

Alberto Mariemma

Figure 8: English and Italian family trees

the data. Fig. 8 shows the two family trees. The two

families have identi
al stru
ture so that relationships

learned in one 
an be transferred by analogy to the

other, in mu
h the same way that the PoHMM learns

the analogi
al relationship between 
hara
ters in the

upper and lower 
ase text example. One 
an think of

other rules of thumb whi
h might be applied to this

data su
h as only men 
an be husbands, or spouses

must be of the same generation.

Treating ea
h triplet as a sequen
e of symbols from

an alphabet of 36 symbols (24 people and 12 rela-

tionships) we 
an train a PoHMM to learn transition

probabilities and output probabilities whi
h 
apture

the stru
ture in this data. Using a large number of

HMM's, ea
h with a small number of hidden states,
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Figure 9: A 4-state HMM whi
h en
odes one rule of the family trees data { English and Italian are mutually

ex
lusive. The display shows the path through the states and the probability of that path.

some of the models will learn to produ
e these rules of

thumb in their transition stru
ture. One obvious pie
e

of stru
ture in the triplets is that the �rst and third

symbol always 
omes from the set of people and the

se
ond is always a relationship. We 
ould 
onstru
t a

model whi
h builds in this restri
tion, but a PoHMM

easily learns this. A single model 
an alternate putting

probability mass on the people and the relationships.

The other models are then free to model other regu-

larities in the data.

Fig. 9 shows an example of a 4-state model taken from

a PoHMM trained on the family trees data. Sin
e

there are only a small number of paths through this

HMM, they 
an all be enumerated and sorted a

ord-

ing to their probability of o

urren
e. The �gure shows

the top two paths and their probability of o

urren
e.

For ea
h state in the path the output probabilities of

ea
h state have been displayed to elu
idate their stru
-

ture. In the �rst and third positions only the output

probabilities over people are displayed and in the mid-

dle position only the output probabilities over rela-

tionships. The HMM uses only states 3 and 4, but it

reuses them in a 
lever way. The most likely path is

states 4-3-4, whi
h puts high probability on an Italian,

uniform probability on a relationship, and high prob-

ability on an Italian. The se
ond most likely path,

3-4-3, shows a preferen
e for English, followed by any

relationship followed by English. Thus, this HMM has


aptured the mutual ex
lusion of nationality in the

dataset. The Italian path is almost twi
e as probable

as the English path, but this dis
repan
y is presum-

ably o�set by slight preferen
es for English over Italian

in other HMM's.

While other rules are not so 
lear 
ut and easily inter-

pretable, they express in a softer fashion similar 
on-

straints a
ross age, and sex. When many su
h soft,

probabilisti
 rules are applied they 
reate a sharp dis-

tribution over the data.

4 Extensions

One 
on
ern that we have about the PoHMM is that

ea
h HMM has it's own output distribution over the

data, whi
h 
ould in
lude many parameters if there are

a large number of symbols. One way to deal with this

is to add an extra layer of shared hidden features be-

tween the hidden variables of the HMM and the output

symbols. Sharing the output model features among

the HMM's, it greatly redu
es the number of free pa-

rameters in the PoHMM and it has the bene�t that

data regularities learned by one model do not have

to be re-learned again and again in the other models.

Ea
h HMM retains it's own transition distribution and

it's own weights from it's hidden states to the hidden

features.

We parameterize the output model as a two layer net-

work, with a linear hidden layer and a softmax non-

linearity in the output layer (Fig. 10). Note that we

do not 
onstrain the hidden layer values to be posi-

tive or sum to one. They may be positive or negative.

If we 
onstrained the hidden features to be a proper

probability distribution then this would be equivalent

to inserting a single dis
rete valued sto
hasti
 variable

between the hidden variable and the visible variable of

the HMM. This is not as powerful a representation as

allowing the hidden features to take on independent
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real values. The formula for su
h an output model is

given by:

P (V jS; �

m

) = �(s

0

U

m

W ) (6)

Where we treat the hidden state, s, as a 
olumn ve
tor

of indi
ator variables { a one in the position of the

dis
rete state whi
h the hidden variable takes. � is

the softmax fun
tion. U is the matrix of weights whi
h

the states of model m pla
e on the hidden features and

W is the matrix shared hidden features. Interestingly,

this output distribution is also a produ
t model. The


olumns ofW are linearly 
ombined in the log domain

and then pushed through the softmax fun
tion to get a

probability distribution. The rows of U are the weights

that ea
h state puts on these basis distributions.

There are two ways that we 
an regularize or 
on-

strain the output model. One way is to 
reate a bot-

tle ne
k by using a small number of hidden features.

This is equivalent to de
omposing the sto
hasti
 out-

put matrix as the produ
t of two lower rank matri-


es. The other way is to use a large number of hidden

features, but use another regularizer on the output

weights for
ing them to be small. Thus, the hidden

features are restri
ted to be soft distributions over the

output symbols. We have applied this te
hnique to

the family trees problem, and it does help the general-

ization performan
e. We test the pattern 
ompletion

performan
e of the PoHMM by 
lamping the �rst two

entries of a tuple and 
omputing the predi
tive distri-

bution of the third. On �fteen learning trials, with 20

HMM's of 4 hidden states ea
h, the PoHMM obtained

perfe
t 
ompletion performan
e on the training data

and 73% on the test data. This is 
ompetitive with

the ba
kpropagation solution, despite the fa
t that it

is not dire
tly optimized for this task. Also, as a gen-

erative model the PoHMM 
an be used to 
ompute

a 
ompletion distribution for any of the elements of

tuple, whereas feedforward networks 
an only perform

the 
ompletion task in the dire
tion in whi
h they have

been trained.

5 Con
lusions

Using the three datasets presented here, we have

shown how to �t a PoHMM that is a better model

of sequen
es with 
omponential stru
ture than a single

HMM with the same number of parameters. Although

the number of alternative distributed hidden states in

a PoHMM grows exponentially with the number of

models, the 
omputational 
omplexity of ea
h approx-

imate gradient step in the �tting only grows linearly.

On a simple language modelling problem we also show

that a PoHMM 
an 
apture longer range stru
ture in a

time series be
ause the individual models do not need

to explain every observation and thus they 
an store

information about earlier parts of the sequen
e in their

hidden states without being distra
ted by other regu-

larities that are 
aptured by other models.

Finally, we show that the PoHMM is useful for learning

the symboli
 family trees problem whi
h involves �nd-

ing a set of 
onstraints whi
h 
onjun
tively 
ombine

to restri
t the spa
e of allowable data points. Further,

we outline some future dire
tions for resear
h using

shared output models among the HMM's to help 
ope

with the explosion of parameters to be estimated in

problems su
h as large vo
abulary language modelling.
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