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Abstract

Recent research in model selection and adap-
tive modeling has produced an embarrass-
ment of riches. By using any one of several
different techniques, an analyst is able to gen-
erate a number of models that describe the
same data set well. Examples include multi-
ple tree models generated by bootstrapping
or stochastic searches, and different subsets
of variables in linear regression models iden-
tified by stochastic or exhaustive searches.
While model averaging can use these models
to improve prediction accuracy, interpreta-
tion of the resultant models becomes difficult.
We seek a compromise, developing measures
of dissimilarity between different models and
using these to select good models which may
reveal different aspects of the data. Data on
housing prices in Boston are used to illustrate
this in the context of treed regression models.

1 INTRODUCTION

The problem of model uncertainty occurs in many data
analyses. Having specified a family of models (for ex-
ample linear regression models), a variety of submod-
els from this family may describe the data well (in the
linear regression case, for example, different subsets of
variables). Two common approaches to the model un-
certainty problem are to either choose a single model,
or average predictions across models. In the latter
case, methods such as Bagging (Breiman 1996), Boost-
ing (Freund and Schapire 1996), or Bayesian model
averaging can be used.

This paper introduces techniques for the exploration
of the set of plausible models. These techniques are
based on the notion of dissimilarities between pairs of
models. We will argue an understanding of the distri-
bution of models is useful, whether selection or aver-
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aging is the goal. If a single model is to be selected,
we will be more reassured if all other plausible models
are quite similar to this model. If models are to be av-
eraged over, better predictions may result if we ensure
that different models are included in the average pre-
dictions. Breiman (1999) has observed this property in
the context of forests of trees. A compromise between
selection and averaging may be possible, by selecting a
handful of “representative” models, and averaging over
them, rather than averaging over all models. Provided
that this set of models is small enough, there is still the
possibility of interpreting them as one would a single
model.

We focus here on methods for assessing differences be-
tween models, and selecting and interpreting repre-
sentative models. This approach is predicated on the
notion that interpreting one or more models is of inter-
est. If a “black box” predictor that minimizes out-of-
sample prediction error is desired, methods for man-
aging multiple models will not offer an improvement
over model averaging.

To assess differences between models, metrics both
within a class of models and between different classes
of models are developed, and used to cluster models
into similar groups. Although many of the ideas are
general, the focus here will be on linear models and
trees, with examples using tree models.

To illustrate the problem of multiple models, con-
sider the Boston Housing data (Harrison and Rubin-
feld 1978). 506 census tracts in the greater Boston area
have 14 recorded characteristics, such as crime rate,
proportion of lower status individuals, parent-teacher
ratios, pollution levels, median house value, and oth-
ers. The goal is to predict median house value using
the other 13 variables as predictors. The data have
been used to illustrate regression diagnostics (Belsley,
Kuh and Welsch 1980), and there are strong indica-
tions of local behaviour in the data. Further discussion
of the data is given in section 4.
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Figure 1: Two treed regression models identified by
Bayesian CART. Each line corresponds to a node. Par-
ent nodes list the splitting variable. Terminal nodes
are indicated with a *, and have sample size of the
training dataset indicated. The vertical lines and in-
dentations indicate the two children of each parent
node. The eight variables appearing are nitrogen ox-
ides concentrations, Charles river indicator, percent of
population lower status, radial highway accessibility
index, pupil-teacher ratio, and distance to employment
centers.

A treed regression (Chipman, George and McCulloch
2000) model was applied to this data. In this model, a
tree is constructed using a Bayesian stochastic search
algorithm. This tree differs from conventional trees in
that each terminal node contains a linear model. One
feature of the Bayesian estimation procedure is that
multiple trees are generated. In Figure 1, two such
trees are illustrated. Both trees fit the data very well,
but use completely different variables to partition the
predictor space into regions where linear models are
applied.

Thousands of other distinct treed regressions were vis-
ited by our stochastic search procedure. Many of those
fit the data well (just 23 were kept for analysis pre-
sented later in this paper). These two trees and others
like them suggest key questions: How different are the
good models? How can we decide which models are
worth examining? How many models should we look
at?

Until recently, common practice has been to produce
tree diagrams like those in Figure 1 for a number of
trees with good fit, and select trees by hand. A more
automatic and quantitative approach is proposed here,
in which models are clustered according to several met-
rics.

In Section 2, several methods for producing multiple
models are reviewed. Section 3 discusses several dis-
tance measures for models, and in Section 4 an exam-
ple is given to illustrate how these measures may be
used to select trees and other models. Related work
and other problems are discussed in Section 5.

2 METHODS FOR GENERATING
MULTIPLE MODELS

Although the focus of the paper is trees and linear
models, many methods for generating multiple models
are more broadly applicable. They are presented in
this broader context, with specific references to trees
or linear models as required.

Finding multiple models is a challenging problem, and
one that is not satisfactorily addressed by the “greedy”
stepwise algorithm. This algorithm makes additions or
deletions from the current model in small steps (adding
or deleting a single variable in linear models, or grow-
ing or pruning a node in trees). The model selected by
greedy algorithms is only locally optimal. If multiple
distinct models exist, identification of one good model
is the best one can hope for with the greedy algorithm.

In very small problems, or those with simple structure,
exhaustive searches over the model space are an effec-
tive alternative to greedy local searches. For example,
in linear regression with small to moderate numbers of
predictors (say less than 40), branch-and-bound algo-
rithms (Furnival and Wilson 1974) are feasible.

Other algorithms can be used which are faster than an
exhaustive search and more complete than a greedy
search. They often involve either manipulation of the
training data or modification of the search method.
Breiman (1996) and Tibshirani and Knight (1999) pro-
pose random manipulation of the training data via the
bootstrap (called “bagging” and “bumping” respec-
tively). By perturbing the data, the greedy search
identifies different models, some of which may be close
to a global or local maxima.

Freund and Schapire (1996) propose an algorithm
(called “boosting”) for generating and combining a se-
quence of classification models. The data are itera-
tively reweighted instead of randomly resampled. The
weights are adaptively chosen, with more weight given
to observations that are predicted poorly. Again, mul-
tiple models result.

The second group of algorithms introduce a stochas-
tic element to the search rather than manipulating the
data. Bayesian methods that use stochastic searches
via Markov chain Monte Carlo (MCMC) have been
implemented for both linear models (George and Mc-
Culloch (1993)), trees (Chipman et. al. (1998a), Deni-
son, Mallick and Smith (1998)) and treed regressions
(Chipman, George and McCulloch 2000). As with the
greedy algorithm, the space of models is traversed by
small steps. An important difference from the greedy
algorithm is the stochastic choice of a step, rather
than always selecting the best local modification to
the model.



Other algorithms for stochastically constructing mod-
els have been recently developed, especially in the con-
text of trees. These include simulated annealing (Lut-
sko and Kuijpers 1994) and randomized greedy meth-
ods (an overview is provided in Breiman 1999).

3 METRICS ON MODELS

Given a set of models, a general approach toward or-
ganizing them is to treat each model as a point in a
complex high-dimensional space. These models could
then be clustered according to some dissimilarity or
distance measure. Somewhat informally, we refer to
these distances as metrics even if the triangle inequal-
ity does not hold. Obviously, this space is much richer
and more complicated than Euclidean space, and will
depend on the class of models under consideration. To
facilitate development of metrics, note that a tree and
a linear model can be identified by a finite set of pa-
rameters, and these parameters can be broadly divided
in two groups: a structural component (the subset of
variables in a linear model, or the tree structure and
split rules in nodes) and a continuous component (the
regression coefficients for the variables included in a
linear model, and the parametric models in each ter-
minal node). Metrics may be defined on either the
structural or the continuous components, or perhaps

both.

With linear models, a natural metric can be defined by
looking at the subset of variables included in the model
as a binary vector v. The matching coefficient, one of
the most common dissimilarities for categorical data,
can be applied to v. The matching coefficient is the
number (or percentage) of elements which are differ-
ent. So with 10 predictors, the models M; = {A} with
11 =1(1,0,0,0,0,0,0,0,0,0) and Mz = {A4, B,C} with
y2 = (1,1,1,0,0,0,0,0,0,0) would have a distance of
2 (or 20%) since both contain 4, and B and C' appear
only in M,. This metric has an interesting graphical
property. If a graph is constructed with vertices cor-
responding to models and edges linking models that
differ by a distance of 1 (not a percentage), then the
distance between any two models corresponds to the
shortest path between corresponding vertices in the
graph. Another dissimilarity measure might be asym-
metric, such as the Jaccard coefficient, which discards
any 0-0 matches. In the above example, there are only
3 variables active in the two models, and they agree on
a single variable (namely A). This gives a dissimilarity

of 2/3 = 67%.

The Jaccard and matching coefficients do not capture
the sign or magnitude of the regression coefficients.
For example, in the Boston data, if two separate re-
gressions are fit to the tracts in the city and those in

the suburbs, the sign of the coefficient for the average
number of rooms is negative for the city and positive
for the suburbs. Increasing room size in the city must
be a surrogate for some other undesirable (and unob-
served) characteristic, while in the suburbs, big houses
just cost more. It seems intuitive that these two mod-
els should be more different than if the coefficient was
positive in one model and zero in the other. A metric
that takes this into account would multiply the binary
vector 7 by the sign of the corresponding regression co-
efficient. This would mean that if a coefficient changes
sign from one model to another, the models are twice
as different as if the coefficient was important in one
model and unimportant in the other. A dissimilarity
measure might also be applied to the coefficient vector
3 for each model, but this is not explored here.

Another metric would be to compare the predictions of
the two models. Let My, M5 be two models. They have
been trained using the same n observations (y;, x;), ¢ =
1,...,n. For each observation y;,¢ = 1,...n we have
an associated fitted value g;; for model j. The fit met-
ric would be given by

n

AL, M) = S (i ), (1)

i=1

where m is a metric on the fitted values. For re-
gression models with a continuous response, natural

choices would be

m(y1,y2) = (y1 — 2)* (2)

or m(y1,y2) = |y1 — yz|- For classification models,
¥;; might be the estimated class for observation y;, in
which case we could compare classifications by

m(y1, y2) = { (1) Ty £y (3)

otherwise

Metrics on the estimated class probabilities (p1;,...,
Dej)y 3 = 1,2 (for ¢ response classes) are also possible.

The fit metric above is evaluated on the training set
Y1y - --Yn. It should better discriminate between mod-
els if evaluated on a test set, since in the training set,
all models attempt to come as close as possible to the
observed responses. In this paper, test data only will
be used to construct the fit metric.

Any model that produces predictions can be compared
with the fit metric. This makes it possible to com-
pute a dissimilarity between models in the same class,
across different classes, or a dissimilarity between a
model and the observed y;’s. This is explored in Sec-
tion 4.

We now consider several metrics applicable specifically
to tree models. Because trees have a richer structure,



a wider variety of metrics are possible. Additional de-
tails of these metrics are provided in Chipman et. al.

(1998b).

Rather than using the fitted values, a metric could be
defined on the manner in which trees partition the pre-
dictor space. Trees which are very similar will place
the same observations together and separate the same
observations. Andrews (personal communication) sug-
gests the following metric. Let I1 (7, k) be 1if T places
observations ¢ and k in the same node and 0 otherwise.
For a partition metric, we look at differences between
I for the two trees:

The factor (%) scales the metric to the range (0,1) with
0 indicating perfect agreement. This metric can be in-
terpreted as the percentage of all pairs of observations
that are assigned to the same terminal node. It can
be calculated efficiently using a frequency table of the
terminal node labels for each data point from the two
trees. As with the fit metric, test data seems more

likely to discriminate models than training data.

The fit and partition metrics do not utilize the topol-
ogy of the tree - they only use the observed responses
and the partition defined by the terminal nodes. Shan-
non and Banks (1998) propose a tree metric which ac-
counts for the manner in which the tree is constructed.
This metric compares rules at nodes in the same po-
sition in the two trees. That is, if two plots are con-
structed on transparent paper so that nodes in the
same position overlap and the plots are held up to
the light, the metric counts the number of nodes at
which the splitting rules are discrepant. The distance
between trees is then a weighted sum of the discrep-
ancies at each location:

d(Ty,Tz) = Z arm(rule(Ty, r), rule(Tz, 7)) (5)
renodes(Ty,T2)

The summation is over all node positions » which are
nonterminal in at least one tree. The metric m com-
pares the rules at two nodes; Shannon and Banks take
m to be 1 whenever the same variable is used (no mat-
ter what splitting rule is used within a variable), and 0
otherwise. Choosing all weights o, = 1 yields a count
of the number of nodes at which the rules differ. This
metric can capture tree structure, but two isomorphic
trees with the same splits in a different order will be
identified as dissimilar.

The tree models considered in this paper are “treed re-
gressions” which have a linear model in each terminal
node. The partition and tree metrics are equally effec-
tive on conventional trees, which have simple means or

proportions in a terminal node. Caution should be ex-
ercised in computing metrics between different classes
of trees, such as a conventional tree and a treed re-
gression. Conventional trees partition the predictor
space so that constant models apply well in terminal
nodes, while treed regressions seek partitions where
linear models apply. The partitions and the trees used
to generate them need not be comparable.

4 AN EXAMPLE

In this section we discuss several techniques for man-
aging multiple models, using the Boston housing data.
Another example using breast cancer data is discussed

in Chipman et. al. (1998b).

A training set of 337 out of 506 observations (2/3 of
the data) was selected randomly. Following previous
analyses of this data, the log of median house value
was taken to be the response. Both the response and
predictors are rescaled so that each has mean zero and
range 1.

Treed regression models are constructed using the
Bayesian procedure described in Chipman, George and
McCulloch (2000). Ten runs of the Metropolis Hast-
ings chain were used to search the tree space, with 1000
steps being taken within each chain. In each of these
ten runs, the best trees of each size visited were saved.
All chains produced trees of sizes 2,3,4,5 and some of
size 6 were also produced. Automatic choices of prior
parameters discussed in Chipman et. al. (2000) were
used, setting ¢ = 3, giving a sufficiently broad spread
to the prior on regression coefficients 3. We chose a
prior on tree size with an average size of about 2 ter-
minal nodes and a prior on the residual noise variance
such that 75% of probability is on smaller variances
than in a single linear regression model.

The best trees of each size from the 10 runs were fur-
ther screened to remove duplicates and trees that fit
poorly. Duplicates were defined to be those trees with
an identical log integrated likelihood (hereafter called
log likelihood, see Chipman et. al. 1998a for details).
Poor fit was indicated by a log likelihood that was
more than 20 below the largest log likelihood. This
yielded a set of 23 trees. Interestingly, one of the 23
trees corresponds to a partition of the data into city
and suburb, which can be verified using names of the
506 census tracts.

For each of the 23 trees, predicted Y values were gen-
erated for each of the 169 test observations. The fit
metric was then calculated using each of these vectors
of predictions, and treating the observed Y values in
the test set as a 24th set of “predictions”.

We will consider multidimensional scaling (MDS) as



3
6
v |
° 4+
33
6
4 4
3
o
S 4
4 3 5+
23
3 4
2+ 0
0 3
o -
[
3
T T T T
-0.5 0.0 0.5 1.0
A
+
0
@
+
#*
+ N o N
+
. +
+ + o
+
o
2+ IN
° +
n +
+
n
+
+
0
s - o
[
+
n
+
2 | x
T T T T T
-0.5 0.0 0.5 1.0

Figure 2: MDS plots for the Boston example. Fit
metrics are used. In the top plot, only trees and the
test data are displayed, with numbers indicating tree
size, and a ( indicating the test data. In the lower plot,
additional models are added, and models are coded
as follows: +=treed regression, triangle=conventional
tree, o = neural network, x—test data.

a way of representing the dissimilarity matrix. The
goal of MDS is to produce a low-dimensional (typi-
cally 2) plot such that the inter-point Euclidean dis-
tances in the plot approximate the distances specified
in the distance matrix. A variety of methods for con-
structing this mapping are possible. We considered
several implemented in R and S-Plus by Venables and
Ripley (1999). The sammon algorithm (Sammon 1969)

produced better mappings than the classical method.
Ripley (1996) and many other books on multivariate
analysis provide details on these methods. The stress
criterion was used to identify how good the configura-
tion was. If we have original distances d;; and the MDS
configuration gives Euclidean distances ciij, stress is

defined as

(dy; —d;)?
STRESS = zzﬁi_iﬁg;d_
Zi,jdij

where stress values are interpreted as: 0.20 = poor,
0.10 = fair, 0.05 =good, 0.025=excellent and 0=per-
fect. For the MDS plot in Figure 2 (top plot), the
stress is 0.32, a poor value. Consequently this plot
should only be interpreted in very general terms.

In this plot, the number of terminal nodes is used as a
plotting symbol, and the observed test data by a 0. We
can see that there are several different models that are
“close” to the test data, but different from each other.
That is, they must be predicting different aspects of
the test data well. The two trees displayed earlier in
Figure 1 are indicated with a +. They are quite differ-
ent from each other. The four node tree appears to fit
more poorly because of the greater distance from the
5 node tree in the MDS plot. Further examination of
the distance matrix revealed the following distances:

4 node tree
0.000000
1.173419

5 node tree
1.173848
1.242888

4 node tree
test values

In fact these trees are about equally different from each
other and the test data, essentially an equilateral tri-
angle. This suggests that if their predictions were av-
eraged, they might predict the test data better. When
this is done, the distance between the average fits of
these two trees and the test data drops to 1.06, one of
the smallest values among all predictions of individual
trees.

How were these two trees selected? We want to iden-
tify trees that are dissimilar but fit well. In this case
we searched the distance matrix for dissimilar trees
that had large log likelihoods (evaluated on the train-
ing data). Another possibility would be to search the
matrix for observations that are close to the test data,
but far from each other.

Another tree of interest is the one marked with a *. It
corresponds to the two node tree with a city/suburbs
split. Its distance from the fitted value is about 1.09
(also distorted in the plot), making it one of the better
trees found. The minimum distance from the test set
among all 23 trees is 1.05.

The ability of the fit metric to compare models in dif-



ferent classes is demonstrated by adding several mod-
els considered in a simulation study (Chipman, George
and McCulloch 2000). These include neural networks,
and conventional tree models. For the four neural nets,
combinations of 3 and 7 nodes with weight decays of
10=2? and 10~° were used. Conventional trees of size 5,
10, and 15 terminal nodes were constructed. Details of
the logic underlying these parameter choices are given

in Chipman et. al. (2000).

Figure 2 (bottom panel) gives the MDS plot with the
fit metric for the original trees plus the neural net-
works, conventional trees, and test data. Conventional
trees are separate from other tree models, while treed
regressions and neural networks tend to be more sim-
ilar. This might be due to the piecewise constant na-
ture of conventional tree predictions. Neural nets and
treed regressions seem to get quite close to the true
response. Again, caution should be exercised in inter-
preting this plot, as the distances given are nonlinear
projections of the actual distances. In this plot, the
stress is about .30.

For the purpose of clustering models, it may be useful
to consider the quality of the models in addition to the
distances between them. Although such quality infor-
mation could be superimposed on the MDS plot, we
propose an alternative that we call the added model
plot. This plot conveys both the distances between
models and their relative quality. The added model
plot in Figure 3 uses the distances between trees un-
der the fit metric to assess the effect of adding new
trees one at a time from left to right. These trees
are added in order of decreasing log likelihood. For
each index value on the horizontal axis, all distances
between the new tree and all better trees are plotted
on the vertical axis. As with MDS, the test data are
included as a special “model”. Distances to the test
data are indicated with a filled circle. Reading from
left to right, the second added tree is close to the first
(0.45 distance), and their fit is similar. There is thus
no compelling reason to examine the second tree since
it is similar to the first. A similar argument applies
to the third tree. The fourth tree is different from the
first three, but doesn’t fit as well, while the fifth tree
fits well and is not similar to any of the first four. In
general we would seek trees that are distant from all
others already added and still have sufficiently good
fit to be considered for examination.

A natural question to ask about the two trees in Fig-
ure 1 is how they differ. Obviously different variables
are used, but do the different variables identify similar
or different partitions of the data? The partition met-
ric and the data used to calculate this dissimilarity can
help answer this. The partition metric for these trees
gives a dissimilarity value of .275, meaning that 27.5%

of pairs of points are not assigned to the same cluster.
This value is large among the 23 trees. A table of the
node labels for the 169 test cases is given below:

A B C D
1 8213 0 8
2 6 8 12 7
3 1 0 412
4 1 2 6 1
5 3 0 1 2

Labels 1-5 for terminal nodes of one tree and A-D for
the other tree are used. Nodes 1 and A contain 82
common points (half the test data), while similar but
weaker patterns occur for node pairs 2-C and 3-D. Oth-
erwise, the trees are quite different. It would be more
reassuring if the trees had similar partitions, but the
fact that they don’t is good to know before trying to
interpret individual trees.

More automated approaches are also possible. Instead
of trying to visualize the data (with associated inaccu-
racies in distances) with a MDS plot, clustering meth-
ods might be applied to automatically identify groups
of similar tree models. The one additional challenge
is to incorporate the “tree quality” (eg log likelihood)
into the clustering procedure, as with the added model
plot. Chipman et. al. (1998b) do this in a coarse man-
ner by selecting a certain number of “most likely” trees
and then clustering them.

5 DISCUSSION

Papers by other authors consider related issues, in the
context of tree models. Shannon (1998) looks at pre-
dictive accuracy of trees identified as interesting us-
ing similar metrics. Hawkins and Musser (1998) use
a forest of trees to learn what variables tend to oc-
cur together or apart in individual trees. Shannon
and Banks (1998) propose the tree metric and use it
to construct a single tree that is central to a forest.
An important distinction is that they do not rank the
trees according to their fit, a central element of our
approach.

With the models considered here, the parameters are
assumed to be partitioned into two classes: structural
and continuous parameters. In other classes of models,
the value of this distinction may vary. For example, in
neural networks, it is common to use a network with a
sufficiently large number of hidden units, and penalize
the estimation of weights. There, the structural com-
ponent (hidden units and connections) is less impor-
tant than the continuous component (weights). Meth-
ods like MARS (Friedman 1991) will be more amenable
to the techniques mentioned here, due to the structural
parameters which share some similarities with linear
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Figure 3: Added model plot for 23 trees, using the fit metric. Trees are ordered from left to right by log likelihood.

Distances to the test data are indicated with filled circles.

models and trees.

Other possible uses for the identified clusters exist. In
a Bayesian framework, the posterior mass associated
with each cluster would give an idea of how likely each
group of models are. In many frameworks, model aver-
aging could be simplified by averaging over a few mod-
els, one selected as representative of each cluster. The
simple averaging of two trees in Section 4 illustrates
the promise of this technique, which we will explore in
future work.

The emphasis of this paper is post-analysis of output
from tree growing algorithms. However, metrics may
also be useful in the model construction process. If a
very large number of models are to be considered by
the model search algorithm, it may be impractical to
record all models visited. An interesting alternative
would be to use one or more metrics in an “on-line”
manner, discarding models that are similar or identi-
cal to models that have already been visited. Other
possibilities may be interesting; for example the search
algorithm could be modified to move in directions that
are at least a certain distance from models already dis-
covered.
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