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Abstract

Bagging is a method of obtaining more ro-
bust predictions when the model class under
consideration is unstable with respect to the
data, i.e., small changes in the data can cause
the predicted values to change significantly.
In this paper, we introduce a Bayesian ver-
sion of bagging based on the Bayesian boot-
strap. The Bayesian bootstrap resolves a the-
oretical problem with ordinary bagging and
often results in more efficient estimators. We
show how model averaging can be combined
within the Bayesian bootstrap and illustrate
the procedure with several examples.

1 INTRODUCTION

In a typical prediction problem, there is a trade-off be-
tween bias and variance, in that after a certain amount
of fitting, any increase in the precision of the fit will
cause an increase in the prediction variance on future
observations. Similarly, any reduction in the predic-
tion variance causes an increase in the expected bias
for future predictions. Breiman (1996a) introduced
bagging as a method of reducing the prediction vari-
ance without affecting the prediction bias.

Bagging is short for “Bootstrap AGGregatING” which
describes how it works. The idea is straightforward.
Instead of making predictions from a single model fit
to the observed data, bootstrap samples are taken of
the data, the model is fit to each sample, and the pre-
dictions are averaged over all of the fitted models to get
the bagged prediction. Breiman explains that bagging
works well for unstable modeling procedures, i.e. those
for which the conclusions are sensitive to small changes
in the data, such as neural networks, classification and
regression trees (CART), and variable selection for re-
gression (Breiman, 1996b). He also gives a theoretical
explanation of how bagging works, demonstrating the

reduction in mean-squared prediction error for unsta-
ble procedures.

In this paper, we consider a Bayesian version of bag-
ging based on Rubin’s Bayesian bootstrap (1981).
This overcomes a technical difficulty with the usual
bootstrap in bagging, and it leads to a reduction
in variance over the bootstrap for certain classes of
estimators. Another Bayesian approach for dealing
with unstable procedures is Bayesian model averaging
(BMA) (Hoeting et al., 1999). In BMA, one fits sev-
eral models to the data and makes predictions by tak-
ing the weighted average of the predictions from each
of the fitted models, where the weights are posterior
probabilities of models. We show that the Bayesian
bootstrap and Bayesian model averaging can be com-
bined. We illustrate Bayesian bagging in a regression
problem with variable selection and a highly influen-
tial data point, a classification problem using logistic
regression, and a CART model.

2 BOOTSTRAPPING

Suppose we have a sample of size n, with observed
data Z1, . . . , Zn where Zi is a vector in Rp+1 and the
Zi are independent, identically distributed realizations
from some distribution F ∈ F . Here F is the class of
all distribution functions on Rp+1. The parameter of
interest is a functional T (F ) where T is a mapping
from F to R or Rk in the case of vectored valued
functions, for example, the p + 1 dimensional mean of
the distribution, µ =

∫

zdF .

In Efron’s bootstrap and the Bayesian bootstrap, the
class of distribution functions is restricted to a para-
metric model by restricting estimation to Fn ∈ Fn,
where Fn is represented as

Fn =

n
∑

i=1

ωiδZi
,

δZi
is a degenerate probability measure at Zi, and ωi

is the weight associated with Zi, ωi ≥ 0,
∑

ωi = 1.



In the bootstrap, the distribution of T (F ) is ob-
tained by repeatedly generating bootstrap replicates,
where one bootstrap replicate is a sample drawn with
replacement of size n from Z1, . . . , Zn. The boot-
strap distribution of T (F ) is based on considering all

possible bootstrap replications T (F
(r)
n ) where ω

(r)
i in

F
(r)
n corresponds to the proportion of times Zi ap-

pears in the rth bootstrap replicate, with ω
(r)
i tak-

ing on values in {0, 1/n, . . . , n/n}. For example, the
bootstrap mean for the rth replicate is calculated

as Ẑ(r) =
∑n

i=1 ω
(r)
i Zi, and the bagged estimate of

the mean is the average over all bootstrap replicates,
∑R

r=1 Ẑ(r)/R, where R is the number of bootstrap
replicates. Of course, one cannot usually consider all
possible bootstrap samples, which is

(

2n−1
n

)

, and bag-
ging is often based on a much smaller set of bootstrap
replicates, say 25 to 50 (Breiman, 1996a).

3 BAYESIAN BOOTSTRAP

The Bayesian bootstrap was introduced by Rubin
(1981) as a Bayesian analog of the original bootstrap.
Instead of drawing weights ωi from the discrete set
{0, 1

n
, . . . , n

n
}, the Bayesian approach treats the vector

of weights ω in Fn as unknown parameters and derives
a posterior distribution for ω, and hence T (F ). Rubin
(1981) used a non-informative prior,

∏n

i=1 ω−1
i , which

when combined with the multinomial likelihood for Z,
leads to a Dirichlet(1, . . . , 1) distribution for the pos-
terior distribution of ω. The posterior distribution of
T (F ) is estimated by Monte Carlo methods: generate
ω(b) from a Dirichlet(1, . . . , 1) distribution and then

calculate T (F
(b)
n ) for each sample ω(b). The average

of T (F
(b)
n ) over the samples corresponds to the Monte

Carlo estimate of the posterior mean of T (F ) and can
be viewed as a Bayesian analog of bagging.

Although there are differences in interpretation, op-
erationally the ordinary bootstrap and Bayesian boot-
strap differ primarily in how the values of ω are drawn.
As Rubin (1981) shows, the expected values of the
weights ω are equal to 1/n under both bootstrap meth-
ods. As the expectations of the weights are the same,
both ordinary bagging and Bayesian bagging will have
the same expectation for functions T (Fn) that are lin-
ear in the weights ω, such as means. There are sit-
uations, which will be discussed later, where the or-
dinary bootstrap distribution is not well defined, and
the two approaches may yield different answers. Both
approaches also lead to the same correlation between
weights. However, the variability of the weights ω
under the ordinary bootstrap is (n + 1)/n times the
variance of ω under the Bayesian bootstrap. For lin-
ear functionals, the variance of the estimate under the
Bayesian bootstrap is therefore strictly less than the

variance under the ordinary bootstrap. This applies
directly for CART models; for other estimators that
are not necessarily linear in the weights, in our ex-
perience the Bayesian bootstrap has also empirically
exhibited less variability than the ordinary bootstrap.
We illustrate this reduction in the rat liver example.

4 BAGGING VIA THE BAYESIAN

BOOTSTRAP

Bagging is used primarily in prediction problems, and
with that in mind we partition each Zi into a response
Yi (which could be continuous or categorical) and a p
dimensional vector of input variables xi for predicting
Y . In matrix form, the data are Y =(y1, . . . , yn)′ with
a n×p matrix of covariates X with rows xi.

Under the nonparametric model for the data, the only
unknown quantity is the distribution F , or the param-
eters ω under the restricted class of distribution func-
tions. The posterior distribution on ω induces a poste-
rior distribution on a functional T (F ) for predicting Y
given X . We first consider the case where interest is in
regression-type estimates, then extend the procedure
to allow for variable selection, nonlinear functions, cat-
egorical responses and model uncertainty.

4.1 LINEAR REGRESSION

For making predictions based on linear combinations
of Y , we consider functionals of the form

β̂ = T (F ) = arg min
β

∫

||Y − Xβ||2dF (1)

= arg min
β

n
∑

i=1

ωi(yi − xiβ)2

= (X ′WX)−1X ′WY

where W is a diagonal matrix of weights ω. The values
of β̂, that minimize (1) with the restriction to Fn, are
equivalent to weighted least squares estimates using
weights ω.

Operationally, Bayesian bagging (BB) proceeds by
taking a sample ω(b), from a Dirichlet(1, . . . , 1) distri-
bution, and then using weighted least squares to obtain

β̂(b) = (X ′W (b)X)−1X ′W (b)Y

where W (b) is a diagonal matrix of weights ω(b). This is
repeated for b = 1, . . . , B, where B is the total number
of Monte Carlo samples, to obtain the posterior distri-
bution of β̂, and the posterior distribution of Ŷ = Xβ̂
or other functions of ω. Let Ŷ (b) = Xβ̂(b). The BB
estimate of Ŷ given X is the Monte Carlo average

Ŷ =
1

B

B
∑

b=1

Ŷ (b) . (2)



4.2 VARIABLE SELECTION

While linear regression is a stable procedure, where
bagging does not lead to substantial improvements,
variable selection is viewed as being unstable. The BB
procedure is modified to combine model selection with
parameter estimation, where for each sample of ω(b),
one selects a model M (b) using an appropriate model

selection criterion and then estimates β̂
(b)
M under model

M (b). The posterior distribution for Ŷ and the pos-
terior mean are now based on multiple models where
the BB estimate of Y given X is

Ŷ =
1

B

B
∑

b=1

Ŷ
(r)
M

where Ŷ
(r)
M = XM(r) β̂

(r)
M is the prediction using de-

sign matrix XM(r) based on model M . Although not
equivalent to Bayesian model averaging as described
in Hoeting et al. (1999), the above estimator is a vari-
ant of model averaging as the bootstrap aggregation
results in averaging over different models.

4.3 MODEL AVERAGING

Bayesian model averaging can be introduced into
Bayesian bootstrap estimates by replacing (1) by the
Bayes risk for squared error loss with model uncer-
tainty. For sample b, the BMA estimate of Ŷ (b) is the
weighted average

Ŷ
(b)
BMA

=
∑

M

π(M |X, Y, ω(b))Ŷ
(b)
M (3)

where π(M |X, Y, ω(b)) is the “posterior probability”

of model M and the predicted values Ŷ
(b)
M = Xβ̂

(b)
M

and coefficients β̂(b) are calculated given model M ,
using weights ω(b). These are combined to form the
BB BMA predictions,

Ŷ =
1

B

B
∑

b=1

Ŷ
(b)
BMA

which incorporate any instability in the model weights
due to changes in the data. Posterior model probabil-
ities may be based on the BIC (Schwarz, 1978),

BICM = RSSM + pM log(n) (4)

π(M |X, Y, ω(b)) =
exp (−.5BICM )

∑

M exp (−.5BICM )
(5)

where RSSM is the residual sum of squares under
model M using weighted least squares and pM is the
number of parameters under model M . Of course,
other prior specifications may lead to other posterior
model probabilities, however, for many cases BIC does
lead to consistent model selection and is a useful de-
fault (Hoeting et al., 1999).

4.4 NEURAL NETWORKS AND OTHER

NONLINEAR ESTIMATORS

For continuous responses, the linear predictor Xβ in
(1) can be replaced by nonlinear functions as in neu-
ral nets or generalized additive models. While we no
longer have an explicit solution for β̂(b), any code for
fitting neural networks (or other nonlinear models)
that allows weights can be used to construct the BB
predictions, where one substitutes Ŷ (b) using predic-
tions from the neural network in (2). For model aver-
aging with neural networks with continuous responses,
model probabilities based on (4-5) are still appropri-
ate.

4.5 EXPONENTIAL FAMILY MODELS,

GLMS AND CART

For continuous responses, linear regression predictions
were based on minimizing a residual sum of squares
(1) which is equivalent to maximizing a normal likeli-
hood. While the nonparametric bootstrap model im-
plies a multinomial likelihood for the data Z, the use
of likelihood score functions based on alternative dis-
tributional assumptions to provide estimates and pre-
dictions is in the same spirit as generalized estimating
equations (Liang and Zeger, 1986). In this vein, we
can extend the BB approach to other model classes,
such as exponential families, CART models, and neu-
ral networks for categorical responses, to allow for cat-
egorical and discrete response variables. The connec-
tion between iteratively reweighted least squares and
maximum likelihood estimation provides the basis for
computations using the Bayesian bootstrap weights ω.

For exponential family models, the log likelihood can
be written as

l(θ) =
n

∑

i=1

vi

φ
(yiθi − b(θ)) + c(yi, φ)

where θ is the canonical parameter, vi is a known prior
weight, and φ is a dispersion parameter; the mean pa-
rameter is µi = b′(θi) (McCullagh and Nelder, 1989).
As in GLMs, we express µi as a function of xi and β,
µ = f(X, β) (although not necessarily through a linear
predictor Xβ). Incorporating the bootstrap weights
ωi, into the exponential family weights vi, so that

w
(b)
i = viω

(b)
i , we find the bootstrap estimate β̂(b) that

maximizes l(θ(β)) using weights v
(b)
i . This is repeated

to provide b = 1, . . . , B samples and a Monte Carlo
estimate of the posterior distribution of f(X, β̂). The
BB estimate Ŷ is

Ŷ =
1

B

B
∑

b=1

f(X, β̂(b)).



Any GLM or CART software that allows weights can
be used to construct the estimates f(X, β̂(b)) for BB.
BB with BMA can be carried out by replacing the
residual sum of squares in the expression for the BIC
(4) with the residual deviance for the model.

5 EXAMPLES

5.1 RAT LIVERS

Weisberg (1985, p. 121) describes a dataset on drug
uptake in rat livers. The experimental hypothesis is
that because dose was matched to weight, there would
be no relationship between the percent dose in the
liver and the three input variables (body weight, liver
weight, and relative dose). One rat (case 3), however,
received a large dose relative to its weight and is an
influential point, leading to a rejection of the experi-
mental hypothesis (the null model which is believed to
be true). Regression is normally thought of as a sta-
ble procedure, where methods such as bagging will not
help. However, in the presence of outliers and influen-
tial points (e.g., case 3), regression is no longer stable.
Variable selection further contributes to instability.

The left plot of Figure 1 shows body weight versus
dose, where one can see both the high correlation as
well as the highly influential point (case 3) at weight
190, which causes instability in the linear models. The
right plot of Figure 1 shows predicted percent dose in
the liver by body weight. The experimenters expected
no relationship between percent dose in the liver and
body weight; deviations from a horizontal line are be-
cause of nonzero regression coefficients for input vari-
ables. Predictions from the full model provide the
greatest deviations, demonstrating the trouble caused
by case 3. Bagging and BB of the full model (Bag/BB
in the plot) have nearly identical predictions, both pro-
viding additional shrinkage towards the overall mean,
reducing the effect of case 3. BMA produces the best
fit, with virtually no change under bagging BMA or
BB BMA, as the null model receives the highest pos-
terior probability under the complete data.

The series of boxplots in Figure 5.1 highlights the vari-
ation in predictions for case 3. Of particular interest
is that BB estimates show a large reduction in vari-
ation over estimates using bagging (without or with
BMA). BMA is more stable, with greater shrinkage
towards the overall mean of the data (without case
3), which is in the direction expected by the experi-
menters. Even with BMA, bagging occasionally pro-
duces large deviations. While estimates under bagging
and BB are comparable, the sampling distribution un-
der the bootstrap exhibits more variability than the
posterior distribution under the Bayesian bootstrap.

5.2 OZONE

Ground level ozone data were analyzed in the original
bagging paper (Breiman, 1996a). The dataset consists
of daily readings of the maximum ozone concentra-
tion at ground level in Los Angeles over the course of
a year, with 9 meteorological predictors. Eliminating
cases with missing data leaves 330 complete records.
Following Breiman, we: (i) randomly selected a test
set of 15 cases; (ii) fit a single regression tree using
ten-fold cross-validation on the remaining cases (the
training data), and then used this fitted tree to predict
on the test data; (iii) for b = 1, . . . , 25 generated ω(b)

which were used as weights to fit a regression tree using
ten-fold cross validation on the training data, and then
used this fitted tree to predict on the test data; the av-
erage of the 25 predictions is the BB prediction. This
process was repeated 500 times. The average mean
squared error (MSE) of prediction was calculated for
the single tree model and the BB method. The MSE
for the single tree model was 23.9% (standard error
0.47), and the MSE for the BB predictions was 18.6%
(standard error 0.35) resulting in a 22.0% reduction in
error due to the BB, comparable to Breiman’s results.

5.3 DIABETES

Smith et al. (1988) introduced a dataset on the preva-
lence of diabetes in Pima Indian women. The goal is
to predict the presence of diabetes using seven health-
related covariates. There are 532 complete records,
of which 200 are used as a training set and the other
332 are used as a test set. The data are available at
http://www.ics.uci.edu/~mlearn/MLSummary.html

We used logistic regression for classifying the data,
which is essentially equivalent to fitting a neural net-
work with a single hidden node. Ripley (1996) pointed
out that there is no gain in fit by using more hidden
nodes, so logistic regression is a sufficiently flexible
procedure. We find that for each of three model classes
(the full model, the best BIC model, and BMA), the
Bayesian bootstrap improves predictions, as shown
in Table 1, with error rates comparable to bagging
(Breiman, 1996a).

6 DISCUSSION

Since Breiman introduced bagging, a number of pa-
pers have demonstrated its effectiveness in a variety
of contexts. The Bayesian bootstrap leads to similar
improvements in prediction rates, with less apparent
variability. The approach in this paper is technically
equivalent to the weighted likelihood bootstrap (WLB)
of Newton and Raftery (1994), which appeared in a
different context. They used the WLB as a tool to
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Figure 1: Rat Data: A Point with High Influence and the Resulting Fitted Models

Table 1: Percent Misclassification for the Pima Diabetes Data

Method % Misclassification
Best single model using BIC 20.2
Bayesian bootstrap on the best BIC model 19.3
Full model 20.2
Bayesian bootstrap on the full model 20.0
Bayesian model averaging 21.1
Bayesian bootstrap and model averaging 20.9

approximate posterior distributions for standard likeli-
hoods, which today can be readily approximated using
Markov chain Monte Carlo sampling.

An alternative view of the Bayesian bootstrap is that
the data arise from a nonparametric model with dis-
tribution F . In this case, T (F ) is not necessarily a
parameter in the model, but is taken as an interest-
ing summary of the distribution. As nonparametric
models, both the bootstrap and Bayesian bootstrap
share the problem that they only give positive weight
to values of (x, y) that were actually observed. This
raises theoretical issues when the bootstrapped quan-
tities are used for prediction at values of x that are
not in the original dataset. Other problems with both
bootstrap methods are raised by Rubin (1981).

Another problem with using the bootstrap for bag-
ging is that weights may be 0, and bootstrap replicates
where X is not of full rank receive positive probabil-
ity. In these samples, β̂ is not well defined, although
predictions for Y are still defined. Even though these
cases have very low probability (and may not appear in

samples), they do contribute to the theoretical boot-
strap distribution of T (F ). This problem is not specific
to regression, but occurs in all estimation cases where
more than one distinct data point is necessary for well-
defined estimates. Further examples of problematic
procedures include non-linear and nonparametric re-
gression and estimation of standard deviations or cor-
relations. The use of the Bayesian bootstrap avoids
this issue.

Rubin’s Bayesian bootstrap can be viewed as a limit-
ing case of the nonparametric distribution for F using
a Dirichlet process prior (Gasparini, 1995). If the prior
for F is a Dirichlet process with parameter α (DP (α)),
then the posterior distribution for F is again a Dirich-
let process DP (α+

∑n

i=1 δZi
) (Ferguson, 1973). In the

limit as α(Rp+1) goes to 0, the posterior distribution
is a DP (

∑n

i=1 δZi
), with mean equal to the empiri-

cal cumulative distribution function. It is this limit-
ing noninformative case that is equivalent to Rubin’s
Bayesian bootstrap (Gasparini, 1995).

Fully non-parametric or semi-parametric Bayesian
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Figure 2: Distribution of Estimated Means for Case 3 in the Rat Liver Data Set. The Horizontal Line is the
Overall Mean without Case 3.

models that can adapt to nonlinearities and are robust
to model mis-specification are other useful alternatives
to bagging or BB. While these are typically more com-
putationally intensive than either form of bootstrap-
ping, they may resolve theoretical problems with boot-
strapping noted by Rubin that are inherited by both
bagging and BB. As computing environments improve,
these approaches may see wider use.
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