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Abstract

There is much interest in constructing from
datasets Bayesian networks which are effi-
cient, or even optimal, for classification pur-
poses. Most search strategies usually dis-
criminate between networks by comparing
their marginal likelihood score, but recently
it has been suggested that search strategies
for classifiers should instead select among
models using alternative scores. This paper
contributes to this discussion by presenting
the results of simulations on the sets of all di-
rected acyclic graphs on four and five nodes.
Our results add evidence to earlier indica-
tions that the marginal likelihood is likely to
be a poor criterion to use for classifier selec-
tion.
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1 Introduction

Let C denote a discrete class random variable and A a
set of discrete attribute random variables, taking val-
ues in the spaces C and A respectively. The classi-
fication problem is to predict the value ¢ € C of the
class variable C' given a value a € A of the attributes
A. If the joint probability distribution P(C, A) were
known, then the natural predictor for C' given A = a
is that state ¢(a) € C which maximizes p(c|a). (In-
deed this is the Bayes act under a 0 — 1 loss function.)
If, furthermore, P is directed Markov with respect to
a directed acyclic graph (DAG) ¢ having the nodes
V = {C, A}, then the Bayes act for selecting among all
Bayesian networks having nodes V' would be to select
g endowed with the generating distribution P(C, A).
For a recent comprehensive treatment of Bayesian net-
works see Cowell et al. (1999).

Typically in classification problems neither g nor
P(C, A) will be known. Then one approach to the clas-
sification problem is to find a Bayesian network, con-
sisting of the variables C' and A, which provides a good
fit to the data from which the conditional probabilities
p(c|a) may be estimated reliably. A commonly used
score to judge the relative fits of alternative Bayesian
network models is the marginal likelihood. For more
details of these approaches see: Buntine(1994, 1996);
Sanguesa and Cortes (1997); and Heckerman (1998).
Unfortunately, the space of possible Bayesian network
structures grows rapidly in size with the number of
nodes in the graph (Robinson 1977), which makes an
exhaustive comparison of all graphical models infeasi-
ble (except for graphs having a small number of nodes)
and search heuristics become mandatory. One should
expect a good heuristic search should find networks
having a marginal likelihood close to the maximum,
and one might hope that such networks would them-
selves be close to being optimal for use as classifiers.

Recently, however, Kontkanen et al. (1999) have ques-
tioned the logic of selecting among Bayesian net-
work classifiers using the marginal likelihood, which
is equivalent to using a log-scoring rule on the joint
distribution, when a classifier will be judged by its pre-
dictive accuracy under a 0—1 loss function. They point
to examples for which such induced networks perform
badly at classification. Instead they argue that better
classifiers should be sought using scoring rules more
appropriate to the classification task. Friedman et al.
(1997) have voiced similar concerns.

In this paper we compare how the classification rates of
alternative Bayesian networks vary with their predic-
tive performance (or rather, the asymptotic increase
in the marginal likelihood per case). We do this by
taking a specific network, which we denote by mg, on
four binary nodes, and generating at random a set of
probability distributions directed Markov with respect
to mg. For each simulated distribution, the asymp-
totic classification rate (r) and asymptotic expected



increase per case in the marginal likelihood score (1)
are computed for each of the 543 possible Bayesian net-
works on four nodes We perform a similar set of simu-
lations on the set of graphs on five nodes. In essence, if
there were a systematic improvement of classification
rate r with predictive score [, then a search procedure
based upon marginal likelihood could be justified.

The plan of the rest of the paper is as follows. In
the next section we define the expected classification
rate of a distribution, and give a simple proof that if
P(C, A) is the generating distribution, then P(C| A)
is also optimal in terms of expected classification. In
Section 3 we relate the asymptotic increase in the mar-
ginal likelihood per case of a Bayesian network to its
Kullback—Leibler divergence from the generating dis-
tribution. In Section 4 classification rates are illus-
trated for data generated from a particular Bayesian
network on 20 nodes. Section 5 presents some essential
discussion on Markov equivalent graphs. In Section 6
are presented the description and results of computer
simulations on the sets of all four- and five-node la-
belled directed acyclic graphs (LDAGs). This is fol-
lowed by the conclusion.

2 An optimal classification
distribution

Suppose that a single sample is drawn from the prob-
ability distribution P(C, A) having a given configura-
tion a € A of the set of variables A. Suppose that for
each a we denote by ¢é(a) the class for which p(c|a)
attains a maximum (if this is not unique, choose any
such class arbitrarily); then for the sampled configu-
ration the probability that ¢ = é(a) will be p(é(a) | a);
this will be the probability of a correct classification
given a. We define the expected classification rate rp
of the distribution P, obtained on averaging over all
attribute configurations a, to be

rp:=y_ p(&a)|a)p(a). (1)

Now suppose that Q(C, A) is an alternative distribu-
tion, and let ¢(a) denote the class for which ¢(c|a)
attains a maximum (again breaking ties arbitrarily).
Then, given a, the distribution @ will correctly classify
the case sampled from P with probability p(é(a) | a) <
p(¢(a)|a). Again, averaging over all a we may define
expected classification rate rg| p of @ with respect to
P:

ro|p =Y p(E(a)| a)p(a), (2)

Clearly rp > rg|p, and rp = rp|p. Thus we have
shown that a probability distribution which generates

data is also the optimal choice (Bayes act) for clas-
sification the data: no other probability distribution
can classify better in expectation (though some may
do as well.) Put another way, the joint probability dis-
tribution uniquely chosen as the Bayes act under the
log-scoring rule is simultaneously an optimal distribu-
tion to choose — though not necessarily uniquely so
— as the basis for a Bayes act for classification un-
der the 0 — 1 scoring rule. Note that this result does
not require that the distributions P or ) be directed
Markov with respect to some pair of graphs; we now
consider the case in which this occurs.

3 Optimal classification using
Bayesian networks

Let Gp and Gg be Bayesian networks in the discrete
random variables {C, A} representing directed Markov
probability distributions P and @) respectively. Then,
as shown in Section 2, if P is the distribution gener-
ating the data, Gp will be optimal for classifying the
cases in the database. In Section 5 we give some suf-
ficient conditions under which Gg will also be optimal
for classifying C' given A, but first we introduce the
marginal likelihood, and show how it is related to a
Kullback—Leibler divergence for asymptotically large
samples.

3.1 Asymptotic marginal likelihood and
Kullback-Leibler divergence

Suppose that a complete database Dy of N indepen-
dent cases is generated from P(C, A), i.e. from the Gp
whose structure is assumed unknown. Let M denote
the set of all LDAGs having nodeset V = {C} U A.
Each model m € M is parameterized by a set of pa-
rameters, #,, say. In the Bayesian approach to model
selection, a prior P(f,, | m) is specified for the parame-
ters, and the marginal likelihood of the data Dy under
the model is calculated; it is given by
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If all models in M are considered a-priori equally
likely, then p(m|Dy) x p(Dyn|m), and so choosing
the model having maximum posterior probability be-
comes equivalent to choosing the model having the
highest marginal likelihood.

Now suppose that a new complete case ¢ is observed.
Then the change in the marginal likelihood, given the
previous data, Dy, is given by the factor

p(6, Dy |m)/p(Dn | m)
- /Mﬂﬂmmm@ﬂDmmwﬁp

p(0|Dy,m) =



Now if the number of cases IV in the dataset Dy is suf-
ficiently large then, under mild conditions on the prior
P(6,, | m), the posterior density p(6, | Dy, m) will be
very sharply peaked around the maximum likelihood
estimate 6,,(Dn), so that to a good approximation

p(0| Dn,m) = p(5| 6 (D), m). (4)

Writing 0, = imy_so0 ém(DN), we thus obtain the
asymptotic additive change in the log-marginal likeli-
hood for the single observation  to be

10g p(8 | 1, m). (5)

We can interpret (5) as the logarithmic penalty that
the model m trained on a sufficiently large dataset
would obtain for its probability prediction for the next
case 6.

Now the data generating distribution P(C, A) will gen-
erate 0 with probability p(d), and hence would itself
accrue a logarithmic penalty logp(d). The difference
between this penalty and that due to model m in (5),
will be log p(8) — log p(8 | fm, m) having expectation

p(d)
gpw) log o6 1)’ (6)

where the sum is over all configurations §: this expec-
tation is simply the Kullback-Leibler divergence be-
tween the two distributions.

Thus we have related the expected change per case in
the asymptotic log marginal likelihood of a model to
the Kullback—Leibler divergence of its expected distri-
bution from the generating distribution.

Now, it is shown by Cowell (1996) (see also Cowell
et al. (1999), Theorem 11.1) that the distribution P,
directed Markov with respect the DAG m which min-
imizes the Kullback—Leibler divergence K (P, P,,) =
Ep{logp(z)/pm(x)} is the one for which the con-
ditional probabilities py, (x| pa(z)™) agree with each
p(z | pa(z)™) calculated from P for every node z in
the graph m, (here pa(z)™ denotes the parents of z in
m).

Thus, provided the parameterization of the model m
exhibits local meta independence, (Dawid and Lau-
ritzen 1993), we have the following result: Given
a generating distribution P(X) and a DAG m in
the discrete random wvariables X, the distribution
P, (X) directed Markov with respect to m which min-
imizes the Kullback—Leibler divergence K(P,Pp) =
Ep{logp(z)/pm (x)} is the same as would be obtained
either as the mazximum likelihood estimate, or as
the posterior expectation of 6,, under mild condi-
tions on the prior P,,(0,, | m), using an asymptotically
large number of independent observations drawn from
P(X).

4 Example: CHILD

The CHILD network (Spiegelhalter and Cowell 1992;
Spiegelhalter et al. 1993; Cowell et al. 1999), has
twenty nodes: we shall take its DISEASE node as our
classification node; it has six states.

Using the CHILD network we generated two indepen-
dent datasets each of 10,000 cases. The first dataset
was used to train CHILD together with the naive Bayes
network (in which all attributes are conditionally in-
dependent give the class variable). It was also used
to search for and train the best scoring (with respect
to log-score) Chow—Liu tree (Chow and Liu 1968) and
TAN (Tree Augmented Naive Bayes) network (Fried-
man et al. 1997). All four trained networks were then
used to classify the data in the second data set, cumu-
lating their successes; in addition their joint predictive
log-scores were evaluated. The results are shown in
Table 1.

We see that the CHILD network has the best classifica-
tion rate of 88.56%; given the size of the data set this is
probably an accurate estimate of the classification rate
for DISEASE. The TAN network is second best, both
in terms of log-score and classification accuracy. This
small table suggests a direct link between predictive
and classification accuracy. The simulations described
in Section 6 indicates that things are not so simple,
but before then we need to make some observations
concerning Markov equivalence.

Table 1: Classification accuracy and logarithmic scores
using data simulated from CHILD network.

Graphical Model Log Score Classification rate
CHILD -121838 88.56%
TAN -123147 87.90%
Chow-Liu Tree -125112 86.26%
Naive Bayes -144072 84.69%

5 Markov equivalent optimal
classifiers

Suppose that the generating model mq with distribu-
tion P were a subgraph of the DAG m. Then one could
assign p,, (z | pa(z)™) = p(z | pa(z)™°) and have P, =
P. One can indeed go further, by considering Markov
equivalent graphs, that is, distinct graphs representing
the same conditional independence relations. (Fryden-
berg (1990) gave conditions for two chain graphs — of
which DAGs are a special subclass — to be Markov
equivalent.) If m§ is any graph Markov equivalent to
mo and m§ is a subgraph of m, then one can assign
conditional probabilities p,, (x| pa(z)™) to each node



of m such that the distribution P, exactly matches
that of P. Hence, by the results of Section 3, any such
distribution will also be an optimal classifier (for C
given A).

We can go even further in identifying optimal classi-
fiers, by considering the Markov blanket B := bl(C) C
A of the node C in mg. We have P(C'| A) = P(C'| B);
that is for classification purposes C' is independent of
A\ B, given B. For some sub-configuration b € B
of the configuration a, we will have there have rp =

225 P(E(B) [D)p(b)-

We have already seen that rp > rg | p for any distri-
bution (). Suppose that mg and m have the same local
structure L(C) at C defined as follows: in both models
the node C has the same set of parents and children,
and furthermore that each of node C’s children has
the same set of parents in both models. Then we can
assign to m a distribution () whose conditional prob-
abilities of the nodes C and each of its children (given
their respective parents) have the same values as arise
in P. Under these conditions, then whatever assign-
ment is made to the other conditional probabilities to
ensure () is directed Markov with respect to m, @ will
be optimal as a classifier for C' given A.

Combined with the two previous results, we have the
following lemma.

Lemma 1.

Let P be directed Markov with respect to the DAG
mg having nodes consisting of a class node C' and set
of attribute nodes A. Let QILD(C)’E denote the set of all
LDAGs which are Markov equivalent to any graph hav-
ing the same local structure L(C) at C' as mg. Then
for any LDAG m which contains some graph of QILJ(C)’E
as a subgraph, there exists a distribution @ directed
Markov with respect to m, which has the same — and
hence optimal — classification rate of C' given A as

the distribution P.

The characterization given in Lemma 1 is sufficient
for optimal classifiers, but it cannot be necessary: in-
deed it is straightforward to construct some directed
Markov distributions P for which there is some opti-
mal classification distribution ) directed Markov over

a DAG m where m ¢ QILD(C)’C.

6 A simulation study

We ran two sets of similar simulation studies, one using
all four node LDAGs, the other using all five node
LDAGs. The experiments were similar in nature, so we
first describe the experiments on four node networks
first in detail, and then more briefly the experiments
on five node Bayesian networks.

6.1 The four-node network experiments

For these, the DAG mg shown on the left Figure 1 was
taken as the generating network in all four-node net-
work simulations. The node C'is the classification vari-
able, the remaining nodes being the attributes. Note
that all attributes are in the Markov blanket of the
class node. All nodes were binary. In each simula-
tion, a probability distribution directed Markov with
respect to mgo was generated at random, by the fol-
lowing method. Each of the conditional probabilities
Py(C| A1) and Py(As | C, As) for each parent configu-
ration, together with the unconditional probabilities,
Py(Ay), Py(Az), were sampled independently from
Beta(1,1) (that is, flat) priors. The product of these
simulated distributions defined the joint distribution
Py(C, Ay, Ay, A3). Next, for each graph m € Gy,
where G4 is the set of 543 LDAGs on the four nodes
C, Ay, Az, Az, the Kullback—Leibler projection of Py
onto m, denoted by P,,(C, Ay, Ay, A3), was found. It
was used to evaluate the Kullback-Leibler divergence
K (Py, Py,) and the expected classification rate 7p,, | p,
of P, given Py (using (2)). Thus each run generated
543 pairs of numbers. Examples of scatterplots pro-
duced by such samples are shown in Figure 2. For
each such set of number pairs, Spearman’s rank cor-
relation coefficient and Kendall’s rank correlation co-
efficient were evaluated. In all, 3,000 such simulations
were performed, leading to 3,000 pairs of values for the
rank correlation coefficients. Their values are plotted
as histogram density plots in Figure 3.

A similar set of 3,000 simulations was performed using
a full subset Gf C G, of Markov inequivalent LDAGs
(numbering 185 in all); histograms of the rank corre-
lation coefficients are also plotted in Figure 3.

Ay

Figure 1: Generating models used in the four node
(left) and five node (right) experiments.

6.2 Five node experiments

A similar set of simulations was performed using the
set of all LDAGs on five nodes, G5, of which there are
29,281, and a complete subset Gf C G5 of Markov in-
equivalent LDAGs on five nodes, there being 8,782 of
these. 1,600 simulations were performed on each of
these two sets of graphs, the data generating model,
which we also call my, is on the right in Figure 1. His-



togram density plots of the rank correlation coefficients
are shown in Figure 4.

-0.943, -0.828 -0.884, -0.755 -0.867, -0.752
~ o~
S 4 [] S 'i ® -‘
@ B @ 1 @
2 i o H <3 J 3 g 21 l'
5 o ° ° S o 8 i
o &4 s 84 [ | <
g s g o] i g 3 -
a 1 a i 5 o ] [
g ] L g ] § g
=) T T 1 o T T T T TT =) L B B
0.55 0.65 0.58 0.62 0.66 0.62 0.66 0.70
Classification rate Classification rate Classification rate
-0.823, -0.664 -0.819, -0.643 -0.683, -0.563
N 1§ ©
= 4 S [ o B
s Ok s °F . 51 "1
2 42° 4 g o e °
T A ! 2 3] 8 =T &3
3 o L] o o s S - 8
. = ° I :
[=] o 4
s ] s ] ’ S i
3 4 3 4 B
S T T T o T T T S T T T T T
0.55 0.60 0.65 0.50 0.55 0.60 0.65 050 052 0.54
Classification rate Classification rate Classification rate
-0.492, -0.403 -0.480, -0.416 -0.372, -0.289
3
© . 8 = °°: b :° : '
g g ° . g 5 B ol
S S o 5 g S o
£ < R § &1
a8 B S 8 LX) .° a 1 00
s 4 ° g o gl ° e
o T T T T 1T S B} L
0.610 0.620 0.630 0.52 0.56 0.590 0.605 0.620
Classification rate Classification rate Classification rate
-0.345, -0.269 -0.227, -0.189 0,0
«
f " s 8 8 ]
S
g 2 i 0‘..3 § 2 Jesns s g i
g &e g ° 5 4
23 . g 2 ms ? 37
2 > =
a 1ss o l.‘ a o 88 8 [ a .
g | 94 g g | |
= T T T T S S LI B N B |
055 0.57 0.59 050 0.54 0.58 05 07 09

Classification rate Classification rate Classification rate

Figure 2: Scatterplots of Kullback—Leibler divergence
vs. classification rate from a selection of twelve simu-
lations on the set of all four node LDAGs. The figures
above each plot are Spearman’s and Kendall’s rank
correlation coefficients respectively.

6.3 Interpreting the results

We now comment on the plots obtained from the sim-
ulation runs. First note that the generating model
is simple to locate in each scatterplot — it has zero
Kullback-Leibler divergence and the highest possible
classification rate, and hence is located at the bot-
tom right in each scatterplot. Now for overall predic-
tive performance to be indicative of good classification
performance, low Kullback—Leibler divergence should
be strongly associated with high classification. In or-
der to quantify the dependence of classification rate
against divergence for each simulation, we calculated
Spearman’s and Kendall’s rank correlation coefficients;
density plots in the forms of histograms of these val-

ues are shown in Figure 3 for the simulations based on
four-node LDAGs, and in Figure 4 for the simulations
based on five-node LDAGs, all bin-widths being 0.1.

Note the somewhat anomalous jump in the interval
(—0.1,0]. This is due to those simulations in which,
with the sampled distribution, all graphs were opti-
mal as classifiers (as in the final plot of Figure 2. (In-
cidentally, such distributions show that the conditions
of Lemma 1 are sufficient but not necessary.) The
fractions of such runs are shown in the plots by the
horizontal line in the rectangle, with the area above
the line representing these situations where all graphs
are equally optimal as classifiers.
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Figure 3: Density plots of Spearman’s and Kendall’s
rank correlation coefficient obtained from pooling each
of the 1600 simulations on the set G4 of all four node
LDAGs (4A) and a set G all four node Markov in-
equivalent LDAGs (4E).

From the histograms we see that the mode (in the
Spearman’s rank plots) is in the range (-0.9,-0.8], with
only around 20% of such runs in this range, and only
around 30% of runs achieving a correlation of less
than -0.8. The scatterplots shown in Figure 2 indi-
cate that a correlation of -0.8 or less is generally re-
quired for finding good classifiers using a search based
on marginal likelihood. These results indicate that a
classifier search based on marginal likelihood may be
effective on only around 30% or fewer of occasions.
(Similar conclusions can be drawn from the Kendall’s
rank correlation coefficient histograms.) Even this
may be an overestimate, because our analysis has been
based on Kullback—Leibler projections of the generat-
ing distribution, corresponding to training networks
with an infinite amount of data. However, real prob-
lems are characterized by finite data sets, sometimes
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Figure 4: Density plots of Spearman’s and Kendall’s
rank correlation coefficient obtained from pooling each
of the 3000 simulations on the set G5 of all five node
LDAGs (5A) and a set G¢ all five node Markov in-
equivalent LDAGs (5E).

quite small, so that the vagaries of sample variation
and sensitivity to priors, not to mention problems with
missing data, will probably exacerbate the situation.
Although we have used small networks, it seems to
us likely that our conclusions will hold for networks
with many more nodes, especially if in the generating
network the Markov blanket of the class node is small.

7 Conclusions

Based on a simulation study on the set of all four node
and five node LDAGs, and assuming an infinite train-
ing set, we have estimated that finding good or opti-
mal classifiers using a model selection procedure based
upon marginal likelihood might be effective in only
30% or fewer occasions, and in some cases could pro-
duce very bad classifiers. Thus, although the criterion
of maximizing the marginal likelihood can in princi-
ple find optimal Bayesian network classifiers, given a
sufficiently large amount of data, in practice it may
not be the best score to use for guiding the search
among Bayesian network classifiers. Our conclusions
echo those of Kontkanen et al. (1999) and Friedman
et al. (1997), who based their conclusions on analyses
of real data sets.
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