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Abstract
Making decisions under uncertainty remains a cen-
tral problem in AI research. Unfortunately, most

uncertain real-world problems are so complex that
progress in them is extremely difficult. Games

model some elements of the real world, and offer

a more controlled environment for exploring meth-
ods for dealing with uncertainty. Chess and chess-

like games have long been used as a strategical-

ly complex test-bed for general AI research, and
we extend that tradition by introducing an imper-

fect information variant of chess with some useful

properties such as the ability to scale the amount of
uncertainty in the game. We discuss the complex-

ity of this game which we call invisible chess, and

present results outlining the basic game. We mo-
tivate and describe the implementation and appli-

cation of two information-theoretic advisors, and
describe our decision-theoretic approach to com-

bining these information-theoretic advisors with a

basic strategic advisor. Finally we discuss promis-
ing preliminary results that we have obtained with

these advisors.

1 Introduction
Games and game theory model some properties of real-world
situations and therefore allow analysis and empirical testing

of decision-making strategies in these domains. In this ca-

pacity, games have long been used as a testbed for general
AI research and ideas. In particular, chess has a long history

of use because of its strategic complexity, and well-studied

and understood properties.

Despite these advantages, chess has two significant draw-

backs as a general AI testbed: the first is the success of
computer chess players that use hard-coded, domain specific

rules and strategies to play; and the second is the fact that

standard chess is a perfect information domain. A number
of researchers have tackled the first of these drawbacks. For

example Berliner [2] investigated generalised strategies used

in chess play as a model for problem solving, and Pell [16]
introduced metagamer — a system for playing games arbi-

trarily generated from a set of games known as Symmetric

Chess-Like games (SCL Games).

In this paper, we address the second drawback of chess as

a general AI testbed — that of perfect information. We de-
scribe a missing (or imperfect) information variant of stan-

dard chess which we call invisible chess [4]. Invisible chess

consists of a configurable number of invisible pieces, i.e.,

pieces that a player’s opponent cannot see, and is thus a rep-
resentative of the general class of strategically complex, im-

perfect information, two player, zero-sum games.

Many researchers have investigated games with missing in-

formation including poker ([7], [14], [13]), bridge ([10], [12],

[21]), and multi-user domains [1]. With the exception of
Albrecht et al. [1], who use a large uncontrollable domain,

all of these domains are strategically simple given perfect

information. Invisible chess retains the strategic complexi-
ty of standard chess with the addition of a controllable el-

ement of missing information. Invisible chess is related to

kriegspiel ([15] and [5]), a chess variant in which all the
opponent’s pieces are invisible and a third party referee de-

termines whether or not each move is valid.

The remainder of the paper is organised as follows. Sec-

tion 2 discusses some related work. Sections 3 and 4 outline

the game and our basic approach to invisible chess. Sec-
tion 5 presents a brief analysis of play with various invis-

ible pieces. Interestingly, we show that the relative values

of minor invisible pieces differs from standard chess piece
rankings. Section 6 discusses the relationship between un-

certainty and the information-theoretic concept of entropy,
and the application of entropy to our results. Section 6 also

motivates the design of information-theoretic advisors, de-

scribes these advisors and presents preliminary results that
demonstrate the efficacy of our approach. Finally, Section 7

contains conclusions and ideas for further work.

2 Related Work

Since the 1950s, when Shannon and Turing designed the
first chess playing programs [19], computers have be-

come better at playing certain games such as chess us-
ing large amounts of hand-coded domain specific informa-

tion. In answer to the success of hard-coded algorithms,

Pell [16] introduced a class of games known as Symmetric
Chess Like (SCL) Games, and a system called Metagamer

that plays games arbitrarily generated from this class using a

set of advisors representing strategies in the class of games.
Pell did not consider imperfect information games. Invisi-

ble chess is one game in the extension of Pell’s class of SCL

Games to the class of Invisible SCL Games, where one or
more of a player’s pieces is hidden from their opponent.

Koller et al. [13] investigated simple imperfect information
games with a goal of solving them. However, their approach

does not scale up to complex games such as invisible chess.



Smith et al. [21] wrote a bridge playing program using a

modified form of game tree with enumerated strategies rather
than actions, effecting a form of forward pruning of the game

tree. Smith et al. stated that forward pruning works well for

bridge, but not for chess. Ginsberg [11] introduced parti-
tion search to reduce the effective size of the game tree. He

showed that this approach works well for bridge and other

games with a high degree of symmetry. In bridge, the or-
der in which the first n cards are played is irrelevant if the

same cards remain in each player’s hands. However, in chess,
partly because pawns only move forward, and partly because

the order of moves in invisible chess changes the flow of the

game, the same positions do not tend to occur in a signific-
ant number of nodes in the game tree, and therefore partition

search is not likely to be very effective on chess variants.

More recently Ginsberg [12] included Monte Carlo meth-
ods to simulate many possible outcomes, choosing the action

with the highest expected utility over the simulations. Gins-

berg claims that trying to glean or hide information from an
opponent is probably not useful for bridge. In contrast, we

present results that show that both information hiding and

gleaning can be useful in invisible chess.

Frank and Basin ([9] and [8]) have performed a detailed in-

vestigation of search in imperfect information games, con-
centrating almost exclusively on bridge. They focus on a

number of search techniques including flattening the game

tree which they have shown to be an NP-Complete problem,
and Monte Carlo methods. Their investigation suggests that

Monte Carlo methods are not appropriate for imperfect in-

formation games. This problem is exacerbated in invisible
chess given the relative lack of symmetry and the size of the

game tree.

Ciancarini et al. [5] considered king and pawn end games

in the game of kriegspiel — an existing chess variant where

neither player can see the opponent’s pieces or moves. They
used a game-theoretic approach involving substantive ratio-

nality and have shown promising results in this trivial version

of kriegspiel. Thus far they have not applied their approach to
a complete game of kriegspiel. Kriegspiel differs from invis-

ible chess in a number of important areas. All the opponent’s
pieces are invisible to a player of kriegspiel. Thus there is no

way to reduce the uncertainty in the domain without reduc-

ing the strategic complexity. By contrast, in invisible chess,
the number and types of invisible pieces is configurable. Ad-

ditionally, in kriegspiel, a player attempts moves until a legal

move is performed; a third party arbitrator indicates whether
or not each move is legal. In invisible chess, the player is giv-

en specific information when a move is impossible or illegal,

and may miss a turn as a result of attempting an impossi-
ble move (see Section 3). These differences make kriegspiel

a substantially more complex and less controllable domain

than invisible chess. Specifically, exploring the relationship
between uncertainty and strategic play would be more diffi-

cult in kriegspiel. Ultimately, the pathological case of invisi-
ble chess where all pieces are invisible approaches the com-

plexity of kriegspiel. Thus invisible chess provides a conve-

nient stepping stone to a much more difficult problem.1

1To our knowledge there exist no computer kriegspiel players
that are able to play a full game of kriegspiel with which to compare
our system.

3 Domain: Invisible Chess

Invisible chess is based on standard chess with the following
difference. In invisible chess we differentiate between visi-

ble and invisible pieces and define them as follows: a visible

piece is one that both players can see; an invisible piece is
one that a player’s opponent cannot see. Thus, every time a

visible piece is moved, the board is updated as per standard

chess. However, when a player moves an invisible piece,
their opponent is informed which invisible piece has moved,

but not where it has moved from or to. This information

enables each player to maintain a probability distribution of
their opponent’s invisible pieces across the squares on the

board. In this paper, we frame invisible chess pieces (G) to

distinguish them from visible chess pieces (N).

We define three terms for referring to moves in invisible

chess: A possible move is any legal chess move given com-

plete information about the board. That is, no invisible pieces
are in the way of the move, and the piece can move to the de-

sired position. An impossible move is an attempted move

that violates the laws of chess because of an incorrect as-
sumption as to the whereabouts of an invisible piece. For

example, a player attempts to move a piece “through” an in-
visible piece, or attempts to use a pawn to capture an invisible

piece that is not diagonally in front of it. See Figure 1. An

illegal move is an impossible move that would not allow the
game to continue. For example, a player is not allowed to

move their king into check by an invisible piece. See Fig-

ure 2.

The rules of invisible chess are based on the rules of chess.

The only modifications pertain directly to invisible pieces
and their impact on the game. In general if a move is pos-

sible then it is accepted; if a move is impossible then it is

rejected and the player’s turn is forfeited; and if a move is
illegal, some information regarding the reason the move is

illegal is revealed to the player attempting the move, and the

player must supply another move. Note that we do not allow
invisible kings in this basic invisible chess, as a version of

invisible chess with invisible kings would drastically modify

the goal of the original game. Bud et al. [3] gives details of
all scenarios where new rules come into effect.

3.1 Domain Complexity

The complexity of standard chess is well understood. Chess

has an average branching factor of around 35. A typical game

lasts approximately 50 moves per player so the entire game
tree has approximately 35

100 nodes ([19], p 123).

In the trivial case where the opponent has no invisible pieces,
the game tree for invisible chess is exactly as large as that for

standard chess. Once invisible pieces are introduced, each

node must be expanded for each possible move for each pos-
sible combination of positions of the opponent’s invisible

pieces. In a game of invisible chess the player and oppo-

nent each have m invisible pieces. If each invisible piece
IP

i

has a positive probability of occupying n
i

squares, then

the branching factor is approximately the branching factor of

chess multiplied by the combination of invisible squares that
could be occupied, i.e., Bran
hing Fa
tor = 35 � n

1

�

n

2

� :::� n

m

If each player has two invisible pieces, and each of those

pieces has an average of four squares with a positive prob-



8
0Z0j0Z0s

7
opZ0Z0op

6
0Z0Z0Z0Z

5
Z0Z0o0Z0

4
0ZbZ0ZNZ

3
Z0Z0Z0Z0

2
Pd0ZPOPO

1
S0A0Z0J0

a b c d e f g h

Figure 1: An impossible move. The black

bishop on b2 is invisible. White attempts
an impossible move by trying to move the

bishop on c1 to a3.
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Figure 2: An illegal move. White is in

check from the black bishop on a5, and at-
tempts to capture the invisible black knight

on f1 where it would be in check from the

invisible black bishop on c4.

ability of occupation, then the average approximate branch-

ing factor of that game of invisible chess is 35� 16 = 560.

For three invisible pieces each, the branching factor is around
35 � 64 = 2240. Assuming that the invisible pieces are on

the board and moving for approximately half the game, then

the complete expanded game tree for three invisible pieces
each is in the order of 224050 (10150) nodes.

To make the domain even more complex, chess has virtually
no axes of symmetry that allow the size of the game tree to be

reduced as in highly symmetrical games such as tic-tac-toe,

and Smith and Nau [20] claim that forward pruning to reduce
the branching factor of chess has been shown to be relatively

ineffective.

In addition to dealing with the combinatorially expansive na-

ture of the invisible chess game tree, a player must main-

tain beliefs about the positions of the opponent’s invisible
pieces. A player that uses any belief updating scheme that

does not take into account every possible destination square

when an invisible piece is moved, will lose important infor-
mation about the flow of the game.

Assuming no strategic knowledge (i.e., each square that an
invisible piece can move to is as likely to be visited as any

other), and only one invisible piece, a player can easily main-

tain the precise distribution for that piece (see [3]). However,
for multiple invisible pieces, the positions of invisible pieces

are not conditionally independent with respect to each other.

The probability of one invisible piece occupying any partic-
ular square affects the probability of another invisible piece

occupying that square. Maintaining the probability distribu-

tions of multiple invisible pieces involves combinatorial cal-
culations in the number of invisible pieces or the storage of

combinatorially large amounts of data to maintain the com-

plete joint distributions of all invisible pieces over the entire
chess board.

4 Basic Design

To cope with the combinatorial explosion, and the strategic

complexity of invisible chess, we employ a “divide and con-

quer” approach. We split the problem of choosing the next

move into a number of simpler sub-problems, and then use

utility theory [17] to recombine the calculations performed
for these sub-problems into a move. We use information-

theoretic ideas [18] to deal with the uncertainty in the do-

main, and standard chess reasoning to deal with the strategic
elements.

This modular, hybrid approach is implemented with advi-
sors or experts connected and controlled by a Game Con-

troller and Distribution Maintenance Module (GCDMM),

and a Maximiser. The GCDMM controls the game state, has
knowledge of the positions of all invisible pieces and main-

tains distributions of invisible pieces on behalf of the two

players. The GCDMM is responsible for deciding whether
a move is legal, impossible or illegal and ensuring that the

game progresses correctly. When it is a player’s turn to move,

the GCDMM requests the next move from the Maximiser for
that player. The Maximiser, responsible for choosing the best

move suggested by the available advisors, generates all possi-
ble boards and all possible moves, and requests utility values

from each of the advisors for each move.

Each advisor evaluates the possible moves, across as many
boards as possible in the available time, according to an in-

ternal evaluation function. The strategic advisor, a modified

version of GNU Chess, returns all possible moves and their
Expected Utilities (EU) from a strategic perspective.2 The

EU for each move or action (A) is calculated by multiply-
ing its utility value by the probability of the game state (X)

for which the utility value was calculated, and summing this

across all possible game states (G) as follows.

EU(A) =

X

8X2 G

(Utility(AjX)� Prob(X)) (1)

The Maximiser multiplies the value returned from each of the

2Note that GNU Chess has no knowledge of invisible pieces.
The modifications to GNU Chess are to perform fixed depth search-
ing, and to return all moves and utilities rather than only the best
move.



1 B 1 N 1 R 1 Q 2 B 2 N 2 R N.I.

1 B X 61.0 65.0 35.0 17.2 41.5 43.6 89.8

1 N 39.0 X 53.4 39.2 13.2 37.4 27.6 89.0

1 R 35.0 46.6 X 38.2 25.4 34.4 27.4 93.0

1 Q 65.0 60.8 61.8 X 43.8 41.4 47.6 93.0

2 B 82.8 86.8 74.6 56.2 X 72.0 57.6 95.6

2 N 58.5 62.6 65.6 58.6 28.0 X 45.8 96.2

2 R 56.4 72.4 72.6 52.4 42.4 54.2 X 98.2

N.I. 10.2 11.0 7.0 7.0 4.4 3.8 1.8 X

Table 1: Win percentages for different combinations of invis-
ible pieces.

advisors by the advisor weight and sums these values. The
move with the highest overall utility value is passed to the

GCDMM which implements that move and requests a move

from the other player.

5 Invisible Chess with a Strategic Advisor

This section presents results where each player played invis-
ible chess with a different configuration of invisible pieces,

and used only a strategic advisor to decide the next move.

Each result was obtained from a run of 500 games3 with a
particular configuration of invisible pieces. As white has a

slight advantage in standard chess, to remove colour biases

from the results, each set of 500 games was broken into two
runs of 250 games each, the invisible piece configurations

were swapped between white and black for each run, and the

results were averaged between the two runs.

Table 1 shows results for games played with major (non-

pawn) invisible pieces against each other and against no in-
visible pieces (N.I.). Reading across a row, it shows the per-

centage of games won by the combination of invisible pieces

in the row heading against the invisible piece combination of
a particular column. For example, one invisible bishop (1B)

won 65% of the time against one invisible rook (1R), but only
43.6% of the time against two invisible rooks (2R).

These results show that the values of several invisible piece

combinations differ from standard chess. For example, in
standard chess, a rook is considered more valuable than a

bishop. However, in invisible chess, one invisible bishop beat

one invisible rook, and two invisible bishops beat every other
combination of invisible pieces considered including invisi-

ble rooks. This apparent anomaly is due to the bishop’s early
involvement in the game. By causing uncertainty early in the

game, a player with two invisible bishops has an early ad-

vantage against a player with two invisible rooks. Further
analysis of these results is presented in [3].

6 Building Information Theoretic Advisors

A reasonable inference from the results above is that play-

ers with more information about the game tend to win more
often; i.e., the closer a player’s belief about a board position

is to the true board position, the more likely the player is to

play well strategically. In this section, we describe our use of
information theory to quantify a player’s uncertainty about

the positions of an opponent’s invisible pieces (Section 6.1),
present two information-theoretic advisors (Section 6.2), and

3That ended in a win. Drawn games are discarded. They are
largely the result of repeating moves continuously, and consist of
less than 10% of games played.
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Figure 3: Uncertainty (as entropy) in games with one invisi-

ble black bishop against two invisible white bishops that were

won by white.

discuss some preliminary results obtained with these advi-
sors (Section 6.3).

6.1 Uncertainty and Entropy

Any probability distribution can be said to have an entropy

or information measure associated with it. This entropy mea-

sure is bounded from below by zero, when there is only one

possibility and therefore no uncertainty, and increases as the
distribution spreads.

In invisible chess, given a probability distribution of the po-

sitions of the opponent’s invisible pieces, it is possible to de-
rive a probability distribution of all possible board positions.

Thus we can calculate the entropy (H) of a set of board states
together with their associated probabilities as follows:

H = �

X

8X2G

Prob(X)� log

2

(Prob(X)) (2)

where X represents a single game state (one possible combi-

nation of positions of the opponent’s invisible pieces), from

the set of possible game states (G), and Prob(X) represents
the probability of that game state. As invisible pieces move,

the number of squares they may occupy increases. This

leads to an increase in the number of possible board states,
and the entropy of the distribution of those board states, i.e.,

it increases the opponent’s uncertainty.

Figure 3 shows the entropy in games that were won by white

playing with two invisible bishops against black with one in-

visible bishop. The solid line shows blacks total entropy (the
entropy of the distribution of the positions of white’s invisible

pieces) summed over the course of the game, sorted by en-

tropy. The dashed line shows white’s total entropy over each
corresponding game. Of the 190 games won by white, only

one game (number 86) shows greater entropy for black. This

is not the case for games that were won by black. This ex-
ample corroborates our intuition that more certain players are

more likely to win, and underpins our information-theoretic
advisors.

6.2 Information-Theoretic Advisors

Move Hide Advisor. Working on the premise that the more

uncertain the opponent is, the worse they will play, the move
hide advisor advises a player to perform moves that hide in-

formation from the opponent. That is, each move is scored



Weight Hide Seek

Q vs Q4 B vs B Q vs Q4 B vs B

0.5 57.2 78.4 50.1 51.2

5.0 61.3 82.7 55.0 51.2

50.0 13.6 18.5 47.6 55.2

Table 2: The effect of the move hide and move seek advisors.

according to its expected effect on the entropy of the distri-

bution of the positions of the player’s invisible pieces from

the opponent’s perspective. This effect may be an increase,
a decrease or no change in the entropy. Moves by invisible

pieces that do not cause check result in an increase in en-
tropy. Moves that cause check or moves by visible pieces

may cause a decrease in entropy by revealing vacant squares.

To calculate this entropy, the move hide advisor needs to
model the opponent’s distribution update strategy. For a pro-

posed move, the move hide advisor uses Equation 2 to calcu-

late the entropy of the opponent model of the distribution of
the player’s invisible pieces prior to and following the move.

The exponential of the perceived change in entropy is re-
turned as the move hide utility. The exponential is taken to

allow a comparison between the log based utilities returned

by the move hide and move seek advisors, and the utility
returned by the strategic advisor which scores moves on a

linear scale.

Move Seek Advisor. The move seek advisor suggests that

a player perform moves that are more likely to discover infor-
mation about the positions of the opponent’s invisible pieces.

That is, each move is scored according to the expected de-

crease in the entropy of the opponent’s invisible pieces fol-
lowing the move. This expected decrease in entropy must be

greater than or equal to zero as no move can make a play-

er less certain about the position of the opponent’s invisible
pieces.

A move that covers a large number of squares with a positive
probability of occupation by the opponent’s invisible pieces

will yield a certain amount of information whether it is suc-

cessful or not. Clearly this type of move will yield more
information if it is successful, as the player now knows that

all of those squares are vacant. On failure, a player can only

conclude that at least one of those squares is occupied. On
the other hand, a move that traverses only one square with a

positive probability of occupation by the opponent’s invisible

pieces will yield more information if unsuccessful. That is,
the player now knows that an invisible piece is on that square.

The move seek advisor multiplies the projected decrease in

entropy for each outcome by the probability of that outcome
to get an expected utility. The exponential of this expected

change in entropy is returned as the move seek utility.

6.3 Advisor Results

This section shows the individual effects of the move hide
and move seek advisors with varying weights. Each result

was obtained by playing 500 games separated into runs of
250 games as before, with one player using the strategic ad-

4The results in these column were generated with an old ver-
sion of the program which did not calculate the value of impossible
moves correctly. However, the partial results that have been gen-
erated for these columns with the new program followed the same
trends as the results presented here.

visor only, against an opponent using one of the information-

theoretic advisors and the strategic advisor.

Table 2 shows the results of adding the move hide or move

seek advisor to an invisible queen each (Q vs Q) and an invis-
ible bishop each (B vs B). The first column headed “Weight”

shows the weight of the information-theoretic advisor rela-

tive to the strategic advisor. Thus, with a weight of 0.5, in
games played with an invisible queen each, the player play-

ing with the move hide advisor won 57.2% of the games.

Move Hide Results. The move hide advisor proved to be
a significant advantage. In fact the win percentage with

a weight of 5.0 for the invisible bishop games was 82.7%

which is approaching the win percentage of an invisible bish-
op against no invisible pieces (89.8%).

This improvement is due to the increased number of invis-
ible piece moves. With a small increase in the value of

moves of invisible pieces, strategically reasonable invisible

piece moves are greatly encouraged. This tends to maximise
the opponent’s uncertainty. However, as the weight of the

move hide advisor increases past 5.0, the percentage of win-

s decreases. This behaviour is typical of all observed move
hide runs, and results from the player performing highly val-

ued move hide moves at the expense of strategy. Although

the opponent may be slightly more uncertain when the move
hide advisor is weighted highly, the player is making enough

strategically poor moves to counter that advantage.

Move Seek Results. Table 2 (columns 5 & 6) shows the
move seek advisor’s effectiveness against an opponent’s in-

visible pieces. With the appropriate weight, the move seek

advisor does increase the player’s win percentage by around
5%. However, for weights greater than or smaller than these

values, the move seek advisor is either ineffective or detri-

mental.

Moves that traverse squares with a positive probability of oc-

cupation by the opponent’s invisible pieces are valued by
the move seek advisor. These moves may not correspond

to good strategic moves. Thus, the higher the move seek

advisor’s weight, the fewer good strategic moves will be
performed. The difference between the bishop-seeking and

queen-seeking behaviour is related to the difficulty of finding
the opponent’s invisible piece. An invisible bishop can have

a positive probability of occupying at most half the available

squares, while an invisible queen can have a positive prob-
ability of occupying all available squares. Thus, the advice

provided by the move seek advisor often aids in the early

capture of the invisible bishop, thereby removing the uncer-
tainty from the game. In contrast, following this advice when

the invisible piece is an invisible queen leads to non-strategic

moves. Thus the move seek advisor assists when the uncer-
tainty in the game is low, but may be useless or detrimental

when the uncertainty is high.

7 Conclusion and Future Work

The results presented in this paper are preliminary and fur-

ther exploration of the domain is required. Specifically, more
accurate prediction of the likely positioning of the oppon-

ent’s invisible pieces is needed. This prediction could take

the form of using strategic information about the likely desti-
nation of a moving invisible piece, or involve evaluating the

complete search tree for more ply. Improving this distribu-



tion would reduce its entropy and therefore improve strategic

performance. A side effect of this type of distribution im-
provement is the possibility of incorporating bluffing into in-

visible chess, i.e., moving an invisible piece to an unlikely

position to confuse an opponent.

Modelling the uncertainty regarding a player’s pieces from

the opponent’s perspective for more ply would improve strat-
egic performance. However, the problem of the combinatori-

al expansion in the search required as a result of this predic-

tion needs to be resolved. Obtaining results in this domain is
already a time consuming exercise and the addition of an ex-

tra layer of search would make rapid game play impractical.

The most obvious way to manage this explosion is to find ef-
fective ways to prune the game tree. However, as mentioned

earlier, this is not likely to be simple.

One significant difficulty of this type of approach is the prob-

lem of how to choose the relative advisor weights. It is like-

ly that play may be improved by using statistical inference
techniques such as those described in [6] to determine stat-

ic weights for the advisors. However, our results show that

the advisors have different levels of effectiveness in differ-
ent situations. Thus if a player can infer what type of board

position the current situation is, they can apply an appropri-
ate weight vector to their advisor array. The type of current

board situation may be based on the amount of entropy and

the pieces that are causing it, the game move number, and
other positional information. We intend to use statistical in-

ference techniques to explore this possibility.

In summary, we have presented and discussed a complex,
but controlled domain for exploring automated reasoning in

an uncertain environment with a high degree of strategic
complexity. We have motivated and introduced the use of

information-theoretic advisors in the strategically complex

imperfect information domain of invisible chess. We have
shown that our distributed-advisor approach using a combi-

nation of information-theoretic and strategic aspects of the

domain lead to performance advantages compared to using
strategic expertise alone. Given the simplicity and generality

of this approach, our results point towards the potential ap-

plicability to a range of strategically complex imperfect in-
formation domains.

Although the basic idea of information-theoretic advisors is
intuitive, their application to this domain is not necessarily

straightforward. There are complex multi-level interactions

between the strategic advisor and the information-theoretic
advisors. The balancing act required to maximise a player’s

performance almost certainly involves dynamically modify-

ing the weights associated with the various advisors depend-
ing on both the invisible piece configuration and the game

position. However, the preliminary results presented in this

paper indicate that this is a domain worth exploring further.
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