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Abstrat

We present produts of hidden Markov mod-

els (PoHMM's), a way of ombining HMM's

to form a distributed state time series model.

Inferene in a PoHMM is tratable and eÆ-

ient. Learning of the parameters, although

intratable, an be e�etively done using the

Produt of Experts learning rule. The dis-

tributed state helps the model to explain data

whih has multiple auses, and the fat that

eah model need only explain part of the

data means a PoHMM an apture longer

range struture than an HMM is apable of.

We show some results on modelling harater

strings, a simple language task and the sym-

boli family trees problem, whih highlight

these advantages.

1 Introdution

Hidden Markov models (HMM's) have been very su-

essful in automati speeh reognition where they are

the standard method for modelling and disriminating

sequenes of phonemes. Using the Markov dependene

of the hidden state variable, they apture the depen-

dene of eah observation on the reent history of the

sequene. They also have the advantage that there is

a very eÆient algorithm for �tting an HMM to data:

the forward-bakward algorithm and the Baum-Welh

re-estimation formulas. However, HMM's have been

less widely applied in other areas where statistial time

series are used. In statistial language modelling, for

example, the most ommon model is a fully-observed,

seond-order Markov model, known as a trigram.

One limitation of HMM's that makes them inappro-

priate for language modelling is that they represent

�
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the reent history of the time series using a single,

disrete K-state multinomial. The eÆieny of the

Baum-Welh re-estimation algorithm depends on this

fat, but it severely limits the representational power

of the model. The hidden state of a single HMM an

only onvey log

2

K bits of information about the re-

ent history. If the generative model had a distributed

hidden state representation [6℄ onsisting of M vari-

ables eah with K alternative states it ould onvey

M log

2

K bits of information, so the information bot-

tlenek sales linearly with the number of variables

and only logarithmially with the number of alterna-

tive states of eah variable.

A seond limitation of HMM's is that they have great

diÆulty in learning to apture long range dependen-

ies in a sequene [1℄. In the ase of natural language

there are many examples of word agreements whih

span a large portion of a sentene. As we shall demon-

strate, this is muh easier to model in a system that

has distributed hidden state sine eah variable in the

distributed state an be onerned with a spei� type

of long-range regularity and does not get distrated by

having to deal with all the other regularities in the time

series.

2 Produts of HMM's

Extending the hidden state of an HMM an be done

in various ways. One is to add several hidden state

variables whih have a ausal e�et on the observed

variables in the model. This is known as a Fatorial

HMM [2℄ and is shown in Fig. 1.

In a ausal belief network eah loal probability distri-

bution an be independently estimated given the pos-

terior distribution of the hidden variables onditioned

on the evidene. However, it is exponentially expen-

sive to ompute this posterior distribution exatly be-

ause observing the visible variables indues depen-

denies among the hidden variables. Ghahramani and

Jordan handle this problem by approximating the pos-
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Figure 1: Fatorial HMM

terior with a fatored, variational distribution.

A very di�erent way of ombining multiple HMM's

is to multiply their individual distributions together

and renormalize (Fig. 2). This \Produt of Experts"

generative model an be represented as an undireted

Markov network in whih the hidden state variables

are non-ausally related to the visible variables. This

PoHMM network has the opposite property of the

FHMM, in that onditioned on a set of observations,

the hidden state hains are independent. So exat in-

ferene an easily be performed by using the forward-

bakward algorithm in eah hain separately. How-

ever, learning of the loal probability funtions is now

more omplex, beause the loal distributions are all

linked by a global partition funtion. This may be seen

in the equation for the density of a produt model:
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where �

m

is the set of parameters for eah HMM in the

produt. The existene of this summation over all the

possible strings of a given length in the denominator

of the equation makes it intratable to ompute the

exat gradient of the log likelihood of the observed

data w.r.t the parameters, so it appears to be very

hard to �t a PoHMM to data. Gibbs sampling an

be used to estimate the derivatives of the partition

funtion but this is very slow and noisy. Fortunately,

there is an alternative objetive funtion for learning

whose gradient an be approximated aurately and

eÆiently [4℄. It has been shown that optimizing this

alternative objetive funtion leads to good generative
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Figure 2: Produt of HMM's

models for non-sequential data and we show here that

the same approah works for PoHMM's.

Maximizing the log likelihood of the data is equiv-

alent to minimizing the Kullbak-Leibler divergene

KL(Q

0

jjQ

1

) between the observed data distribution,

Q

0

, and the equilibrium distribution, Q

1

, produed

by the generative model

1

. Instead of simply minimiz-

ing KL(Q
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jjQ
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) we minimize the \ontrastive diver-

gene"KL(Q
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) � KL(Q
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), where Q
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is the

distribution over one-step reonstrutions of the data

that are produed by running a Gibbs sampler for one

full step, starting at the data. The advantage of using

the ontrastive divergene as the objetive funtion for

learning is that the intratable derivatives of the par-

tition funtion anel out and if we are prepared to ig-

nore a term that turns out to be negligible in pratie

[4℄ it is easy to follow the gradient of the ontrastive

divergene:

1. Calulate eah model's gradient
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a data point using the forward-bakward algo-

rithm.

2. For eah model take a sample from the posterior

distribution of paths through state spae.

3. At eah time step, multiply together the distribu-

tions over symbols spei�ed by the hosen paths

in eah HMM. Renormalize to get the reonstru-

tion distribution at that time step.

4. Draw a sample from the reonstrution distribu-

tion at eah time step to get a reonstruted se-

quene. Compute eah model's gradient on the

new sequene
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We all this distribution Q

1

beause one way to get

exat samples from it is to run a Gibbs sampler for an

in�nite number of iterations



To ompute the gradient of the HMM we use an EM

like trik. Diretly omputing the gradient of an HMM

is diÆult due to the fat that all the parameters are

oupled through their inuene on the hidden states.

If the HMM were visible and the hidden states were

known then the gradient of the log-likelihood for eah

parameter would deouple into an expression involving

only loal variables. As in EM, we use the posterior

distribution over the hidden states in plae of atual

values by using the identity:
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This says that if we ompute the posterior of the HMM

using the forward bakward algorithm we an take the

gradient of the omplete data log-likelihood using the

suÆient statistis of the hidden variables in plae of

atual values.

A seond optimization trik whih we have used is

to re-parameterize the probabilities of the HMM, us-

ing the softmax funtion. Working in this domain al-

lows us to do unonstrained gradient desent over the

real numbers. Doing gradient optimization diretly in

the probability domain would involve the more diÆ-

ult proposition of onstraining the parameters to the

probability simplex. An added advantage of this re-

paramaterization is that the probabilities annot go

to zero anywhere. It is learly desirable in the PoE

framework that none of the individual experts assigns

zero probability to an event.

As an example we look at the gradient rule for the

transition probabilities of an HMM, P (S

t

= jjS

t�1

=

i) = A

ij

. If we re-parameterize using the softmax

funtion:

A
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Taking the derivative with respet to a
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yields
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As before the angle brakets indiate an expetation

with respet to the posterior of the hidden states. This

has the intuitive interpretation that the derivative for

the softmax parameter a

ij

regresses toward the point

where A

ij

is equal to the expeted transition probabil-

ity under the posterior. If we set the derivative to zero

and solved this equation diretly, we would reover the

Baum-Welh update equation.
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Figure 3: An 'eye-hart' diagram of the output dis-

tributions of the 2-state HMM in the PoHMM. Eah

hart orresponds to a single state's output distribu-

tion and the size of eah symbol is proportional to the

probability mass on that symbol.
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Figure 4: Eye-hart diagram of the output distribu-

tions of two of the states of the 30 state HMM

3 Results

To demonstrate the relative merits of a produt of

HMM's versus a single HMM, we have applied them

to two problems in text and language modelling. The

�rst of these is modelling strings of English letters, and

the seond is a task of disriminating sets of simple

English sentenes whih exhibit long and short range

dependenies.

3.1 Modelling Charater Strings

The �rst experiment involved modelling harater

strings from a orpus of English text. The problem

was slightly modi�ed to better demonstrate the ad-

vantages of a produt model. Rather than training the

model on a single ase, or mixed ase text, we trained

it on data in whih the haraters in a sentene were

either all upper ase or all lower ase. Thus there re-

ally are independent fators underlying this sequene:

the binary deision of upper ase or lower ase and the

statistis of the letters.

We used 8600 sentenes

2

and onverted them to all

upper and all lower ase to yield over 17,000 training

sentenes. 56 symbols were allowed: 4 symbols for

spae and puntuation, 26 upper and 26 lower ase

letters. We ompared a single HMM with 32 hidden

2

from Thomas Hardy's \Tess of the d'Urbervilles" avail-

able from Projet Gutenberg (http://www.gutenberg.net)



states against a produt of a 2 state and a 30 state hid-

den Markov model. In the produt model the 2 state

HMM learns to di�erentiate upper and lower ase. It

`votes' to put probability mass on the upper or lower

ase letters respetively (Fig. 3), and it enfores the

ontinuity through its transition matrix. Then the

30-state HMM need only learn the ase-independent

statistis of the haraters and the fat that the up-

per and lower ase haraters are analogous, plaing

proportional amounts of probability mass on the two

halves of the symbol set. In Fig. 4 we see an example

of two of the big HMM's 30 hidden states. Its output

distributions are symmetri over the upper and lower

ase letters, indiating that it has left the modelling of

ase to the smaller 2-state HMM model.

By ontrast, the single HMM has to partition its data

spae into two parts, one eah for upper and lower ase.

In e�et it has to model the aseless letter statistis

with a muh smaller number of hidden states. This an

be seen in Fig. 5a) where the observation distributions

of the 32 states fall into 3 ategories: puntuation,

upper ase, and lower ase. Similarly we an see in

the transition matrix (Fig. 5b) that the upper ase

states only transition to upper ase states and likewise

for the lower ase states.

While we annot ompute the log likelihood of a string

under the PoHMM we an ompute the probability of

a single symbol onditioned on the other symbols in a

sentene. This leads to a simple, interesting test of the

models whih we refer to as the \symmetri Shannon

game". In the original Shannon game [5℄, a predition

of the next symbol in a sequene is made given the

previous N symbols. In the symmetri Shannon game

the model is given both past and future symbols and

is asked to predit the urrent one. We an ompute

this distribution exatly sine we need only normalize

over the missing symbol and not all strings of symbols.

For models based on direted ayli graphs, suh as

an HMM, it is easy to ompute the probability of the

next symbol in a sequene given the symbols so far.

Somewhat surprisingly, this is not true for undireted

models like a PoHMM. If the data after time t is miss-

ing, the posterior distribution over paths through eah

HMM up to time t depends on how easily these paths

an be extended in time so as to reah agreement on

future data.

Table 6 shows a omparison of several PoHMM mod-

els with a single large HMM. They were sored on a

set of 60 hold-out sentenes with an equal number of

upper and lower ase. The produt of a 2-state and

30-state HMM with 2728 parameters, while apturing

the omponential struture we were hoping for, does

not outperform a single 32 state HMM whih has been

roughly mathed for the number of parameters (2848

parameters). This is mainly an optimization problem,

beause if we train a 2-state model alone and a 30-state

model on uni-ase text, and then use their parameters

to initialize the PoHMM then it does muh better than

the single HMM. If we use a produt of many, simple

HMM's then the optimization problem is eased. A

produt of 10, 4-state HMM's, whih has still fewer

parameters (2440), performs as well as a hand initial-

ized produt of 2 HMM's. Inreasing, the number of

HMM's in the produt provides further improvements

while the parameters and omputation time sale lin-

early with the number of HMM's in the model.

Model Sym. Shannon (bits)

PoHMM 40 x 4-states 1.96

PoHMM 20 x 4-states 2.06

PoHMM 10 x 4-states 2.13

PoHMM (2-state +

30-state, pre-initialized) 2.14

32 State HMM 2.46

PoHMM (2-state + 30-state

random initialization) 2.73

Figure 6: Symmetri Shannon sores for several

PoHMM models and a single large HMM

3.2 Modelling Simple Sentenes
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Figure 7: Disrimination diagrams of the orret and

two inorret sentene sets under eah model. Cirles

below the line indiate that the model assigns higher

probability to the orret sentene than the orrupted

sentene. Cirles on the line indiate that the model

annot disriminate the two. (Note there is some over-

lap of the irles in the HMM plots.)

In the seond task, mathing the models for the num-

ber of parameters, we use a single HMM with 32 states

and a produt of 10, 6 and 7 state HMM's to model

a set of English sentenes of the form, \Yes I am "

or \No she is not". There are 14 legal sentenes in
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Figure 5: The 32 state HMM a) the observation probabilities of the HMM b) a diagram of the transition matrix

where the area of the square indiates the probability of going to a state.

the grammar, inluding all ombinations of yes and no

with the pronouns (I,you,he,she,it,we,they) and their

orresponding onjugation of the verb \to be". The

sentenes feature two kinds of agreement. There is

short range agreement between the subjet and the

verb whih are always adjaent, and there is longer

range agreement between the \no" and \not" or \yes"

and the null symbol whih appear at the beginning

and end of the sentene, respetively. To test whether

the two types of models ould apture these orrela-

tions, we reated two sets of ungrammatial sentenes

in whih either the verbs were wrong or the ending of

the sentene did not math the beginning. We om-

pared relative log-likelihoods of these sentenes under

eah model, and the results are shown in Fig. 7. Both

models an disriminate the ungrammatial sentenes

where short range struture is orrupted, but the single

HMM annot disriminate the ases where the longer

range struture is orrupted.

3.3 Family Trees

The �nal example appliation of PoHMM's is one of

symboli inferene in two family trees [3℄. In the fam-

ily trees problem we onsider two families { one En-

glish and the other Italian. There are twelve people

in eah family. In addition there are twelve familial

relationships suh as father, daughter, unle et. The

data set is omposed of a set of triplets of the form

person relation person. While the number of allowed

triplets in the dataset overs only a small number of all

the possible triplets, it is possible to generalize from

training examples to unseen testing examples beause

there are a small number of interating onstraints on

Christopher = Penelope = Christine

=

= Maria = Emma

= Pietro

JamesVictoria

Andrew

Aurelio Bortolo

Giannina Doralice = Marcello

Charles=JenniferArthur=Margaret

Pierino=Grazia

Colin Charlotte

Alberto Mariemma

Figure 8: English and Italian family trees

the data. Fig. 8 shows the two family trees. The two

families have idential struture so that relationships

learned in one an be transferred by analogy to the

other, in muh the same way that the PoHMM learns

the analogial relationship between haraters in the

upper and lower ase text example. One an think of

other rules of thumb whih might be applied to this

data suh as only men an be husbands, or spouses

must be of the same generation.

Treating eah triplet as a sequene of symbols from

an alphabet of 36 symbols (24 people and 12 rela-

tionships) we an train a PoHMM to learn transition

probabilities and output probabilities whih apture

the struture in this data. Using a large number of

HMM's, eah with a small number of hidden states,
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Figure 9: A 4-state HMM whih enodes one rule of the family trees data { English and Italian are mutually

exlusive. The display shows the path through the states and the probability of that path.

some of the models will learn to produe these rules of

thumb in their transition struture. One obvious piee

of struture in the triplets is that the �rst and third

symbol always omes from the set of people and the

seond is always a relationship. We ould onstrut a

model whih builds in this restrition, but a PoHMM

easily learns this. A single model an alternate putting

probability mass on the people and the relationships.

The other models are then free to model other regu-

larities in the data.

Fig. 9 shows an example of a 4-state model taken from

a PoHMM trained on the family trees data. Sine

there are only a small number of paths through this

HMM, they an all be enumerated and sorted aord-

ing to their probability of ourrene. The �gure shows

the top two paths and their probability of ourrene.

For eah state in the path the output probabilities of

eah state have been displayed to eluidate their stru-

ture. In the �rst and third positions only the output

probabilities over people are displayed and in the mid-

dle position only the output probabilities over rela-

tionships. The HMM uses only states 3 and 4, but it

reuses them in a lever way. The most likely path is

states 4-3-4, whih puts high probability on an Italian,

uniform probability on a relationship, and high prob-

ability on an Italian. The seond most likely path,

3-4-3, shows a preferene for English, followed by any

relationship followed by English. Thus, this HMM has

aptured the mutual exlusion of nationality in the

dataset. The Italian path is almost twie as probable

as the English path, but this disrepany is presum-

ably o�set by slight preferenes for English over Italian

in other HMM's.

While other rules are not so lear ut and easily inter-

pretable, they express in a softer fashion similar on-

straints aross age, and sex. When many suh soft,

probabilisti rules are applied they reate a sharp dis-

tribution over the data.

4 Extensions

One onern that we have about the PoHMM is that

eah HMM has it's own output distribution over the

data, whih ould inlude many parameters if there are

a large number of symbols. One way to deal with this

is to add an extra layer of shared hidden features be-

tween the hidden variables of the HMM and the output

symbols. Sharing the output model features among

the HMM's, it greatly redues the number of free pa-

rameters in the PoHMM and it has the bene�t that

data regularities learned by one model do not have

to be re-learned again and again in the other models.

Eah HMM retains it's own transition distribution and

it's own weights from it's hidden states to the hidden

features.

We parameterize the output model as a two layer net-

work, with a linear hidden layer and a softmax non-

linearity in the output layer (Fig. 10). Note that we

do not onstrain the hidden layer values to be posi-

tive or sum to one. They may be positive or negative.

If we onstrained the hidden features to be a proper

probability distribution then this would be equivalent

to inserting a single disrete valued stohasti variable

between the hidden variable and the visible variable of

the HMM. This is not as powerful a representation as

allowing the hidden features to take on independent
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Figure 10: Output model of the HMM's

real values. The formula for suh an output model is

given by:

P (V jS; �

m

) = �(s

0

U

m

W ) (6)

Where we treat the hidden state, s, as a olumn vetor

of indiator variables { a one in the position of the

disrete state whih the hidden variable takes. � is

the softmax funtion. U is the matrix of weights whih

the states of model m plae on the hidden features and

W is the matrix shared hidden features. Interestingly,

this output distribution is also a produt model. The

olumns ofW are linearly ombined in the log domain

and then pushed through the softmax funtion to get a

probability distribution. The rows of U are the weights

that eah state puts on these basis distributions.

There are two ways that we an regularize or on-

strain the output model. One way is to reate a bot-

tle nek by using a small number of hidden features.

This is equivalent to deomposing the stohasti out-

put matrix as the produt of two lower rank matri-

es. The other way is to use a large number of hidden

features, but use another regularizer on the output

weights foring them to be small. Thus, the hidden

features are restrited to be soft distributions over the

output symbols. We have applied this tehnique to

the family trees problem, and it does help the general-

ization performane. We test the pattern ompletion

performane of the PoHMM by lamping the �rst two

entries of a tuple and omputing the preditive distri-

bution of the third. On �fteen learning trials, with 20

HMM's of 4 hidden states eah, the PoHMM obtained

perfet ompletion performane on the training data

and 73% on the test data. This is ompetitive with

the bakpropagation solution, despite the fat that it

is not diretly optimized for this task. Also, as a gen-

erative model the PoHMM an be used to ompute

a ompletion distribution for any of the elements of

tuple, whereas feedforward networks an only perform

the ompletion task in the diretion in whih they have

been trained.

5 Conlusions

Using the three datasets presented here, we have

shown how to �t a PoHMM that is a better model

of sequenes with omponential struture than a single

HMM with the same number of parameters. Although

the number of alternative distributed hidden states in

a PoHMM grows exponentially with the number of

models, the omputational omplexity of eah approx-

imate gradient step in the �tting only grows linearly.

On a simple language modelling problem we also show

that a PoHMM an apture longer range struture in a

time series beause the individual models do not need

to explain every observation and thus they an store

information about earlier parts of the sequene in their

hidden states without being distrated by other regu-

larities that are aptured by other models.

Finally, we show that the PoHMM is useful for learning

the symboli family trees problem whih involves �nd-

ing a set of onstraints whih onjuntively ombine

to restrit the spae of allowable data points. Further,

we outline some future diretions for researh using

shared output models among the HMM's to help ope

with the explosion of parameters to be estimated in

problems suh as large voabulary language modelling.
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