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Abstract

Mixture models, in which a probability distribu-

tion is represented as a linear superposition of

component distributions, are widely used in sta-

tistical modeling and pattern recognition. One of

the key tasks in the application of mixture mod-

els is the determination of a suitable number of

components. Conventional approaches based on

cross-validation are computationally expensive,

are wasteful of data, and give noisy estimates

for the optimal number of components. A ful-

ly Bayesian treatment, based on Markov chain

Monte Carlo methods for instance, will return a

posterior distribution over the number of com-

ponents. However, in practical applications it

is generally convenient, or even computational-

ly essential, to select a single, most appropri-

ate model. Recently it has been shown, in the

context of linear latent variable models, that the

use of hierarchical priors governed by continuous

hyperparameters whose values are set by type-

II maximum likelihood, can be used to optimize

model complexity. In this paper we extend this

framework to mixture distributions by consider-

ing the classical task of density estimation us-

ing mixtures of Gaussians. We show that, by

setting the mixing coefficients to maximize the

marginal log-likelihood, unwanted components

can be suppressed, and the appropriate number

of components for the mixture can be determined

in a single training run without recourse to cross-

validation. Our approach uses a variational treat-

ment based on a factorized approximation to the

posterior distribution.

1 Introduction

Mixture models are widely used as computationally con-

venient representations for modeling complex probabili-

ty distributions, and are based on a linear combination of

some number M of simpler, component distributions. In

this paper we shall focus on the case in which the compo-

nents of the mixture are multivariate normal distributions

N (xj�; T ) where x is a continuous multidimensional vari-

able, and � and T are the mean and inverse covariance pa-

rameters respectively. The mixture distribution forM com-

ponents is then

P (xj�; �; T ) =

M

X

i=1

�

i

N (xj�

i

; T

i

) (1)

where �
i

are called mixing coefficients, and satisfy 0 �

�

i

� 1 and
P

M

i=1

�

i

= 1. Note that we use � to denote the

set f�
i

g

M

i=1

, and similarly for � � f�

i

g and T � fT

i

g.

Consider an observed data set D comprising N observa-

tions x
n

, where n = 1; : : : ; N , which are assumed to be

drawn independently from the mixture distribution (1). The

probability of the observed data set, given the mixing coef-

ficients and the parameters of the components is then given

by

P (Dj�; �; T ) =

N

Y

n=1

"

M

X

i=1

�

i

N (x

n

j�

i

; T

i

)

#

: (2)

Viewed as a function of (�; �; T ), this is called the likeli-

hood function.

The maximum likelihood framework chooses specific val-

ues for the model parameters which correspond to a (local)

maximum of the likelihood function. A powerful approach

to finding maximum likelihood solutions is based on the it-

erative EM (expectation-maximization) algorithm in which

the mixture distribution is re-interpreted as a latent variable
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model (as discussed in the next Section). This interpreta-

tion also forms the basis of our Bayesian variational treat-

ment of the mixture model.

One difficulty with this procedure is that maximum likeli-

hood is strictly not well defined due to the presence of sin-

gularities in the likelihood function in which one (or more)

of the component densities collapses onto a specific data

point (its mean �
i

becomes equal to the data vector x
n

and

the corresponding covariance goes to zero thus assigning

infinite density at the location of the data point). In prac-

tice we must seek a good local maximum of the likelihood

function, often with the use of heuristics to avoid encoun-

tering the singularities of the likelihood function. It should

also be noted that, in addition to the singularities, the like-

lihood function is typically characterized by multiple local

maxima, and that good initialization heuristics for EM (for

example based on the K-means algorithm) can be impor-

tant in order to consistently find good solutions.

A further limitation of maximum likelihood is that it does

not provide any guidance on the choice of the model order

M . Larger values of M allow the model to achieve better

fits to the training data and hence to assign larger values of

the likelihood function for the observed data set. However,

the generalization capability of the model, i.e. its ability to

assign a high probability to a data set drawn independently

from the same distribution as the training set, is best for

some specific value of M , with larger (as well as smaller)

values having poorer generalization. Determination of the

optimum model order for a specific problem is a central

goal of the research presented in this paper.

Many traditional approaches to such model selection prob-

lems are based on cross-validation in which a range of can-

didate models are optimized to a training set and their pre-

dictive performance subsequently compared on an indepen-

dent validation set. This approach is both computationally

expensive and wasteful of valuable data that could other-

wise be used for training. Furthermore, it is only applicable

if there are one, or perhaps two, discrete model complexity

parameters to be optimized, since an exhaustive search over

the combinatorially large space of several such parameters

would be computationally prohibitive.

A fully Bayesian treatment of the mixture modeling prob-

lem involves the introduction of prior distributions over the

mixing coefficients and the parameters of the componen-

t distributions, as well as over the number of components

in the mixture. Conditioning on the observed data leads

to a posterior distribution over the number of components,

where it is hoped that the most probable number corre-

sponds to the model with the best generalization. Effec-

tively this approach must consider all possible values of

the number of components M up to some maximum val-

ue. In more complex models where there may be sever-

al such discrete parameters, such an approach can become

intractable (although sampling methods could in principle

sample preferentially from the regions of high posterior

probability).

In the neural networks literature MacKay and Neal have ad-

vocated the use of continuous hyperparameters as a mech-

anism for avoiding discrete model search [10]. They call

this procedure ‘automatic relevance determination’ (ARD).

Values of the hyperparameters are determined using ‘type

2’ maximum likelihood in which the values of the hyperpa-

rameters are chosen to optimize the marginal likelihood of

the observed data in which the model parameters have been

integrated out. Although this approach has met with limit-

ed success in the context of neural networks (probably due

to the complexity of the likelihood function) it has subse-

quently proved to be very successful in the Bayesian treat-

ment of principal component analysis (PCA) [2]. Here a

separate hyperparameter, representing the inverse variance,

was introduced for each potential principal component. In

the posterior distribution, hyperparameters with large mea-

ns represent components which are suppressed with high

probability. Thus only a single model is considered (the

one with the largest number of principal components) and

the mean of the posterior distribution captures the most

probable model complexity. This approach has been ex-

tended to a mixture of (a fixed number of) Bayesian PCA

models [2, 4] in which each model can independently de-

termine its own effective dimensionality, something which

would be computationally prohibitive to tackle using cross-

validation.

In this paper we extend the continuous hyperparameter

framework to address the problem of choosing the num-

ber of components in a Gaussian mixture model. Conven-

tionally this problem may be solved by exhaustive cross-

validation in the number of components up to some max-

imum value. Alternatively statistical tests may be used,

for example Polymenis and Titterington [11] describe a

recent approach, and also provide a survey of the histo-

ry of this area. Techniques based on complexity criteria

are discussed by Figueiredo and Jain [5] and references

therein. The problem has also been approached from a

Bayesian perspective using reversible jump Markov chain

Monte Carlo [7] and using variational methods [1, 6, 4].

Both approaches return a posterior distribution (or samples

from the posterior) over the number of components (up to

some maximum), and therefore these methods effectively

consider all possible intermediate models explicitly.

Our approach involves the use of a mixture model having

a fixed number of potential components (corresponding to

the maximum number considered above), in which the mix-

ing coefficients are optimized using type 2 maximum like-

lihood. This causes the mixing coefficients corresponding

to unwanted components to go to zero. The means and

variances of the Gaussian components, as well as the dis-

crete latent variables, are marginalized out using variational



techniques. Our results indicate that this approach is able

to recover the appropriate number of components in syn-

thetic data problems, and that it also provides a useful and

practical approach to density estimation in real world data

sets.

2 Bayesian Mixture Model

We begin our treatment of Gaussian mixtures by setting out

the probabilistic specification of our model in Section 2.1.

This specifies the joint distribution p(D;�; T; sj�) over the

data setD, the component means�, the inverse covariances

T and the discrete latent variables s, conditioned on the

mixing coefficients �. Our goal is to optimize the values

of the mixing coefficients � by maximizing the marginal

likelihood of the data given by p(Dj�) which requires that

we marginalize over �, T and s. Since this marginaliza-

tion is intractable, we resort to a variational approxima-

tion scheme based on maximization of a lower bound on

lnP (Dj�), discussed in Section 2.2. The evaluation of the

lower bound itself is discussed in Section 2.3, and the pro-

cedure for optimizing the mixing coefficients is discussed

in Section 2.4.

2.1 Model Specification

It is convenient to re-interpret the mixture distribution as a

latent variable model, in which we introduce, for each data

point x
n

, a set of binary latent variables s
in

2 f0; 1gwhere

i = 1; : : : ;M , and
P

M

i=1

s

in

= 1. From a generative per-

spective these latent variables describe which component

in the mixture gave rise to each of the data points, so that if

a given data point x
n

is generated from component j then

s

in

= 1 if i = j and s
in

= 0 if i 6= j. Conditional on

s = fs

in

g, the data points are assumed to be independent-

ly drawn from a Gaussian distribution with mean �
i

and

inverse covariance T
i

so that

P (Dj�; T; s) =

N

Y

n=1

M

Y

i=1

N (x

n

j�

i

; T

i

)

s

in

: (3)

The latent variables fs
in

g are given discrete distributions

governed by the mixing coefficients �
i

P (sj�) =

M

Y

i=1

N

Y

n=1

�

s

in

i

: (4)

If we marginalize (3) over the s
in

, weighted by the prior

(4), then we recover the expression (2) for the marginal

distribution of the observed data, conditioned on the mixing

coefficients and the component means and covariances.

The model specification is completed by introducing con-

jugate priors over the means and inverse covariances

P (�) =

M

Y

i=1

N (�

i

j0; �I) (5)

P (T ) =

M

Y

i=1

W(T

i

j�; V ) (6)

where � is a fixed parameter with a small value correspond-

ing to a broad prior over �, I is the unit matrix, W denotes

the Wishart distribution, and � and V are the degrees of

freedom and scale matrix again chosen to give a broad pri-

or for T .

Thus the joint distribution of all of the random variables,

conditioned on the mixing coefficients, is given by

P (D;�; T; sj�) = P (Dj�; T; s)P (sj�)P (�)P (T ): (7)

This model can be expressed as a directed graph, as illus-

trated in Figure 1.

T

s

x
µ

π

Figure 1: Representation of the Gaussian mixture model as

a directed acyclic graph. The observed variable x is shown

by the shaded node, while the box denotes a ‘plate’ repre-

senting the N independent samples from the data set.

2.2 Variational Approximation

In order to evaluate P (Dj�) we must marginalize (7) with

respect to s, � and T which is analytically intractable. We

therefore use variational methods [9, 3] to find a tractable

lower bound on P (Dj�). To simplify the notation we use �

to denote the f�; T; sg. Then the marginal likelihood which

we wish to evaluate is given by

P (Dj�) =

Z

P (D; �j�) d�:

Note that we use an integral to denote the joint integration

over f�; Tg and summation over s. Variational method-

s involve the introduction of a distribution Q(�) which, as

we shall see shortly, provides an approximation to the true

posterior distribution. Consider the following transforma-

tion applied to the log marginal likelihood

lnP (Dj�) = ln

Z

P (D; �j�) d�

= ln

Z

Q(�)

P (D; �j�)

Q(�)

d�



�

Z

Q(�) ln

P (D; �j�)

Q(�)

d�

= L(Q) (8)

where we have applied Jensen’s inequality. We see that the

function L(Q) forms a rigorous lower bound on the true

log marginal likelihood. The significance of this transfor-

mation is that, through a suitable choice for the Q distribu-

tion, the quantity L(Q) may be tractable to compute, even

though the original log-likelihood function is not. From

(8) it is easy to see that the difference between the true log

marginal likelihood lnP (Dj�) and the bound L(Q) is giv-

en by

KL(QkP ) = �

Z

Q(�) ln

P (�jD; �)

Q(�)

d� (9)

which is the Kullback-Leibler (KL) divergence between

the approximating distribution Q(�) and the true posterior

P (�jD; �). The relationship between the various quantities

is shown in Figure 2.

ln ( )P D|p

L( )Q

KL( || )Q P

Figure 2: The quantity L(Q) provides a rigorous lower

bound on the true log marginal likelihood lnP (Dj�), with

the difference being given by the Kullback-Leibler diver-

gence KL(QkP ) between the approximating distribution

Q(�) and the true posterior P (�jD; �).

The goal in a variational approach is to choose a suitable

form for Q(�) which is sufficiently simple that the lower

bound L(Q) can readily be evaluated and yet which is suf-

ficiently flexible that the bound is reasonably tight. We gen-

erally choose some family of Q distributions and then seek

the best approximation within this family by maximizing

the lower bound. Since the true log likelihood is indepen-

dent of Q we see that this is equivalent to minimizing the

Kullback-Leibler divergence.

Suppose we consider a completely free-form optimization

overQ, allowing for all possibleQ distributions. Using the

well-known result that the KL divergence between two dis-

tributions Q(�) and P (�) is minimized by Q(�) = P (�)

we see that the optimal Q distribution is given by the true

posterior, in which case the KL divergence is zero and the

bound becomes exact. However, this will not lead to any

simplification of the problem. In order to make progress it

is necessary to consider a more restricted range of Q distri-

butions.

Here we consider a constrained family of variational distri-

butions by assuming that Q(�) factorizes over subsets f�
i

g

of the variables in �, so that

Q(�) =

Y

i

Q

i

(�

i

): (10)

The KL divergence can then be minimized over all possible

factorial distributions by performing a free-form minimiza-

tion over the Q
i

, leading to the following result

Q

i

(�

i

) =

exp




lnP (D; �)

�

k 6=i

R

exp




lnP (D; �)

�

k 6=i

d�

i

(11)

where h � i

k 6=i

denotes an expectation with respect to the

distributions Q
k

(�

k

) for all k 6= i. Note that this approach

makes no assumptions about the form of the posterior dis-

tribution beyond the factorization implied by (10).

It is easily seen that, for conjugate hierarchical models, the

expressions on the right hand side of (11) will have the

same functional forms as in the priors. The sufficient statis-

tics of each distribution Q
i

will depend on moments of the

other distributions Q
k 6=i

and so the expressions (11) repre-

sent an implicit solution for the variational posterior. These

coupled equations can be solved by choosing some initial-

ization for the sufficient statistics of the factors, and then

iteratively updating them by taking each factor in turn and

replacing its sufficient statistics by revised estimates given

by the above equations. At each step of this re-estimation

process, the lower bound will increase unless the variation-

al posterior is already at a maximum of the bound.

We can apply this approach to the Gaussian mixture mod-

el by introducing a variational posterior distribution of the

form

Q(�; T; s) = Q

�

(�)Q

T

(T )Q

s

(s): (12)

Application of (11) then gives the following solutions for

the factors of the variational posterior

Q

s

(s) =

N

Y

n=1

M

Y

i=1

p

s

in

in

(13)

Q

�

(�) =

M

Y

i=1

N (�

i

jm

(i)

�

; T

(i)

�

) (14)

Q

T

(T ) =

M

Y

i=1

W(T

i

j�

(i)

T

; V

(i)

T

) (15)

where we have defined

p

in

=

ep

in

P

M

j=1

ep

jn

(16)



ep

in

= exp(hln jT
i

ji=2 + ln�

i

�

1

2

TrfhT

i

i(x

n

x

T

n

� h�

i

ix

T

n

�x

n

h�

i

i

T

+ h�

i

�

T

i

i)g) (17)

T

(i)

�

= �I + hT

i

i

N

X

n=1

hs

in

i (18)

m

(i)

�

= T

(i)

�

�1

hT

i

i

N

X

n=1

x

n

hs

in

i (19)

�

(i)

T

= � +

N

X

n=1

hs

in

i (20)

V

(i)

T

= V +

N

X

n=1

x

n

x

T

n

hs

in

i �

N

X

n=1

x

n

hs

in

ih�

T

i

i

�h�

i

i

N

X

n=1

x

T

n

hs

in

i+ h�

i

�

T

i

i

N

X

n=1

hs

in

i: (21)

The expected values in the above formulas are given by

hs

in

i = p

in

(22)

h�

i

i = m

(i)

�

(23)

h�

i

�

T

i

i = T

(i)

�

�1

+m

(i)

�

m

(i)

�

T

(24)

hT

i

i = �

(i)

T

V

(i)

T

�1

(25)

hln jT

i

ji =

d

X

s=1

 ((�

(i)

T

+ 1� s)=2)

+d ln 2� ln jV

(i)

T

j: (26)

Thus we see that the solutions for the variational factors

Q

�

, Q
T

and Q
s

, given by (13), (14) and (15) respective-

ly, are mutually coupled through their dependence on mo-

ments of the other factors. These can be solved iteratively

as discussed above. Note that there will typically be mul-

tiple maxima in the variational bound and so in principle it

may be beneficial to run the optimization a number of times

using different initializations in order to find a good maxi-

mum. In practice we have found that, for the applications

considered in this paper, a single initialization is sufficient

to give good results.

2.3 Lower Bound on Marginal Likelihood

Given the functional forms for the variational factors Q
�

,

Q

T

andQ
s

it is straightforward to evaluate the lower bound

(8) to give

L = hlnP (Dj�; T; s)i+ hlnP (s)i

+hlnP (�)i+ hlnP (T )i � hlnQ

s

(s)i

�hlnQ

�

(�)i � hlnQ

T

(T )i (27)

where

hlnP (Dj�; T; s)i =

M

X

i=1

N

X

n=1

hs

in

i

�

1

2

hln jT

i

ji

�

d

2

ln(2�)�

1

2

Tr(hT

i

i(x

n

x

T

n

�

� x

n

h�

T

i

i � h�

i

ix

T

n

+ h�

i

�

T

i

i))

	

(28)

hlnP (s)i =

M

X

i=1

N

X

n=1

hs

in

i ln�

i

(29)

hlnP (�)i = 2

Md

2

ln

�

�

2�

�

�

�

2

M

X

i=1

h�

T

i

�

i

i (30)

hlnP (T )i =M

�

�

�d

2

ln 2�

d(d� 1)

4

ln�

�

d

X

s=1

ln �

�

� + 1� s

2

�

+

�

2

ln jV j

)

+

+

� � d� 1

2

M

X

i=1

hln jT

i

ji

�

1

2

Tr

 

V

M

X

i=1

hT

i

i

!

(31)

hlnQ

s

(s)i =

M

X

i=1

N

X

n=1

hs

in

i lnhs

in

i (32)

hlnQ

�

(�)i =

M

X

i=1

�

�

d

2

(1 + ln(2�)) +

1

2

ln jT

(i)

�

j

�

(33)

hlnQ

T

(T )i =

M

X

i=1

(

�

�

(i)

T

d

2

ln 2�

d(d� 1)

4

ln�

�

d

X

s=1

ln �

 

�

(i)

T

+ 1� s

2

!

+

�

(i)

T

2

ln jV

(i)

T

j

+

�

(i)

T

� d� 1

2

hln jT

i

ji

�

1

2

Tr

�

V

(i)

T

hT

i

i

�

�

(34)

2.4 Optimizing the Mixing Coefficients

We have now obtained a variational lower bound L(Q)

which approximates the true marginal log-likelihood



lnP (Dj�). By maximizing this bound with respect to � we

obtain our required estimates for the mixing coefficients.

However, the solutions for the factors of the variational

posterior, and hence the value of the lower bound, will de-

pend on the values of �. We therefore adopt an EM proce-

dure in which we alternately maximized L(Q) with respect

to � (maximization step) and then optimize Q by iterative

updating of the variational solutions for Q
�

, Q
T

and Q
s

(expectation step). For computational efficiency we perfor-

m just one re-estimation of each of the variational factors

in each E-step, before re-estimating � in the M-step.

The re-estimation M-step equations for updating the � are

obtained by setting the derivative of the lower bound with

respect to � to zero, giving

�

i

=

1

N

N

X

n=1

p

in

: (35)

Numerical evaluation of the lower bound L after each M-

step and after each update within each E-step provides a

useful check on the software implementation, any such up-

date should not lead to a decrease of L. The improvement

in L during the EM optimization can be used to monitor

convergence and to set a suitable stopping criterion.

3 Results

We verify through experiments both that the maximum

variational bound is a good score for model selection, and

that the proposed iterative algorithm achieves maximum

bound. We test the algorithm on synthetic and real da-

ta sets: 600 data points from a mixture of five Gaus-

sians (means [0; 0℄, [3;�3℄, [3; 3℄, [�3; 3℄, [�3;�3℄ and

covariances [1; 0; 0; 1℄, [1; 0:5; 0:5; 1℄, [1;�0:5;�0:5; 1℄,

[1; 0:5; 0:5; 1℄, [1;�0:5;�0:5; 1℄); 900 data points from

three mixtures of means [0;�2℄,[0; 0℄, [0; 2℄ and same co-

variance [2; 0; 0; 0:2℄ from [5]; 400 data points from three

mixtures of same mean [0; 0℄ and covariances [1; 0; 0; 0:2℄,

[0:02;�0:08;�0:08; 1:5℄, [0:5; 0:4; 0:05; 0:05℄; “Enzime”,

“Acidity” and “Galaxy” univariate data sets from [12], and

“Old Faithful” bivariate data from [8].

As a first check, we ran the variational optimization on

a fixed number of components without updating the mix-

ing coefficients, with an initial value selected through plain

EM. Under this setting the variational likelihood bound be-

comes a model selection score. We compared the best mod-

el given by this score with the one selected through EM and

cross-validation, and found that the variational score was

invariantly maximum at the correct number of components

on all of 100 instances of the 5-mixture synthetic data set

(Figure 3). The same qualitative results were achieved on

all considered data sets, indicating that finding the global

maximum of the variational likelihood does select the cor-

rect model.
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Figure 3: Best variational likelihood bound and plain EM

cross-validation score as a function of the fixed assumed

number of mixture components on 600 points drawn from

a mixture of 5 bivariate Gaussians.

However, the power of our method consists in its ability to

optimize mixing coefficients and variational score jointly.

This could be a very difficult task because of the complex-

ity of the likelihood manifold; for instance, in the case of

plain EM it is very common to converge to a non-global

maximum, especially if the number of components is large.

Moreover, the variational likelihood manifold is very com-

plex because of its symmetry with respect to mixture per-

mutations, which replicates both global and local maxima.

Our hope is that integrating out the parameters of the Gaus-

sians to derive the variational likelihood smoothed the like-

lihood manifold removing most local maxima.

The possibility of local extrema makes the initial choice of

mixture parameters important. If the initial means are e-

qual or too close, it becomes hard to differentiate between

components during the optimization. Under these circum-

stances the variational approximation converges very slow-

ly, and as a result too many mixture components could get

removed. This may happen because we update mixing co-

efficients after each variational iteration before full opti-

mization, and a component that is out of place could be

eventually removed if it does not find its place quickly e-

nough. We approach this issue by initializing the means

through K-means clustering. In order to avoid a strong ini-

tial bias from the assignment of components to K-means

clusters, we choose large initial covariance matrices; other-

wise in the beginning each Gaussian would be confined to

its local cluster, and could remain in a local minimum. We

found that K-means with large covariance initialization is

enough to avoid local maxima.

We initialize the algorithm with a mixture of many com-

ponents (15 in this paper) with equal mixing coefficients.

The optimization has the property that Gaussians with sim-

ilar parameters fitting the same cluster become unbalanced

until one dominates and the others get removed. In addi-

tion, when a mixing coefficient is close to 0, it converges

to 0 faster and faster; therefore we can remove components

with very small mixing coefficients (< 10

�5). During the

optimization, the variational bound increases with each it-

eration, by small amounts when all mixing coefficients are
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Figure 4: Variational likelihood bound over the model op-

timization of 900 data points drawn from a mixture of 3

same-covariance bivariate Gaussians. Initially the mod-

el had 15 mixtures. Vertical lines indicate cancellation of

components.

large, and very fast when one coefficient is close to and

drops to 0 (Figure 4). Although the convergence of the

variational approximation can be quite slow, it was never

slower than EM on the same mixing and Gaussian parame-

ters. If necessary, optimization can be made faster by spec-

ulating that small and decreasing mixing coefficients con-

verge to 0, and verifying directly if there is an increase in

variational bound with such a change. Nevertheless, such

heuristics of combining discrete search with continuous op-

timization were not employed in the results presented here.

We found that the model optimization automatically recov-

ered the number of generating mixtures in all proposed syn-

thetic data sets (Figure 5). In the case of the data set from

[5], we recover the generating mixture even when given

only 200 samples. “Old Faithful” data was fitted with three

components (mixing 0:63, 0:33, 0:04). Also, the univari-

ate data sets have been fitted with similar results as in [12]

(Figure 6).

One advantage of the variational approximation is that it

not only provides a likelihood bound but it also gives ex-

plicit values for means and covariances from the variation-

al parameters. We test how close the variational param-

eters are to the maximum likelihood ones by comparing

the log-likelihood of the data: under the best model found

by the variational iteration; after running EM starting from

the best variational parameters and keeping mixing coef-

ficients fixed; and after running full EM initialized to the

best variational parameters. Table 1 shows that EM does

not significantly increase the likelihood, except for the case

of the three mixtures with equal means. This is probably

due to an inaccurate variational approximation for highly

overlapping Gaussians. Nevertheless, the number of mix-

ture components quickly converges to the correct one also

for this data set.
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Figure 5: Initial and final configurations for the model

optimization of three generated and one real data set: 5

Gaussians (600 points), 3 same-covariance Gaussians (900

points), 3 same-mean Gaussians (400 data points) and the

“Old Faithful” data set.

As a last remark, we found that the number of mixture com-

ponents selected by the algorithm was not sensitive to large

variations in the non-informative priors for the means and

covariance matrices.

4 Conclusions

In this paper we have shown how a discrete search over

the number of components in a mixture distribution can

be avoided through the introduction of continuous hy-

perparameters whose values are chosen to maximize the

marginal likelihood. The framework has been developed

for the case of mixtures of multivariate normal distribution-

s. It is easily generalized to mixtures of models which can
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Figure 6: Model optimization of the “Enzime”, “Acidity”,

and “Galaxy” data sets.

Data set Variational EM (fixed) EM (full)

5 mixtures -2577.51 -2577.46 -2577.46

3 mixtures (1st) -3080.72 -3080.65 -3080.65

3 mixtures (2nd) -712.213 -691.924 -689.619

Old Faithful -1122.44 -1119.49 -1119.64

Enzime -47.8791 -47.8504 -47.8268

Acidity -178.917 -178.869 -178.754

Galaxy -203.634 -203.482 -203.482

Table 1: The log-likelihood of the data sets under a mixture

of Gaussians specified by: the best variational parameters;

EM initialized to the best variational parameters without

changing mixing coefficients; and same EM without the

mixing constraint.

be specified as directed acyclic graphs of linear-Gaussian

units with Wishart priors. Examples include mixtures of

Kalman filters, and mixtures of Bayesian principal compo-

nent analysis or factor analysis models.

Finally, we note that, due to the marginalization over com-

ponent parameters, our approach does not suffer from the

problem of singularities that plagues conventional maxi-

mum likelihood.
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