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Abstra
t

There is mu
h interest in 
onstru
ting from

datasets Bayesian networks whi
h are eÆ-


ient, or even optimal, for 
lassi�
ation pur-

poses. Most sear
h strategies usually dis-


riminate between networks by 
omparing

their marginal likelihood s
ore, but re
ently

it has been suggested that sear
h strategies

for 
lassi�ers should instead sele
t among

models using alternative s
ores. This paper


ontributes to this dis
ussion by presenting

the results of simulations on the sets of all di-

re
ted a
y
li
 graphs on four and �ve nodes.

Our results add eviden
e to earlier indi
a-

tions that the marginal likelihood is likely to

be a poor 
riterion to use for 
lassi�er sele
-

tion.
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1 Introdu
tion

Let C denote a dis
rete 
lass random variable and A a

set of dis
rete attribute random variables, taking val-

ues in the spa
es C and A respe
tively. The 
lassi-

�
ation problem is to predi
t the value 
 2 C of the


lass variable C given a value a 2 A of the attributes

A. If the joint probability distribution P (C;A) were

known, then the natural predi
tor for C given A = a

is that state 
̂(a) 2 C whi
h maximizes p(
 j a). (In-

deed this is the Bayes a
t under a 0� 1 loss fun
tion.)

If, furthermore, P is dire
ted Markov with respe
t to

a dire
ted a
y
li
 graph (DAG) g having the nodes

V = fC;Ag, then the Bayes a
t for sele
ting among all

Bayesian networks having nodes V would be to sele
t

g endowed with the generating distribution P (C;A).

For a re
ent 
omprehensive treatment of Bayesian net-

works see Cowell et al. (1999).

Typi
ally in 
lassi�
ation problems neither g nor

P (C;A) will be known. Then one approa
h to the 
las-

si�
ation problem is to �nd a Bayesian network, 
on-

sisting of the variables C and A, whi
h provides a good

�t to the data from whi
h the 
onditional probabilities

p(
 j a) may be estimated reliably. A 
ommonly used

s
ore to judge the relative �ts of alternative Bayesian

network models is the marginal likelihood. For more

details of these approa
hes see: Buntine(1994, 1996);

Sanguesa and Cortes (1997); and He
kerman (1998).

Unfortunately, the spa
e of possible Bayesian network

stru
tures grows rapidly in size with the number of

nodes in the graph (Robinson 1977), whi
h makes an

exhaustive 
omparison of all graphi
al models infeasi-

ble (ex
ept for graphs having a small number of nodes)

and sear
h heuristi
s be
ome mandatory. One should

expe
t a good heuristi
 sear
h should �nd networks

having a marginal likelihood 
lose to the maximum,

and one might hope that su
h networks would them-

selves be 
lose to being optimal for use as 
lassi�ers.

Re
ently, however, Kontkanen et al. (1999) have ques-

tioned the logi
 of sele
ting among Bayesian net-

work 
lassi�ers using the marginal likelihood, whi
h

is equivalent to using a log-s
oring rule on the joint

distribution, when a 
lassi�er will be judged by its pre-

di
tive a

ura
y under a 0�1 loss fun
tion. They point

to examples for whi
h su
h indu
ed networks perform

badly at 
lassi�
ation. Instead they argue that better


lassi�ers should be sought using s
oring rules more

appropriate to the 
lassi�
ation task. Friedman et al.

(1997) have voi
ed similar 
on
erns.

In this paper we 
ompare how the 
lassi�
ation rates of

alternative Bayesian networks vary with their predi
-

tive performan
e (or rather, the asymptoti
 in
rease

in the marginal likelihood per 
ase). We do this by

taking a spe
i�
 network, whi
h we denote by m

0

, on

four binary nodes, and generating at random a set of

probability distributions dire
ted Markov with respe
t

to m

0

. For ea
h simulated distribution, the asymp-

toti
 
lassi�
ation rate (r) and asymptoti
 expe
ted



in
rease per 
ase in the marginal likelihood s
ore (l)

are 
omputed for ea
h of the 543 possible Bayesian net-

works on four nodes We perform a similar set of simu-

lations on the set of graphs on �ve nodes. In essen
e, if

there were a systemati
 improvement of 
lassi�
ation

rate r with predi
tive s
ore l, then a sear
h pro
edure

based upon marginal likelihood 
ould be justi�ed.

The plan of the rest of the paper is as follows. In

the next se
tion we de�ne the expe
ted 
lassi�
ation

rate of a distribution, and give a simple proof that if

P (C;A) is the generating distribution, then P (C jA)

is also optimal in terms of expe
ted 
lassi�
ation. In

Se
tion 3 we relate the asymptoti
 in
rease in the mar-

ginal likelihood per 
ase of a Bayesian network to its

Kullba
k{Leibler divergen
e from the generating dis-

tribution. In Se
tion 4 
lassi�
ation rates are illus-

trated for data generated from a parti
ular Bayesian

network on 20 nodes. Se
tion 5 presents some essential

dis
ussion on Markov equivalent graphs. In Se
tion 6

are presented the des
ription and results of 
omputer

simulations on the sets of all four- and �ve-node la-

belled dire
ted a
y
li
 graphs (LDAGs). This is fol-

lowed by the 
on
lusion.

2 An optimal 
lassi�
ation

distribution

Suppose that a single sample is drawn from the prob-

ability distribution P (C;A) having a given 
on�gura-

tion a 2 A of the set of variables A. Suppose that for

ea
h a we denote by 
̂(a) the 
lass for whi
h p(
 j a)

attains a maximum (if this is not unique, 
hoose any

su
h 
lass arbitrarily); then for the sampled 
on�gu-

ration the probability that 
 = 
̂(a) will be p(
̂(a) j a);

this will be the probability of a 
orre
t 
lassi�
ation

given a. We de�ne the expe
ted 
lassi�
ation rate r

P

of the distribution P , obtained on averaging over all

attribute 
on�gurations a, to be

r

P

:=

X

a

p(
̂(a) j a)p(a): (1)

Now suppose that Q(C;A) is an alternative distribu-

tion, and let ~
(a) denote the 
lass for whi
h q(
 j a)

attains a maximum (again breaking ties arbitrarily).

Then, given a, the distribution Q will 
orre
tly 
lassify

the 
ase sampled from P with probability p(~
(a) j a) �

p(
̂(a) j a). Again, averaging over all a we may de�ne

expe
ted 
lassi�
ation rate r

Q jP

of Q with respe
t to

P :

r

Q jP

:=

X

a

p(~
(a) j a)p(a); (2)

Clearly r

P

� r

Q jP

, and r

P

= r

P jP

. Thus we have

shown that a probability distribution whi
h generates

data is also the optimal 
hoi
e (Bayes a
t) for 
las-

si�
ation the data: no other probability distribution


an 
lassify better in expe
tation (though some may

do as well.) Put another way, the joint probability dis-

tribution uniquely 
hosen as the Bayes a
t under the

log-s
oring rule is simultaneously an optimal distribu-

tion to 
hoose | though not ne
essarily uniquely so

| as the basis for a Bayes a
t for 
lassi�
ation un-

der the 0 � 1 s
oring rule. Note that this result does

not require that the distributions P or Q be dire
ted

Markov with respe
t to some pair of graphs; we now


onsider the 
ase in whi
h this o

urs.

3 Optimal 
lassi�
ation using

Bayesian networks

Let G

P

and G

Q

be Bayesian networks in the dis
rete

random variables fC;Ag representing dire
ted Markov

probability distributions P and Q respe
tively. Then,

as shown in Se
tion 2, if P is the distribution gener-

ating the data, G

P

will be optimal for 
lassifying the


ases in the database. In Se
tion 5 we give some suf-

�
ient 
onditions under whi
h G

Q

will also be optimal

for 
lassifying C given A, but �rst we introdu
e the

marginal likelihood, and show how it is related to a

Kullba
k{Leibler divergen
e for asymptoti
ally large

samples.

3.1 Asymptoti
 marginal likelihood and

Kullba
k{Leibler divergen
e

Suppose that a 
omplete database D

N

of N indepen-

dent 
ases is generated from P (C;A), i.e. from the G

P

whose stru
ture is assumed unknown. Let M denote

the set of all LDAGs having nodeset V = fCg [ A.

Ea
h model m 2 M is parameterized by a set of pa-

rameters, �

m

say. In the Bayesian approa
h to model

sele
tion, a prior P (�

m

jm) is spe
i�ed for the parame-

ters, and the marginal likelihood of the dataD

N

under

the model is 
al
ulated; it is given by

p(D

N

jm) =

Z

p(D

N

j �

m

;m)p(�

m

jm)d�

m

: (3)

If all models in M are 
onsidered a-priori equally

likely, then p(m jD

N

) / p(D

N

jm), and so 
hoosing

the model having maximum posterior probability be-


omes equivalent to 
hoosing the model having the

highest marginal likelihood.

Now suppose that a new 
omplete 
ase Æ is observed.

Then the 
hange in the marginal likelihood, given the

previous data, D

N

, is given by the fa
tor

p(Æ jD

N

;m) = p(Æ;D

N

jm)=p(D

N

jm)

=

Z

p(Æ j �

m

;m)p(�

m

jD

N

;m)d�

m

:



Now if the number of 
asesN in the dataset D

N

is suf-

�
iently large then, under mild 
onditions on the prior

P (�

m

jm), the posterior density p(�

m

jD

N

;m) will be

very sharply peaked around the maximum likelihood

estimate

^

�

m

(D

N

), so that to a good approximation

p(Æ jD

N

;m) = p(Æ j

^

�

m

(D

N

);m): (4)

Writing

^

�

m

= lim

N!1

^

�

m

(D

N

), we thus obtain the

asymptoti
 additive 
hange in the log-marginal likeli-

hood for the single observation Æ to be

log p(Æ j

^

�

m

;m): (5)

We 
an interpret (5) as the logarithmi
 penalty that

the model m trained on a suÆ
iently large dataset

would obtain for its probability predi
tion for the next


ase Æ.

Now the data generating distribution P (C;A) will gen-

erate Æ with probability p(Æ), and hen
e would itself

a

rue a logarithmi
 penalty log p(Æ). The di�eren
e

between this penalty and that due to model m in (5),

will be log p(Æ)� log p(Æ j

^

�

m

;m) having expe
tation

X

Æ

p(Æ) log

p(Æ)

p(Æ j

^

�

m

;m)

; (6)

where the sum is over all 
on�gurations Æ: this expe
-

tation is simply the Kullba
k{Leibler divergen
e be-

tween the two distributions.

Thus we have related the expe
ted 
hange per 
ase in

the asymptoti
 log marginal likelihood of a model to

the Kullba
k{Leibler divergen
e of its expe
ted distri-

bution from the generating distribution.

Now, it is shown by Cowell (1996) (see also Cowell

et al. (1999), Theorem 11.1) that the distribution P

m

dire
ted Markov with respe
t the DAG m whi
h min-

imizes the Kullba
k{Leibler divergen
e K(P; P

m

) =

E

P

flog p(x)=p

m

(x)g is the one for whi
h the 
on-

ditional probabilities p

m

(x j pa(x)

m

) agree with ea
h

p(x j pa(x)

m

) 
al
ulated from P for every node x in

the graph m, (here pa(x)

m

denotes the parents of x in

m).

Thus, provided the parameterization of the model m

exhibits lo
al meta independen
e, (Dawid and Lau-

ritzen 1993), we have the following result: Given

a generating distribution P (X) and a DAG m in

the dis
rete random variables X, the distribution

P

m

(X) dire
ted Markov with respe
t to m whi
h min-

imizes the Kullba
k{Leibler divergen
e K(P; P

m

) =

E

P

flog p(x)=p

m

(x)g is the same as would be obtained

either as the maximum likelihood estimate, or as

the posterior expe
tation of �

m

under mild 
ondi-

tions on the prior P

m

(�

m

jm), using an asymptoti
ally

large number of independent observations drawn from

P (X).

4 Example: Child

The Child network (Spiegelhalter and Cowell 1992;

Spiegelhalter et al. 1993; Cowell et al. 1999), has

twenty nodes: we shall take its Disease node as our


lassi�
ation node; it has six states.

Using the Child network we generated two indepen-

dent datasets ea
h of 10,000 
ases. The �rst dataset

was used to train Child together with the na��ve Bayes

network (in whi
h all attributes are 
onditionally in-

dependent give the 
lass variable). It was also used

to sear
h for and train the best s
oring (with respe
t

to log-s
ore) Chow{Liu tree (Chow and Liu 1968) and

TAN (Tree Augmented Na��ve Bayes) network (Fried-

man et al. 1997). All four trained networks were then

used to 
lassify the data in the se
ond data set, 
umu-

lating their su

esses; in addition their joint predi
tive

log-s
ores were evaluated. The results are shown in

Table 1.

We see that the Child network has the best 
lassi�
a-

tion rate of 88.56%; given the size of the data set this is

probably an a

urate estimate of the 
lassi�
ation rate

for Disease. The TAN network is se
ond best, both

in terms of log-s
ore and 
lassi�
ation a

ura
y. This

small table suggests a dire
t link between predi
tive

and 
lassi�
ation a

ura
y. The simulations des
ribed

in Se
tion 6 indi
ates that things are not so simple,

but before then we need to make some observations


on
erning Markov equivalen
e.

Table 1: Classi�
ation a

ura
y and logarithmi
 s
ores

using data simulated from Child network.

Graphi
al Model Log S
ore Classi�
ation rate

Child -121838 88.56%

TAN -123147 87.90%

Chow{Liu Tree -125112 86.26%

Na��ve Bayes -144072 84.69%

5 Markov equivalent optimal


lassi�ers

Suppose that the generating model m

0

with distribu-

tion P were a subgraph of the DAGm. Then one 
ould

assign p

m

(x j pa(x)

m

) = p(x j pa(x)

m

0

) and have P

m

=

P . One 
an indeed go further, by 
onsidering Markov

equivalent graphs, that is, distin
t graphs representing

the same 
onditional independen
e relations. (Fryden-

berg (1990) gave 
onditions for two 
hain graphs | of

whi
h DAGs are a spe
ial sub
lass | to be Markov

equivalent.) If m

e

0

is any graph Markov equivalent to

m

0

and m

e

0

is a subgraph of m, then one 
an assign


onditional probabilities p

m

(x j pa(x)

m

) to ea
h node



of m su
h that the distribution P

m

exa
tly mat
hes

that of P . Hen
e, by the results of Se
tion 3, any su
h

distribution will also be an optimal 
lassi�er (for C

given A).

We 
an go even further in identifying optimal 
lassi-

�ers, by 
onsidering the Markov blanket B := bl(C) �

A of the node C in m

0

. We have P (C jA) = P (C jB);

that is for 
lassi�
ation purposes C is independent of

A n B, given B. For some sub-
on�guration b 2 B

of the 
on�guration a, we will have there have r

P

=

P

b

p(
̂(b) j b)p(b).

We have already seen that r

P

� r

Q jP

for any distri-

bution Q. Suppose that m

0

and m have the same lo
al

stru
ture L(C) at C de�ned as follows: in both models

the node C has the same set of parents and 
hildren,

and furthermore that ea
h of node C's 
hildren has

the same set of parents in both models. Then we 
an

assign to m a distribution Q whose 
onditional prob-

abilities of the nodes C and ea
h of its 
hildren (given

their respe
tive parents) have the same values as arise

in P . Under these 
onditions, then whatever assign-

ment is made to the other 
onditional probabilities to

ensure Q is dire
ted Markov with respe
t to m, Q will

be optimal as a 
lassi�er for C given A.

Combined with the two previous results, we have the

following lemma.

Lemma 1.

Let P be dire
ted Markov with respe
t to the DAG

m

0

having nodes 
onsisting of a 
lass node C and set

of attribute nodes A. Let G

L(C);e

P

denote the set of all

LDAGs whi
h are Markov equivalent to any graph hav-

ing the same lo
al stru
ture L(C) at C as m

0

. Then

for any LDAGm whi
h 
ontains some graph of G

L(C);e

P

as a subgraph, there exists a distribution Q dire
ted

Markov with respe
t to m, whi
h has the same | and

hen
e optimal | 
lassi�
ation rate of C given A as

the distribution P .

The 
hara
terization given in Lemma 1 is suÆ
ient

for optimal 
lassi�ers, but it 
annot be ne
essary: in-

deed it is straightforward to 
onstru
t some dire
ted

Markov distributions P for whi
h there is some opti-

mal 
lassi�
ation distribution Q dire
ted Markov over

a DAG m where m 62 G

L(C);e

P

.

6 A simulation study

We ran two sets of similar simulation studies, one using

all four node LDAGs, the other using all �ve node

LDAGs. The experiments were similar in nature, so we

�rst des
ribe the experiments on four node networks

�rst in detail, and then more brie
y the experiments

on �ve node Bayesian networks.

6.1 The four-node network experiments

For these, the DAG m

0

shown on the left Figure 1 was

taken as the generating network in all four-node net-

work simulations. The node C is the 
lassi�
ation vari-

able, the remaining nodes being the attributes. Note

that all attributes are in the Markov blanket of the


lass node. All nodes were binary. In ea
h simula-

tion, a probability distribution dire
ted Markov with

respe
t to m

0

was generated at random, by the fol-

lowing method. Ea
h of the 
onditional probabilities

P

0

(C jA

1

) and P

0

(A

3

jC;A

2

) for ea
h parent 
on�gu-

ration, together with the un
onditional probabilities,

P

0

(A

1

), P

0

(A

2

), were sampled independently from

Beta(1,1) (that is, 
at) priors. The produ
t of these

simulated distributions de�ned the joint distribution

P

0

(C;A

1

; A

2

; A

3

). Next, for ea
h graph m 2 G

4

,

where G

4

is the set of 543 LDAGs on the four nodes

C;A

1

; A

2

; A

3

, the Kullba
k{Leibler proje
tion of P

0

onto m, denoted by P

m

(C;A

1

; A

2

; A

3

), was found. It

was used to evaluate the Kullba
k{Leibler divergen
e

K(P

0

; P

m

) and the expe
ted 
lassi�
ation rate r

P

m

jP

0

of P

m

given P

0

(using (2)). Thus ea
h run generated

543 pairs of numbers. Examples of s
atterplots pro-

du
ed by su
h samples are shown in Figure 2. For

ea
h su
h set of number pairs, Spearman's rank 
or-

relation 
oeÆ
ient and Kendall's rank 
orrelation 
o-

eÆ
ient were evaluated. In all, 3,000 su
h simulations

were performed, leading to 3,000 pairs of values for the

rank 
orrelation 
oeÆ
ients. Their values are plotted

as histogram density plots in Figure 3.

A similar set of 3,000 simulations was performed using

a full subset G

e

4

� G

4

of Markov inequivalent LDAGs

(numbering 185 in all); histograms of the rank 
orre-

lation 
oeÆ
ients are also plotted in Figure 3.
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Figure 1: Generating models used in the four node

(left) and �ve node (right) experiments.

6.2 Five node experiments

A similar set of simulations was performed using the

set of all LDAGs on �ve nodes, G

5

, of whi
h there are

29,281, and a 
omplete subset G

e

5

� G

5

of Markov in-

equivalent LDAGs on �ve nodes, there being 8,782 of

these. 1,600 simulations were performed on ea
h of

these two sets of graphs, the data generating model,

whi
h we also 
all m

0

, is on the right in Figure 1. His-



togram density plots of the rank 
orrelation 
oeÆ
ients

are shown in Figure 4.
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Figure 2: S
atterplots of Kullba
k{Leibler divergen
e

vs. 
lassi�
ation rate from a sele
tion of twelve simu-

lations on the set of all four node LDAGs. The �gures

above ea
h plot are Spearman's and Kendall's rank


orrelation 
oeÆ
ients respe
tively.

6.3 Interpreting the results

We now 
omment on the plots obtained from the sim-

ulation runs. First note that the generating model

is simple to lo
ate in ea
h s
atterplot | it has zero

Kullba
k{Leibler divergen
e and the highest possible


lassi�
ation rate, and hen
e is lo
ated at the bot-

tom right in ea
h s
atterplot. Now for overall predi
-

tive performan
e to be indi
ative of good 
lassi�
ation

performan
e, low Kullba
k{Leibler divergen
e should

be strongly asso
iated with high 
lassi�
ation. In or-

der to quantify the dependen
e of 
lassi�
ation rate

against divergen
e for ea
h simulation, we 
al
ulated

Spearman's and Kendall's rank 
orrelation 
oeÆ
ients;

density plots in the forms of histograms of these val-

ues are shown in Figure 3 for the simulations based on

four-node LDAGs, and in Figure 4 for the simulations

based on �ve-node LDAGs, all bin-widths being 0.1.

Note the somewhat anomalous jump in the interval

(�0:1; 0℄. This is due to those simulations in whi
h,

with the sampled distribution, all graphs were opti-

mal as 
lassi�ers (as in the �nal plot of Figure 2. (In-


identally, su
h distributions show that the 
onditions

of Lemma 1 are suÆ
ient but not ne
essary.) The

fra
tions of su
h runs are shown in the plots by the

horizontal line in the re
tangle, with the area above

the line representing these situations where all graphs

are equally optimal as 
lassi�ers.
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Figure 3: Density plots of Spearman's and Kendall's

rank 
orrelation 
oeÆ
ient obtained from pooling ea
h

of the 1600 simulations on the set G

4

of all four node

LDAGs (4A) and a set G

e

4

all four node Markov in-

equivalent LDAGs (4E).

From the histograms we see that the mode (in the

Spearman's rank plots) is in the range (-0.9,-0.8℄, with

only around 20% of su
h runs in this range, and only

around 30% of runs a
hieving a 
orrelation of less

than -0.8. The s
atterplots shown in Figure 2 indi-


ate that a 
orrelation of -0.8 or less is generally re-

quired for �nding good 
lassi�ers using a sear
h based

on marginal likelihood. These results indi
ate that a


lassi�er sear
h based on marginal likelihood may be

e�e
tive on only around 30% or fewer of o

asions.

(Similar 
on
lusions 
an be drawn from the Kendall's

rank 
orrelation 
oeÆ
ient histograms.) Even this

may be an overestimate, be
ause our analysis has been

based on Kullba
k{Leibler proje
tions of the generat-

ing distribution, 
orresponding to training networks

with an in�nite amount of data. However, real prob-

lems are 
hara
terized by �nite data sets, sometimes
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Figure 4: Density plots of Spearman's and Kendall's

rank 
orrelation 
oeÆ
ient obtained from pooling ea
h

of the 3000 simulations on the set G

5

of all �ve node

LDAGs (5A) and a set G

e

5

all �ve node Markov in-

equivalent LDAGs (5E).

quite small, so that the vagaries of sample variation

and sensitivity to priors, not to mention problems with

missing data, will probably exa
erbate the situation.

Although we have used small networks, it seems to

us likely that our 
on
lusions will hold for networks

with many more nodes, espe
ially if in the generating

network the Markov blanket of the 
lass node is small.

7 Con
lusions

Based on a simulation study on the set of all four node

and �ve node LDAGs, and assuming an in�nite train-

ing set, we have estimated that �nding good or opti-

mal 
lassi�ers using a model sele
tion pro
edure based

upon marginal likelihood might be e�e
tive in only

30% or fewer o

asions, and in some 
ases 
ould pro-

du
e very bad 
lassi�ers. Thus, although the 
riterion

of maximizing the marginal likelihood 
an in prin
i-

ple �nd optimal Bayesian network 
lassi�ers, given a

suÆ
iently large amount of data, in pra
ti
e it may

not be the best s
ore to use for guiding the sear
h

among Bayesian network 
lassi�ers. Our 
on
lusions

e
ho those of Kontkanen et al. (1999) and Friedman

et al. (1997), who based their 
on
lusions on analyses

of real data sets.
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