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Abstra
t

Re
ent resear
h in model sele
tion and adap-

tive modeling has produ
ed an embarrass-

ment of ri
hes. By using any one of several

di�erent te
hniques, an analyst is able to gen-

erate a number of models that des
ribe the

same data set well. Examples in
lude multi-

ple tree models generated by bootstrapping

or sto
hasti
 sear
hes, and di�erent subsets

of variables in linear regression models iden-

ti�ed by sto
hasti
 or exhaustive sear
hes.

While model averaging 
an use these models

to improve predi
tion a

ura
y, interpreta-

tion of the resultant models be
omes diÆ
ult.

We seek a 
ompromise, developing measures

of dissimilarity between di�erent models and

using these to sele
t good models whi
h may

reveal di�erent aspe
ts of the data. Data on

housing pri
es in Boston are used to illustrate

this in the 
ontext of treed regression models.

1 INTRODUCTION

The problem of model un
ertainty o

urs in many data

analyses. Having spe
i�ed a family of models (for ex-

ample linear regression models), a variety of submod-

els from this family may des
ribe the data well (in the

linear regression 
ase, for example, di�erent subsets of

variables). Two 
ommon approa
hes to the model un-


ertainty problem are to either 
hoose a single model,

or average predi
tions a
ross models. In the latter


ase, methods su
h as Bagging (Breiman 1996), Boost-

ing (Freund and S
hapire 1996), or Bayesian model

averaging 
an be used.

This paper introdu
es te
hniques for the exploration

of the set of plausible models. These te
hniques are

based on the notion of dissimilarities between pairs of

models. We will argue an understanding of the distri-

bution of models is useful, whether sele
tion or aver-

aging is the goal. If a single model is to be sele
ted,

we will be more reassured if all other plausible models

are quite similar to this model. If models are to be av-

eraged over, better predi
tions may result if we ensure

that di�erent models are in
luded in the average pre-

di
tions. Breiman (1999) has observed this property in

the 
ontext of forests of trees. A 
ompromise between

sele
tion and averaging may be possible, by sele
ting a

handful of \representative" models, and averaging over

them, rather than averaging over all models. Provided

that this set of models is small enough, there is still the

possibility of interpreting them as one would a single

model.

We fo
us here on methods for assessing di�eren
es be-

tween models, and sele
ting and interpreting repre-

sentative models. This approa
h is predi
ated on the

notion that interpreting one or more models is of inter-

est. If a \bla
k box" predi
tor that minimizes out-of-

sample predi
tion error is desired, methods for man-

aging multiple models will not o�er an improvement

over model averaging.

To assess di�eren
es between models, metri
s both

within a 
lass of models and between di�erent 
lasses

of models are developed, and used to 
luster models

into similar groups. Although many of the ideas are

general, the fo
us here will be on linear models and

trees, with examples using tree models.

To illustrate the problem of multiple models, 
on-

sider the Boston Housing data (Harrison and Rubin-

feld 1978). 506 
ensus tra
ts in the greater Boston area

have 14 re
orded 
hara
teristi
s, su
h as 
rime rate,

proportion of lower status individuals, parent-tea
her

ratios, pollution levels, median house value, and oth-

ers. The goal is to predi
t median house value using

the other 13 variables as predi
tors. The data have

been used to illustrate regression diagnosti
s (Belsley,

Kuh and Wels
h 1980), and there are strong indi
a-

tions of lo
al behaviour in the data. Further dis
ussion

of the data is given in se
tion 4.
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Figure 1: Two treed regression models identi�ed by

Bayesian CART. Ea
h line 
orresponds to a node. Par-

ent nodes list the splitting variable. Terminal nodes

are indi
ated with a *, and have sample size of the

training dataset indi
ated. The verti
al lines and in-

dentations indi
ate the two 
hildren of ea
h parent

node. The eight variables appearing are nitrogen ox-

ides 
on
entrations, Charles river indi
ator, per
ent of

population lower status, radial highway a

essibility

index, pupil-tea
her ratio, and distan
e to employment


enters.

A treed regression (Chipman, George and M
Cullo
h

2000) model was applied to this data. In this model, a

tree is 
onstru
ted using a Bayesian sto
hasti
 sear
h

algorithm. This tree di�ers from 
onventional trees in

that ea
h terminal node 
ontains a linear model. One

feature of the Bayesian estimation pro
edure is that

multiple trees are generated. In Figure 1, two su
h

trees are illustrated. Both trees �t the data very well,

but use 
ompletely di�erent variables to partition the

predi
tor spa
e into regions where linear models are

applied.

Thousands of other distin
t treed regressions were vis-

ited by our sto
hasti
 sear
h pro
edure. Many of those

�t the data well (just 23 were kept for analysis pre-

sented later in this paper). These two trees and others

like them suggest key questions: How di�erent are the

good models? How 
an we de
ide whi
h models are

worth examining? How many models should we look

at?

Until re
ently, 
ommon pra
ti
e has been to produ
e

tree diagrams like those in Figure 1 for a number of

trees with good �t, and sele
t trees by hand. A more

automati
 and quantitative approa
h is proposed here,

in whi
h models are 
lustered a

ording to several met-

ri
s.

In Se
tion 2, several methods for produ
ing multiple

models are reviewed. Se
tion 3 dis
usses several dis-

tan
e measures for models, and in Se
tion 4 an exam-

ple is given to illustrate how these measures may be

used to sele
t trees and other models. Related work

and other problems are dis
ussed in Se
tion 5.

2 METHODS FOR GENERATING

MULTIPLE MODELS

Although the fo
us of the paper is trees and linear

models, many methods for generating multiple models

are more broadly appli
able. They are presented in

this broader 
ontext, with spe
i�
 referen
es to trees

or linear models as required.

Finding multiple models is a 
hallenging problem, and

one that is not satisfa
torily addressed by the \greedy"

stepwise algorithm. This algorithmmakes additions or

deletions from the 
urrent model in small steps (adding

or deleting a single variable in linear models, or grow-

ing or pruning a node in trees). The model sele
ted by

greedy algorithms is only lo
ally optimal. If multiple

distin
t models exist, identi�
ation of one good model

is the best one 
an hope for with the greedy algorithm.

In very small problems, or those with simple stru
ture,

exhaustive sear
hes over the model spa
e are an e�e
-

tive alternative to greedy lo
al sear
hes. For example,

in linear regression with small to moderate numbers of

predi
tors (say less than 40), bran
h-and-bound algo-

rithms (Furnival and Wilson 1974) are feasible.

Other algorithms 
an be used whi
h are faster than an

exhaustive sear
h and more 
omplete than a greedy

sear
h. They often involve either manipulation of the

training data or modi�
ation of the sear
h method.

Breiman (1996) and Tibshirani and Knight (1999) pro-

pose random manipulation of the training data via the

bootstrap (
alled \bagging" and \bumping" respe
-

tively). By perturbing the data, the greedy sear
h

identi�es di�erent models, some of whi
h may be 
lose

to a global or lo
al maxima.

Freund and S
hapire (1996) propose an algorithm

(
alled \boosting") for generating and 
ombining a se-

quen
e of 
lassi�
ation models. The data are itera-

tively reweighted instead of randomly resampled. The

weights are adaptively 
hosen, with more weight given

to observations that are predi
ted poorly. Again, mul-

tiple models result.

The se
ond group of algorithms introdu
e a sto
has-

ti
 element to the sear
h rather than manipulating the

data. Bayesian methods that use sto
hasti
 sear
hes

via Markov 
hain Monte Carlo (MCMC) have been

implemented for both linear models (George and M
-

Cullo
h (1993)), trees (Chipman et. al. (1998a), Deni-

son, Malli
k and Smith (1998)) and treed regressions

(Chipman, George and M
Cullo
h 2000). As with the

greedy algorithm, the spa
e of models is traversed by

small steps. An important di�eren
e from the greedy

algorithm is the sto
hasti
 
hoi
e of a step, rather

than always sele
ting the best lo
al modi�
ation to

the model.



Other algorithms for sto
hasti
ally 
onstru
ting mod-

els have been re
ently developed, espe
ially in the 
on-

text of trees. These in
lude simulated annealing (Lut-

sko and Kuijpers 1994) and randomized greedy meth-

ods (an overview is provided in Breiman 1999).

3 METRICS ON MODELS

Given a set of models, a general approa
h toward or-

ganizing them is to treat ea
h model as a point in a


omplex high-dimensional spa
e. These models 
ould

then be 
lustered a

ording to some dissimilarity or

distan
e measure. Somewhat informally, we refer to

these distan
es as metri
s even if the triangle inequal-

ity does not hold. Obviously, this spa
e is mu
h ri
her

and more 
ompli
ated than Eu
lidean spa
e, and will

depend on the 
lass of models under 
onsideration. To

fa
ilitate development of metri
s, note that a tree and

a linear model 
an be identi�ed by a �nite set of pa-

rameters, and these parameters 
an be broadly divided

in two groups: a stru
tural 
omponent (the subset of

variables in a linear model, or the tree stru
ture and

split rules in nodes) and a 
ontinuous 
omponent (the

regression 
oeÆ
ients for the variables in
luded in a

linear model, and the parametri
 models in ea
h ter-

minal node). Metri
s may be de�ned on either the

stru
tural or the 
ontinuous 
omponents, or perhaps

both.

With linear models, a natural metri
 
an be de�ned by

looking at the subset of variables in
luded in the model

as a binary ve
tor 
. The mat
hing 
oeÆ
ient, one of

the most 
ommon dissimilarities for 
ategori
al data,


an be applied to 
. The mat
hing 
oeÆ
ient is the

number (or per
entage) of elements whi
h are di�er-

ent. So with 10 predi
tors, the modelsM

1

= fAg with




1

= (1; 0; 0; 0; 0; 0; 0;0;0;0) and M

2

= fA;B;Cg with




2

= (1; 1; 1; 0; 0;0;0;0; 0; 0) would have a distan
e of

2 (or 20%) sin
e both 
ontain A, and B and C appear

only in M

2

. This metri
 has an interesting graphi
al

property. If a graph is 
onstru
ted with verti
es 
or-

responding to models and edges linking models that

di�er by a distan
e of 1 (not a per
entage), then the

distan
e between any two models 
orresponds to the

shortest path between 
orresponding verti
es in the

graph. Another dissimilarity measure might be asym-

metri
, su
h as the Ja

ard 
oeÆ
ient, whi
h dis
ards

any 0-0 mat
hes. In the above example, there are only

3 variables a
tive in the two models, and they agree on

a single variable (namelyA). This gives a dissimilarity

of 2=3 = 67%.

The Ja

ard and mat
hing 
oeÆ
ients do not 
apture

the sign or magnitude of the regression 
oeÆ
ients.

For example, in the Boston data, if two separate re-

gressions are �t to the tra
ts in the 
ity and those in

the suburbs, the sign of the 
oeÆ
ient for the average

number of rooms is negative for the 
ity and positive

for the suburbs. In
reasing room size in the 
ity must

be a surrogate for some other undesirable (and unob-

served) 
hara
teristi
, while in the suburbs, big houses

just 
ost more. It seems intuitive that these two mod-

els should be more di�erent than if the 
oeÆ
ient was

positive in one model and zero in the other. A metri


that takes this into a

ount would multiply the binary

ve
tor 
 by the sign of the 
orresponding regression 
o-

eÆ
ient. This would mean that if a 
oeÆ
ient 
hanges

sign from one model to another, the models are twi
e

as di�erent as if the 
oeÆ
ient was important in one

model and unimportant in the other. A dissimilarity

measure might also be applied to the 
oeÆ
ient ve
tor

� for ea
h model, but this is not explored here.

Another metri
 would be to 
ompare the predi
tions of

the two models. LetM

1

;M

2

be two models. They have

been trained using the same n observations (y

i

;x

i

); i =

1; : : : ; n. For ea
h observation y

i

; i = 1; : : :n we have

an asso
iated �tted value ŷ

ij

for model j. The �t met-

ri
 would be given by

d(M

1

;M

2

) =

1

n

n

X

i=1

m(ŷ

i1

; ŷ

i2

); (1)

where m is a metri
 on the �tted values. For re-

gression models with a 
ontinuous response, natural


hoi
es would be

m(y

1

; y

2

) = (y

1

� y

2

)

2

(2)

or m(y

1

; y

2

) = jy

1

� y

2

j. For 
lassi�
ation models,

ŷ

ij

might be the estimated 
lass for observation y

i

, in

whi
h 
ase we 
ould 
ompare 
lassi�
ations by

m(y

1

; y

2

) =

�

1 if y

1

6= y

2

0 otherwise

: (3)

Metri
s on the estimated 
lass probabilities (p̂

1j

; : : : ;

p̂


j

), j = 1; 2 (for 
 response 
lasses) are also possible.

The �t metri
 above is evaluated on the training set

y

1

; : : : y

n

. It should better dis
riminate between mod-

els if evaluated on a test set, sin
e in the training set,

all models attempt to 
ome as 
lose as possible to the

observed responses. In this paper, test data only will

be used to 
onstru
t the �t metri
.

Any model that produ
es predi
tions 
an be 
ompared

with the �t metri
. This makes it possible to 
om-

pute a dissimilarity between models in the same 
lass,

a
ross di�erent 
lasses, or a dissimilarity between a

model and the observed y

i

's. This is explored in Se
-

tion 4.

We now 
onsider several metri
s appli
able spe
i�
ally

to tree models. Be
ause trees have a ri
her stru
ture,



a wider variety of metri
s are possible. Additional de-

tails of these metri
s are provided in Chipman et. al.

(1998b).

Rather than using the �tted values, a metri
 
ould be

de�ned on the manner in whi
h trees partition the pre-

di
tor spa
e. Trees whi
h are very similar will pla
e

the same observations together and separate the same

observations. Andrews (personal 
ommuni
ation) sug-

gests the followingmetri
. Let I

1

(i; k) be 1 if T

1

pla
es

observations i and k in the same node and 0 otherwise.

For a partition metri
, we look at di�eren
es between

I for the two trees:

d(T

1

; T

2

) =

P

i>k

jI

1

(i; k)� I

2

(i; k)j

�

n

2

�

: (4)

The fa
tor

�

n

2

�

s
ales the metri
 to the range (0,1) with

0 indi
ating perfe
t agreement. This metri
 
an be in-

terpreted as the per
entage of all pairs of observations

that are assigned to the same terminal node. It 
an

be 
al
ulated eÆ
iently using a frequen
y table of the

terminal node labels for ea
h data point from the two

trees. As with the �t metri
, test data seems more

likely to dis
riminate models than training data.

The �t and partition metri
s do not utilize the topol-

ogy of the tree - they only use the observed responses

and the partition de�ned by the terminal nodes. Shan-

non and Banks (1998) propose a tree metri
 whi
h a
-


ounts for the manner in whi
h the tree is 
onstru
ted.

This metri
 
ompares rules at nodes in the same po-

sition in the two trees. That is, if two plots are 
on-

stru
ted on transparent paper so that nodes in the

same position overlap and the plots are held up to

the light, the metri
 
ounts the number of nodes at

whi
h the splitting rules are dis
repant. The distan
e

between trees is then a weighted sum of the dis
rep-

an
ies at ea
h lo
ation:

d(T

1

; T

2

) =

X

r2nodes(T

1

;T

2

)

�

r

m(rule(T

1

; r); rule(T

2

; r)) (5)

The summation is over all node positions r whi
h are

nonterminal in at least one tree. The metri
 m 
om-

pares the rules at two nodes; Shannon and Banks take

m to be 1 whenever the same variable is used (no mat-

ter what splitting rule is used within a variable), and 0

otherwise. Choosing all weights �

r

= 1 yields a 
ount

of the number of nodes at whi
h the rules di�er. This

metri
 
an 
apture tree stru
ture, but two isomorphi


trees with the same splits in a di�erent order will be

identi�ed as dissimilar.

The tree models 
onsidered in this paper are \treed re-

gressions" whi
h have a linear model in ea
h terminal

node. The partition and tree metri
s are equally e�e
-

tive on 
onventional trees, whi
h have simple means or

proportions in a terminal node. Caution should be ex-

er
ised in 
omputing metri
s between di�erent 
lasses

of trees, su
h as a 
onventional tree and a treed re-

gression. Conventional trees partition the predi
tor

spa
e so that 
onstant models apply well in terminal

nodes, while treed regressions seek partitions where

linear models apply. The partitions and the trees used

to generate them need not be 
omparable.

4 AN EXAMPLE

In this se
tion we dis
uss several te
hniques for man-

aging multiple models, using the Boston housing data.

Another example using breast 
an
er data is dis
ussed

in Chipman et. al. (1998b).

A training set of 337 out of 506 observations (2/3 of

the data) was sele
ted randomly. Following previous

analyses of this data, the log of median house value

was taken to be the response. Both the response and

predi
tors are res
aled so that ea
h has mean zero and

range 1.

Treed regression models are 
onstru
ted using the

Bayesian pro
edure des
ribed in Chipman, George and

M
Cullo
h (2000). Ten runs of the Metropolis Hast-

ings 
hain were used to sear
h the tree spa
e, with 1000

steps being taken within ea
h 
hain. In ea
h of these

ten runs, the best trees of ea
h size visited were saved.

All 
hains produ
ed trees of sizes 2,3,4,5 and some of

size 6 were also produ
ed. Automati
 
hoi
es of prior

parameters dis
ussed in Chipman et. al. (2000) were

used, setting 
 = 3, giving a suÆ
iently broad spread

to the prior on regression 
oeÆ
ients �. We 
hose a

prior on tree size with an average size of about 2 ter-

minal nodes and a prior on the residual noise varian
e

su
h that 75% of probability is on smaller varian
es

than in a single linear regression model.

The best trees of ea
h size from the 10 runs were fur-

ther s
reened to remove dupli
ates and trees that �t

poorly. Dupli
ates were de�ned to be those trees with

an identi
al log integrated likelihood (hereafter 
alled

log likelihood, see Chipman et. al. 1998a for details).

Poor �t was indi
ated by a log likelihood that was

more than 20 below the largest log likelihood. This

yielded a set of 23 trees. Interestingly, one of the 23

trees 
orresponds to a partition of the data into 
ity

and suburb, whi
h 
an be veri�ed using names of the

506 
ensus tra
ts.

For ea
h of the 23 trees, predi
ted Y values were gen-

erated for ea
h of the 169 test observations. The �t

metri
 was then 
al
ulated using ea
h of these ve
tors

of predi
tions, and treating the observed Y values in

the test set as a 24th set of \predi
tions".

We will 
onsider multidimensional s
aling (MDS) as
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Figure 2: MDS plots for the Boston example. Fit

metri
s are used. In the top plot, only trees and the

test data are displayed, with numbers indi
ating tree

size, and a 0 indi
ating the test data. In the lower plot,

additional models are added, and models are 
oded

as follows: +=treed regression, triangle=
onventional

tree, o = neural network, x=test data.

a way of representing the dissimilarity matrix. The

goal of MDS is to produ
e a low-dimensional (typi-


ally 2) plot su
h that the inter-point Eu
lidean dis-

tan
es in the plot approximate the distan
es spe
i�ed

in the distan
e matrix. A variety of methods for 
on-

stru
ting this mapping are possible. We 
onsidered

several implemented in R and S-Plus by Venables and

Ripley (1999). The sammon algorithm (Sammon 1969)

produ
ed better mappings than the 
lassi
al method.

Ripley (1996) and many other books on multivariate

analysis provide details on these methods. The stress


riterion was used to identify how good the 
on�gura-

tion was. If we have original distan
es d

ij

and the MDS


on�guration gives Eu
lidean distan
es

^

d

ij

, stress is

de�ned as

STRESS =

v

u

u

t

P

i;j

(d

ij

�

~

d

ij

)

2

P

i;j

~

d

2

ij

where stress values are interpreted as: 0.20 = poor,

0.10 = fair, 0.05 =good, 0.025=ex
ellent and 0=per-

fe
t. For the MDS plot in Figure 2 (top plot), the

stress is 0.32, a poor value. Consequently this plot

should only be interpreted in very general terms.

In this plot, the number of terminal nodes is used as a

plotting symbol, and the observed test data by a 0. We


an see that there are several di�erent models that are

\
lose" to the test data, but di�erent from ea
h other.

That is, they must be predi
ting di�erent aspe
ts of

the test data well. The two trees displayed earlier in

Figure 1 are indi
ated with a +. They are quite di�er-

ent from ea
h other. The four node tree appears to �t

more poorly be
ause of the greater distan
e from the

5 node tree in the MDS plot. Further examination of

the distan
e matrix revealed the following distan
es:

5 node tree 4 node tree

4 node tree 1.173848 0.000000

test values 1.242888 1.173419

In fa
t these trees are about equally di�erent from ea
h

other and the test data, essentially an equilateral tri-

angle. This suggests that if their predi
tions were av-

eraged, they might predi
t the test data better. When

this is done, the distan
e between the average �ts of

these two trees and the test data drops to 1.06, one of

the smallest values among all predi
tions of individual

trees.

How were these two trees sele
ted? We want to iden-

tify trees that are dissimilar but �t well. In this 
ase

we sear
hed the distan
e matrix for dissimilar trees

that had large log likelihoods (evaluated on the train-

ing data). Another possibility would be to sear
h the

matrix for observations that are 
lose to the test data,

but far from ea
h other.

Another tree of interest is the one marked with a *. It


orresponds to the two node tree with a 
ity/suburbs

split. Its distan
e from the �tted value is about 1.09

(also distorted in the plot), making it one of the better

trees found. The minimum distan
e from the test set

among all 23 trees is 1.05.

The ability of the �t metri
 to 
ompare models in dif-



ferent 
lasses is demonstrated by adding several mod-

els 
onsidered in a simulation study (Chipman, George

and M
Cullo
h 2000). These in
lude neural networks,

and 
onventional tree models. For the four neural nets,


ombinations of 3 and 7 nodes with weight de
ays of

10

�2

and 10

�5

were used. Conventional trees of size 5,

10, and 15 terminal nodes were 
onstru
ted. Details of

the logi
 underlying these parameter 
hoi
es are given

in Chipman et. al. (2000).

Figure 2 (bottom panel) gives the MDS plot with the

�t metri
 for the original trees plus the neural net-

works, 
onventional trees, and test data. Conventional

trees are separate from other tree models, while treed

regressions and neural networks tend to be more sim-

ilar. This might be due to the pie
ewise 
onstant na-

ture of 
onventional tree predi
tions. Neural nets and

treed regressions seem to get quite 
lose to the true

response. Again, 
aution should be exer
ised in inter-

preting this plot, as the distan
es given are nonlinear

proje
tions of the a
tual distan
es. In this plot, the

stress is about .30.

For the purpose of 
lustering models, it may be useful

to 
onsider the quality of the models in addition to the

distan
es between them. Although su
h quality infor-

mation 
ould be superimposed on the MDS plot, we

propose an alternative that we 
all the added model

plot. This plot 
onveys both the distan
es between

models and their relative quality. The added model

plot in Figure 3 uses the distan
es between trees un-

der the �t metri
 to assess the e�e
t of adding new

trees one at a time from left to right. These trees

are added in order of de
reasing log likelihood. For

ea
h index value on the horizontal axis, all distan
es

between the new tree and all better trees are plotted

on the verti
al axis. As with MDS, the test data are

in
luded as a spe
ial \model". Distan
es to the test

data are indi
ated with a �lled 
ir
le. Reading from

left to right, the se
ond added tree is 
lose to the �rst

(0.45 distan
e), and their �t is similar. There is thus

no 
ompelling reason to examine the se
ond tree sin
e

it is similar to the �rst. A similar argument applies

to the third tree. The fourth tree is di�erent from the

�rst three, but doesn't �t as well, while the �fth tree

�ts well and is not similar to any of the �rst four. In

general we would seek trees that are distant from all

others already added and still have suÆ
iently good

�t to be 
onsidered for examination.

A natural question to ask about the two trees in Fig-

ure 1 is how they di�er. Obviously di�erent variables

are used, but do the di�erent variables identify similar

or di�erent partitions of the data? The partition met-

ri
 and the data used to 
al
ulate this dissimilarity 
an

help answer this. The partition metri
 for these trees

gives a dissimilarity value of .275, meaning that 27.5%

of pairs of points are not assigned to the same 
luster.

This value is large among the 23 trees. A table of the

node labels for the 169 test 
ases is given below:

A B C D

1 82 13 0 8

2 6 8 12 7

3 1 0 4 12

4 1 2 6 1

5 3 0 1 2

Labels 1-5 for terminal nodes of one tree and A-D for

the other tree are used. Nodes 1 and A 
ontain 82


ommon points (half the test data), while similar but

weaker patterns o

ur for node pairs 2-C and 3-D. Oth-

erwise, the trees are quite di�erent. It would be more

reassuring if the trees had similar partitions, but the

fa
t that they don't is good to know before trying to

interpret individual trees.

More automated approa
hes are also possible. Instead

of trying to visualize the data (with asso
iated ina

u-

ra
ies in distan
es) with a MDS plot, 
lustering meth-

ods might be applied to automati
ally identify groups

of similar tree models. The one additional 
hallenge

is to in
orporate the \tree quality" (eg log likelihood)

into the 
lustering pro
edure, as with the added model

plot. Chipman et. al. (1998b) do this in a 
oarse man-

ner by sele
ting a 
ertain number of \most likely" trees

and then 
lustering them.

5 DISCUSSION

Papers by other authors 
onsider related issues, in the


ontext of tree models. Shannon (1998) looks at pre-

di
tive a

ura
y of trees identi�ed as interesting us-

ing similar metri
s. Hawkins and Musser (1998) use

a forest of trees to learn what variables tend to o
-


ur together or apart in individual trees. Shannon

and Banks (1998) propose the tree metri
 and use it

to 
onstru
t a single tree that is 
entral to a forest.

An important distin
tion is that they do not rank the

trees a

ording to their �t, a 
entral element of our

approa
h.

With the models 
onsidered here, the parameters are

assumed to be partitioned into two 
lasses: stru
tural

and 
ontinuous parameters. In other 
lasses of models,

the value of this distin
tion may vary. For example, in

neural networks, it is 
ommon to use a network with a

suÆ
iently large number of hidden units, and penalize

the estimation of weights. There, the stru
tural 
om-

ponent (hidden units and 
onne
tions) is less impor-

tant than the 
ontinuous 
omponent (weights). Meth-

ods likeMARS (Friedman 1991) will be more amenable

to the te
hniques mentioned here, due to the stru
tural

parameters whi
h share some similarities with linear
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Figure 3: Added model plot for 23 trees, using the �t metri
. Trees are ordered from left to right by log likelihood.

Distan
es to the test data are indi
ated with �lled 
ir
les.

models and trees.

Other possible uses for the identi�ed 
lusters exist. In

a Bayesian framework, the posterior mass asso
iated

with ea
h 
luster would give an idea of how likely ea
h

group of models are. In many frameworks, model aver-

aging 
ould be simpli�ed by averaging over a few mod-

els, one sele
ted as representative of ea
h 
luster. The

simple averaging of two trees in Se
tion 4 illustrates

the promise of this te
hnique, whi
h we will explore in

future work.

The emphasis of this paper is post-analysis of output

from tree growing algorithms. However, metri
s may

also be useful in the model 
onstru
tion pro
ess. If a

very large number of models are to be 
onsidered by

the model sear
h algorithm, it may be impra
ti
al to

re
ord all models visited. An interesting alternative

would be to use one or more metri
s in an \on-line"

manner, dis
arding models that are similar or identi-


al to models that have already been visited. Other

possibilities may be interesting; for example the sear
h

algorithm 
ould be modi�ed to move in dire
tions that

are at least a 
ertain distan
e from models already dis-


overed.

A
knowledgments

The authors wish to thank the 
onferen
e organiz-

ers and several anonymous referees whose en
ourag-

ing 
omments and 
onstru
tive 
riti
ism on an earlier

version has lead to improvements in this paper. We

also wish to thank David Andrews for suggesting the

idea of a partition metri
, and Bill Shannon, David

Banks, and Bret Musser for interesting 
onversations.

This work was supported by NSF grant DMS 9803756,

Texas ARP grant 003658690, the Natural S
ien
es and

Engineering Resear
h Coun
il of Canada, the Mathe-

mati
s of Information Te
hnology and Complex Sys-

tems network, and resear
h funding from the Graduate

S
hools of Business at the University of Chi
ago and

the University of Texas at Austin.

Referen
es

Belsley D.A., Kuh, E. and Wels
h, R.E. (1980) Re-

gression Diagnosti
s. Identifying In
uential Data

and Sour
es of Collinearity, Wiley, New York.

Breiman, L (1996), \Bagging Predi
tors", Ma
hine

Learning, 24, 123{140.

Breiman, L. (1999) \Random Forests - Random Fea-

tures". Te
hni
al report, University of California,



Berkeley.

www.stat.Berkeley.EDU/users/breiman/

Chipman, H., George, E., and M
Cullo
h, R. (1998a)

\Bayesian CART Model Sear
h (with dis
us-

sion)", Journal of the Ameri
an Statisti
al Asso-


iation, 93, 935{960.

Chipman, H., George, E., and M
Cullo
h, R. (1998b)

\Extra
ting Representative Tree Models from a

Forest", working paper 98-07, Department of

Statisti
s and A
tuarial S
ien
e, University of

Waterloo. www.stats.uwaterloo.
a/~ha
hipma

Chipman, H. A., George, E. I, and M
Cullo
h,

R. E. (2000) \Bayesian Treed Models", work-

ing paper 2000-08, Department of Statisti
s

and A
tuarial S
ien
e, University of Waterloo.

www.stats.uwaterloo.
a/~ha
hipma

Denison, D., Malli
k, B. and Smith, A.F.M. (1998)

\A Bayesian CART Algorithm", Biometrika , 85,

363-377.

Freund, Y. and S
hapire, R. E. (1996) \Experiments

with a new boosting algorithm", Pro
eedings of

the Thirteenth International Conferen
e on Ma-


hine Learning, L. Siatta, Editor, 148{156, Mor-

gan Kaufmann, San Fran
is
o, CA.

Friedman, J. H. (1991), \Multivariate Adaptive Re-

gression Splines", Annals of Statisti
s, 19, 1{141.

Furnival, G. M. and Wilson, R. W. Jr. (1974) \Re-

gression by Leaps and Bounds", Te
hnometri
s,

16, 499{511.

George, E. I. and M
Cullo
h. R. E. (1993) \Vari-

able Sele
tion Via Gibbs Sampling", Journal of

the Ameri
an Statisti
al Asso
iation, 88, 881{889.

Harrison, D. and Rubinfeld, D.L. (1978) \Hedoni


Pri
es and the Demand for Clean Air", Journal

Environmental E
onomi
s and Management, 5,

81-102.

Hawkins, D.M. and Musser, B.J. (1998) \One Tree

or a Forest? Alternative Dendrographi
s Mod-

els", Pro
eedings of the 30th Symposium on the

Interfa
e.

Lutsko, J. F. and Kuijpers, B. (1994) \Simulated An-

nealing in the Constru
tion of Near-Optimal De-


ision Trees", in Sele
ting Models from Data: AI

and Statisti
s IV, P. Cheeseman and R. W. Old-

ford, Eds., 453{462.

Ripley, B. D. (1996) Pattern Re
ognition and Neu-

ral Networks, Cambridge University Press, Cam-

bridge.

Sammon, J. W. Jr (1969) \A Non-linear Mapping for

Data Stru
ture Analysis" IEEE Transa
tions on

Computers, 18, 401{409.

Shannon, W. (1998) \Averaging Classi�
ation Tree

Models", Pro
eedings of the 30th Symposium on

the Interfa
e.

Shannon, W., Banks, D. (1998) \Combining Classi-

�
ation Trees using MLE', Statisti
s in Medi
ine,

In Press.

Tibshirani, R., and Knight, K. (1999), \Model Sear
h

and Inferen
e by Bootstrap `Bumping' ", Jour-

nal of Computational and Graphi
al Statisti
s, 8,

671{686.

Venables, W. N. and Ripley, B. D. (1999) Modern

Applied Statisti
s with S-PLUS, Third Edition,

Springer.


