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Abstract

We present an iterative non-parametric al-

gorithm for imputing missing values. The

algorithm is similar to EM except that it

uses non-parametric models such as k-nearest

neighbor or kernel regression instead of the

parametric models used with EM. An inter-

esting feature of the algorithm is that the E

and M steps collapse into a single step be-

cause the data being �lled in is the model

{ updating the �lled-in values updates the

model at the same time.

The main advantages of this approach com-

pared to parametric EM methods are that:

1) it is more e�cient for moderate size data

sets, and 2) it is less susceptible to errors

that parametric methods make when the

parametric models do not �t the data well.

The robustness to model failure makes the

non-parametric method more accurate when

models of the data are not known apriori and

cannot be determined reliably. We evaluate

the method using a real medical data set that

has many missing values.

1 Motivation

The Port Pneumonia Database [2] contains 2287 pneu-

monia patients. For our experiments we use 216 of the

1000+ features available in the raw database. 6.3% of

the values of the 216 attributes are missing. More than

99% of the cases in the database are missing at least

one of the 216 values, and one of the 216 attributes is

missing in 61% of the cases. Values in this database

may be missing because they were not recorded, be-

cause they were not measured, or because they were

assumed normal.

We wanted to apply various machine learning meth-

ods to this data set to see how they would perform.

Some of the machine learning methods we wanted to

test cannot easily handle missing values [2]. One way

to deal with missing values when using a method that

does not deal with them naturally is to add an addi-

tional value to each attribute that indicates \missing",

or to add indicator variables that are true i� the vari-

able they indicate for is missing. One potential prob-

lem with this approach is that whether or not a value

is missing may be predictive of an outcome we want to

predict, but in a way that will not hold true for future

test cases. For example, if we want to predict whether

a pneumonia patient should be hospitalized or treated

as an outpatient, the values for lab tests that usually

are ordered for patients in the hospital may often be

missing for outpatients. Knowing that theses variables

are missing or not is predictive in the training set, but

misleading on the test set where these values would

often be missing because none of the patients have yet

been admitted to the hospital. This problem could

be solved if we had time stamps indicating when the

variables where measured, but this information is not

available in the dataset.

To evaluate if the pattern of missing values was infor-

mative, we replaced all missing values with the value

"1", and all non-missing values with the value "0". We

then used k-nearest neighbor (kNN) to predict one of

the outcomes we were interested in from the recoded

data. Recoding the data this way eliminates all in-

formation except for which values are missing or not.

The outcome could be predicted from the recoded data

with 85% accuracy. For comparison, the baseline accu-

racy of predicting the predominant class is 65%. This

result indicates that the pattern of missing values is

informative.

More than 99% of the cases in the database have at

least one missing value, so we cannot throw away cases

that have missing values. The experiments above indi-

cate that the pattern of missing values is informative

for one of the outcomes we wish to predict, so we can-

not safely use indicator variables or special values to



code for missing. This is left us one choice: to impute

the missing values.

Because the data is real, we did not know what para-

metric distribution to use to model each of the 216

variables. Studying each of the 216 variables carefully

enough to make reliable decisions about what para-

metric model to use for each variable appeared daunt-

ing. We were concerned that if we used the wrong

distribution for a few variables and then used EM to

impute missing values, it might hurt the �lled-in values

for other variables as well, not just the variables that

were poorly modelled. This led us to develop the non-

parametric imputation method described here. The

method uses k-nearest neighbor to iteratively improve

the quality of the �lled-in values. It is a nonpara-

metric algorithm that can be viewed as a form of EM

that depends on Gibbs sampling instead of parametric

models.

2 The Algorithm

Consider a data set containing the set of cases fCg.

Some attribute values are missing for some cases in

fCg. We refer to missing values as \nknown", even

after they have been �lled in because their true values

are never known. We refer to values that were never

missing are \known". We use the term \missing" to

refer to values that have not yet been �lled in by the

algorithm. Values that were missing but have been

estimated are referred to as \�lled-in" or \imputed."

The algorithm is easiest to understand using 1-nearest

neighbor (1NN). Extending the algorithm to use kNN

or kernel regression is straightforward. See Table 1 for

pseudocode for the 1NN version of the algorithm.

Each iteration through the Repeat loop re-estimates

the imputed values for each unknown attribute value.

The process is repeated until the �lled-in values con-

verge or begin to cycle (more about cycling later).

The key di�culty is �nding nearest neighbors when c

and/or its neighbors have missing values for attributes

other than the attribute in c that is being �lled-in. The

approach the algorithm follows is to use imputed val-

ues from the previous iteration in the nearest neighbor

distance calculation. This solves the problem of how

to compute distances between cases that have missing

values because there are estimates for the values that

were missing. The goal of iteration is to improve the

�lled-in values so that nearest neighbors can be found

more accurately. If nearest neighbors can be found

more accurately, the �lled-in values derived from those

nearest neighbors also should be more accurate.

More speci�cally, given a case c and an attribute a

whose value is unknown, we want to �nd the nearest

Table 1: Pseudocode for non-parametric imputation

of missing values using 1-nearest neighbor (1NN).

Impute(datasetfCg;Dist())

Inputs:

fCg: data set with M cases of N attributes

Dist(): Distance Metric de�ned on cases

that have no missing values

1 Repeat until convergence f

2 for c 2 f1:::Mg do

3 for a 2 f1:::Ng do

4 If attr(c; a) = unknown do

5 Re-impute attr(c; a) using 1NN:

6 for n 2 f1::Mg such that

(c 6= n) and

attr(n; a) 6= missing and

8j 6= c; nDist(c; n) � Dist(c; j)

7 attr(c; a)  attr(n; a)

g

neighbor n to c in the data set that has a known value

for attribute a. To do this, we compute the distance

between c and every other case in the data set that has

a known value for attribute a. If 1-nearest neighbor

is being used for imputation, we then pick the case

whose distance is smallest, and use it's value for a as

the new �lled-in value for attribute a in case c.

3 Jump-starting the Process

During the �rst iteration the unknown values have not

yet been �lled-in. How do we compute the di�erence

between the values of attribute x when x is unknown

for c or its neighbor? We compute the average value

when x is continuous (or the mode if x is discrete)

from the cases with known values of x, and use the

average(mode) as the initial �lled-in value for x.

If, however, c and its neighbor are both missing the

value of x, we compute the average di�erence between

the values of x over the cases in the dataset that have

known values of x, and use this di�erence as an ini-

tial estimate of the distance between c and its neigh-

bor along variable x. Note that once �lled-in values

have been re-estimated during the �rst iteration, these

jump-start procedures no longer are needed because

�lled-in values now exist for all values that were miss-

ing.



4 A Small Example

Suppose we have a database with 9 cases and �ve or-

dinal attributes A-E.

A B C D E

-------------------------------

1 | 2 4 9 6 5

2 | 6 8 1 9 7

3 | 6 7 1 8 9

4 | 9 2 6 2 3

5 | 1 4 8 5 6

6 | 9 2 6 3 2

7 | 1 3 9 4 6

8 | 8 2 5 3 2

9 | 5 8 3 9 7

Suppose that missing values have been peppered

throughout this database. The table below has 12

missing values. Each attribute is missing for at least

one case, and each case has at least one missing value.

A B C D E

-------------------------------

1 | 2 *?* 9 6 5

2 | *?* 8 1 9 7

3 | *?* 7 1 *?* *?*

4 | 9 *?* 6 2 3

5 | 1 4 8 5 6

6 | 9 2 6 *?* 2

7 | *?* 3 9 4 6

8 | 8 2 *?* 3 *?*

9 | 5 *?* 3 *?* 7

The �rst step is to �ll-in each missing value with the

mean/median values calculated from cases that are not

missing that value. This allows kNN to be applied

to re-estimate the �lled-in values using the algorithm

described above. If both cases being compared were

missing values for attribute x, the distance along di-

mension x will be 0 since they will be �lled in with the

same value. This causes cases missing many values to

appear to be arti�cially close to each other, which is

not ideal. As described above, when both cases are

missing the value of x, we use the mean distance be-

tween cases not missing x as the estimated di�erence

along dimension x in the �rst loop. This subtlety is

not critical for the proper behavior of the method, but

does speed convergence on data sets that have many

missing values.

The �rst iteration of the algorithm yields the �lled-

in table below. Five of the �lled-in values are correct

after the 1st iteration. Another �ve are close to the

correct value. Two are substantially wrong: attribute

B in case 9 has been �lled-in with a value of 2, but

the correct value is 8, and the value of attribute C

on case 8 should be near 5, not 9. These two �lled-in

values are this wrong because a single iteration of 1NN

is unable to �nd the true nearest neighbors to cases 8

and 9 given the poor initial estimates for the many

other �lled-in values.

ITERATION 1

A B C D E

-------------------------------

1 | 2 *4* 9 6 5

2 | *5* 8 1 9 7

3 | *5* 7 1 *9* *7*

4 | 9 *2* 6 2 3

5 | 1 4 8 5 6

6 | 9 2 6 *2* 2

7 | *1* 3 9 4 6

8 | 8 2 *9* 3 *2*

9 | 5 *2* 3 *9* 7

A 2nd round of 1NN �lling-in (2nd pass through the

Repeat loop) improves the �lled-in values (below).

Eight �lled-in values remained unchanged from the

previous iteration. Four values changed, including the

two �lled-in values that had the most error in the pre-

vious iteration (attribute B case 9 and attribute C case

8). These now have better �lled-in values. But at-

tribute D on case 9, which used to be �lled-in with

a correct value, now has a poorer value. On average,

the new table has more accurate �lled-in values, but

not every value is as good as it was on the previous

iteration.

ITERATION 2

A B C D E

-------------------------------

1 | 2 *4* 9 6 5

2 | *5* 8 1 9 7

3 | *5* 7 1 *9* *7*

4 | 9 *2* 6 2 3

5 | 1 4 8 5 6

6 | 9 2 6 *2* 2

7 | *1* 3 9 4 6

8 | 8 2 *6* 3 *3*

9 | 5 *8* 3 *5* 7

One more iteration yields the following �lled-in table:

ITERATION 3

A B C D E

-------------------------------

1 | 2 *4* 9 6 5

2 | *5* 8 1 9 7

3 | *5* 7 1 *9* *7*

4 | 9 *2* 6 2 3

5 | 1 4 8 5 6

6 | 9 2 6 *2* 2

7 | *1* 3 9 4 6

8 | 8 2 *6* 3 *3*

9 | 5 *8* 3 *9* 7

Only one �lled in value changed: attribute D in case 9

switched from a value of 5 in the previous iteration to

9, the correct value. Further iteration does not change



the �lled-in values on this simple example. The algo-

rithm has converged. The �nal values are fairly accu-

rate. Five are �lled-in correctly, six of the remaining

seven are o� by 1. Only one value is o� by more than

1: attribute E on case 3 is �lled-in with a 7, but should

be a 9.

5 Relationship to EM

The algorithm we present does not use expectation

maximization (EM), yet we describe it as an EM-style

algorithm. Why? A real EM algorithm repeatedly al-

ternates between two steps, the E step and the M step.

In the E step the expected value of unknown param-

eters are estimated using the most recent hypothesis.

In the M step the hypothesis is updated by calculating

the new maximum likelihood hypothesis assuming the

unknown parameters take on the expected values from

the previous E step. [5] When imputing missing val-

ues, the E step corresponds to re-estimating the miss-

ing values, and the M step corresponds to inducing a

new density model of the data using the �lled-in data

set from the previous E step.

In most EM algorithms, both the E and M steps de-

pend on parametric models. The parametric model is

used to impute the missing values, and then new max-

imum likelihood parameters for the parametric models

are found using the �lled-in data. The algorithm we

present is non-parametric. The E step in our non-

parametric algorithm is evident: the �lled-in values

are re-estimated using a kernel-based method such as

kNN. The M step, however, appears to be missing?

Where is a new model formed using the newly esti-

mated values?

If unweighted Euclidean distance is used to measure

distances between cases, the M step merges with the

E step. Re-estimating the �lled-in values updates the

model because the data is the model for kNN with un-

weighted Euclidean distance. The M step is implicit

in the fact that the newly �lled-in data is used as the

case-base in the next iteration of the algorithm. Al-

though the algorithm we present has no explicit model

of the data, and thus lacks an explicit M step, it's it-

erations are similar to what occurs in parametric EM.

The similarity between real EM algorithms and the

non-parametric EM-style algorithmwe present is more

obvious if we use weighted Euclidean distance instead

of unweighted Euclidean distance. With weighted Eu-

clidean distance, the weights to be applied to each di-

mension in the distance metric will be estimated from

the data. As the data is changed by �lling-in, the

weights in the distance metric may have to change.

Typically, new weights will be selected that maximize

the likelihood of the data (or some measure similar to

likelihood) given the current �lled-in values. Thus an

explicit M-like step emerges if the non-parametric kNN

method for imputing missing values uses weighted Eu-

clidean distance.

There are two important di�erences between true

EM algorithms and the non-parametric imputation

method presented in this paper. The �rst is that the

non-parametric method does not require the paramet-

ric models of the variables that the EM methods re-

quire. This is an advantage when correct parametric

models are not known for all of the variables because

parametric models that don't �t the data well can lead

to errors that cannot be repaired by additional iter-

ations. Inappropriate parametric models change the

�xed-point of the search. The non-parametric method

probably has less sample e�ciency than the true para-

metric models, but it also will not su�er from the

negative impacts of model error. The non-parametric

method is more robust.

The second signi�cant di�erence between the EM and

non-parametric methods is that guarantees can be

made for EM that we currently do not know how to

make for the non-parametric approach. Each iteration

of EM is guaranteed to be nondecreasing in maximum

likelihood. Thus EM converges to a local maximum

in likelihood. We do not yet know how to make simi-

lar guarantees for non-parametric methods of imputing

missing values.

6 Convergence of the Filled-In Values

In the previous section we pointed out that with a true

EM algorithm it is possible to prove convergence by

showing that each iteration is non-decreasing in likeli-

hood, but that we are not able to make similar proofs

for the non-parametric method. In this section we em-

pirically show the convergence of the non-parametric

method when applied to the pneumonia dataset.

Figure 1 shows the average distance the attribute val-

ues move from successive iterations when the algo-

rithm is applied to the pneumonia data set. If the mo-

tion drops to zero, no missing value has changed and

the method has converged. Note that in this case mo-

tion does not drop all the way to zero, indicating that

the algorithm converged to a cycle. (We have never

seen the method diverge.) Cycles are rare with para-

metric EM methods if density calculations are exact.

They are more likely with the non-parametric kNN ap-

proach when k is small or when values are �lled-in with

single values (as above). Kernel regression, kNN with

larger values of k, or �lling-in missing values with a

sample that extensionally represents a distribution of

values (see the Discussion Section) reduce the chances

of converging to a cycle. There also are methods for



forcing iterative procedures such as this to converge,

though we have not found them to be necessary in

practice.

Each iteration of imputation requires less than 1 CPU

second on a modern workstation with the pneumonia

dataset (2287 cases with 216 variables each) using un-

weighted Euclidean distance.
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Figure 1: Average change in �lled-in values for the

pneumonia data set for successive iterations. At-

tributes were scaled to variance 1.0 prior to applying

1NN, so motions larger than 0.1 represent substantial

changes.

7 Quality of the Imputed Variables

The �lled-in values in the Port Pneumonia Dataset

stabilize after about a dozen iterations using 1NN.

Are the �lled-in missing values getting better, or just

converging? This section presents the results of an

experiment where we predict the outcome CARE (in-

patient/outpatient) using K=3 nearest neighbor as the

learning method after each iteration of �lling-in the

values in the pneumonia database. (Preliminary ex-

periments indicated that k=3 was optimal for predict-

ing CARE.) Do not confuse k=1 nearest neighbor that

is being used to �ll-in missing values with the 3NN

learning method being used to predict CARE from the

�lled-in data sets. Figure 2 shows the accuracy with

which CARE is predicted as a function of the number

of iterations of �lling in. The graph shows that CARE

is predicted better using the �lled-in values of later

iterations, suggesting that the quality of the �lled-in

values is improving.

8 Discussion

Earlier we emphasized that one advantage of the non-

parametric method is that it cannot su�er from the
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Figure 2: Accuracy of CARE prediction using 3NN

from the �lled-in database after each iteration of �lling

in. Most of the bene�t occurs during the �rst few

iterations of �lling-in.

negative e�ects of model failure because it does not use

parametric models. This does not mean that the non-

parametric method is immune to poor modelling of the

data. The non-parametric method's model of the data

is de�ned by it's distance metric. While good asymp-

totic (large sample) performance of kNN methods is

insured for most reasonable distance metrics, this does

not mean that kNN imputation will perform well for

all distance metrics with moderate sample sizes. It

is important to use as good a distance metric as pos-

sible. Devising good distance metrics is not always

easy. For example, sometimes it is di�cult to divise

a distance metric that combines distances measured

between boolean, nominal, and continuous variables.

(To be fair, similar di�culties also arise when using

Bayesian methods for density estimates of mixed vari-

able types.)

One approach that can be used to bridge the gap be-

tween the point estimates used for �lled-in values by

the non-parametric kNN method and the distribution

estimates typically made with full EM methods, is to

use kNN to estimate more than one �lled-in value for

each missing value. [6] For example, one could use kNN

to estimate k (not necessarily unique) values for each

missing value. These k values form an extenional dis-

tribution for each missing value. Distances between

neighbors can then be calculated by sampling repeat-

edly from this set of values, or multiple nearest neigh-

bors can be found by sampling. We have not yet ex-

perimented with this enhancement to the method to

see what improvement it yields.

The goals for presenting this work at the workshop

are: 1) to discuss the pros and cons of non-parametric

methods for �lling-in missing values (e.g., parametric



methods have higher sample e�ciency, but can per-

form poorly when there is model failure); and 2) to

discuss ways of proving that non-parametric EM-style

algorithms like this one converge (or how best to mod-

ify the algorithm to insure convergence).
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