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Abstrat

There is muh interest in onstruting from

datasets Bayesian networks whih are eÆ-

ient, or even optimal, for lassi�ation pur-

poses. Most searh strategies usually dis-

riminate between networks by omparing

their marginal likelihood sore, but reently

it has been suggested that searh strategies

for lassi�ers should instead selet among

models using alternative sores. This paper

ontributes to this disussion by presenting

the results of simulations on the sets of all di-

reted ayli graphs on four and �ve nodes.

Our results add evidene to earlier india-

tions that the marginal likelihood is likely to

be a poor riterion to use for lassi�er sele-

tion.

Keywords: Bayesian network, lassi�er,

lassi�ation rate, model searh, marginal likelihood,

Kullbak{Leibler divergene.

1 Introdution

Let C denote a disrete lass random variable and A a

set of disrete attribute random variables, taking val-

ues in the spaes C and A respetively. The lassi-

�ation problem is to predit the value  2 C of the

lass variable C given a value a 2 A of the attributes

A. If the joint probability distribution P (C;A) were

known, then the natural preditor for C given A = a

is that state ̂(a) 2 C whih maximizes p( j a). (In-

deed this is the Bayes at under a 0� 1 loss funtion.)

If, furthermore, P is direted Markov with respet to

a direted ayli graph (DAG) g having the nodes

V = fC;Ag, then the Bayes at for seleting among all

Bayesian networks having nodes V would be to selet

g endowed with the generating distribution P (C;A).

For a reent omprehensive treatment of Bayesian net-

works see Cowell et al. (1999).

Typially in lassi�ation problems neither g nor

P (C;A) will be known. Then one approah to the las-

si�ation problem is to �nd a Bayesian network, on-

sisting of the variables C and A, whih provides a good

�t to the data from whih the onditional probabilities

p( j a) may be estimated reliably. A ommonly used

sore to judge the relative �ts of alternative Bayesian

network models is the marginal likelihood. For more

details of these approahes see: Buntine(1994, 1996);

Sanguesa and Cortes (1997); and Hekerman (1998).

Unfortunately, the spae of possible Bayesian network

strutures grows rapidly in size with the number of

nodes in the graph (Robinson 1977), whih makes an

exhaustive omparison of all graphial models infeasi-

ble (exept for graphs having a small number of nodes)

and searh heuristis beome mandatory. One should

expet a good heuristi searh should �nd networks

having a marginal likelihood lose to the maximum,

and one might hope that suh networks would them-

selves be lose to being optimal for use as lassi�ers.

Reently, however, Kontkanen et al. (1999) have ques-

tioned the logi of seleting among Bayesian net-

work lassi�ers using the marginal likelihood, whih

is equivalent to using a log-soring rule on the joint

distribution, when a lassi�er will be judged by its pre-

ditive auray under a 0�1 loss funtion. They point

to examples for whih suh indued networks perform

badly at lassi�ation. Instead they argue that better

lassi�ers should be sought using soring rules more

appropriate to the lassi�ation task. Friedman et al.

(1997) have voied similar onerns.

In this paper we ompare how the lassi�ation rates of

alternative Bayesian networks vary with their predi-

tive performane (or rather, the asymptoti inrease

in the marginal likelihood per ase). We do this by

taking a spei� network, whih we denote by m

0

, on

four binary nodes, and generating at random a set of

probability distributions direted Markov with respet

to m

0

. For eah simulated distribution, the asymp-

toti lassi�ation rate (r) and asymptoti expeted



inrease per ase in the marginal likelihood sore (l)

are omputed for eah of the 543 possible Bayesian net-

works on four nodes We perform a similar set of simu-

lations on the set of graphs on �ve nodes. In essene, if

there were a systemati improvement of lassi�ation

rate r with preditive sore l, then a searh proedure

based upon marginal likelihood ould be justi�ed.

The plan of the rest of the paper is as follows. In

the next setion we de�ne the expeted lassi�ation

rate of a distribution, and give a simple proof that if

P (C;A) is the generating distribution, then P (C jA)

is also optimal in terms of expeted lassi�ation. In

Setion 3 we relate the asymptoti inrease in the mar-

ginal likelihood per ase of a Bayesian network to its

Kullbak{Leibler divergene from the generating dis-

tribution. In Setion 4 lassi�ation rates are illus-

trated for data generated from a partiular Bayesian

network on 20 nodes. Setion 5 presents some essential

disussion on Markov equivalent graphs. In Setion 6

are presented the desription and results of omputer

simulations on the sets of all four- and �ve-node la-

belled direted ayli graphs (LDAGs). This is fol-

lowed by the onlusion.

2 An optimal lassi�ation

distribution

Suppose that a single sample is drawn from the prob-

ability distribution P (C;A) having a given on�gura-

tion a 2 A of the set of variables A. Suppose that for

eah a we denote by ̂(a) the lass for whih p( j a)

attains a maximum (if this is not unique, hoose any

suh lass arbitrarily); then for the sampled on�gu-

ration the probability that  = ̂(a) will be p(̂(a) j a);

this will be the probability of a orret lassi�ation

given a. We de�ne the expeted lassi�ation rate r

P

of the distribution P , obtained on averaging over all

attribute on�gurations a, to be

r

P

:=

X

a

p(̂(a) j a)p(a): (1)

Now suppose that Q(C;A) is an alternative distribu-

tion, and let ~(a) denote the lass for whih q( j a)

attains a maximum (again breaking ties arbitrarily).

Then, given a, the distribution Q will orretly lassify

the ase sampled from P with probability p(~(a) j a) �

p(̂(a) j a). Again, averaging over all a we may de�ne

expeted lassi�ation rate r

Q jP

of Q with respet to

P :

r

Q jP

:=

X

a

p(~(a) j a)p(a); (2)

Clearly r

P

� r

Q jP

, and r

P

= r

P jP

. Thus we have

shown that a probability distribution whih generates

data is also the optimal hoie (Bayes at) for las-

si�ation the data: no other probability distribution

an lassify better in expetation (though some may

do as well.) Put another way, the joint probability dis-

tribution uniquely hosen as the Bayes at under the

log-soring rule is simultaneously an optimal distribu-

tion to hoose | though not neessarily uniquely so

| as the basis for a Bayes at for lassi�ation un-

der the 0 � 1 soring rule. Note that this result does

not require that the distributions P or Q be direted

Markov with respet to some pair of graphs; we now

onsider the ase in whih this ours.

3 Optimal lassi�ation using

Bayesian networks

Let G

P

and G

Q

be Bayesian networks in the disrete

random variables fC;Ag representing direted Markov

probability distributions P and Q respetively. Then,

as shown in Setion 2, if P is the distribution gener-

ating the data, G

P

will be optimal for lassifying the

ases in the database. In Setion 5 we give some suf-

�ient onditions under whih G

Q

will also be optimal

for lassifying C given A, but �rst we introdue the

marginal likelihood, and show how it is related to a

Kullbak{Leibler divergene for asymptotially large

samples.

3.1 Asymptoti marginal likelihood and

Kullbak{Leibler divergene

Suppose that a omplete database D

N

of N indepen-

dent ases is generated from P (C;A), i.e. from the G

P

whose struture is assumed unknown. Let M denote

the set of all LDAGs having nodeset V = fCg [ A.

Eah model m 2 M is parameterized by a set of pa-

rameters, �

m

say. In the Bayesian approah to model

seletion, a prior P (�

m

jm) is spei�ed for the parame-

ters, and the marginal likelihood of the dataD

N

under

the model is alulated; it is given by

p(D

N

jm) =

Z

p(D

N

j �

m

;m)p(�

m

jm)d�

m

: (3)

If all models in M are onsidered a-priori equally

likely, then p(m jD

N

) / p(D

N

jm), and so hoosing

the model having maximum posterior probability be-

omes equivalent to hoosing the model having the

highest marginal likelihood.

Now suppose that a new omplete ase Æ is observed.

Then the hange in the marginal likelihood, given the

previous data, D

N

, is given by the fator

p(Æ jD

N

;m) = p(Æ;D

N

jm)=p(D

N

jm)

=

Z

p(Æ j �

m

;m)p(�

m

jD

N

;m)d�

m

:



Now if the number of asesN in the dataset D

N

is suf-

�iently large then, under mild onditions on the prior

P (�

m

jm), the posterior density p(�

m

jD

N

;m) will be

very sharply peaked around the maximum likelihood

estimate

^

�

m

(D

N

), so that to a good approximation

p(Æ jD

N

;m) = p(Æ j

^

�

m

(D

N

);m): (4)

Writing

^

�

m

= lim

N!1

^

�

m

(D

N

), we thus obtain the

asymptoti additive hange in the log-marginal likeli-

hood for the single observation Æ to be

log p(Æ j

^

�

m

;m): (5)

We an interpret (5) as the logarithmi penalty that

the model m trained on a suÆiently large dataset

would obtain for its probability predition for the next

ase Æ.

Now the data generating distribution P (C;A) will gen-

erate Æ with probability p(Æ), and hene would itself

arue a logarithmi penalty log p(Æ). The di�erene

between this penalty and that due to model m in (5),

will be log p(Æ)� log p(Æ j

^

�

m

;m) having expetation

X

Æ

p(Æ) log

p(Æ)

p(Æ j

^

�

m

;m)

; (6)

where the sum is over all on�gurations Æ: this expe-

tation is simply the Kullbak{Leibler divergene be-

tween the two distributions.

Thus we have related the expeted hange per ase in

the asymptoti log marginal likelihood of a model to

the Kullbak{Leibler divergene of its expeted distri-

bution from the generating distribution.

Now, it is shown by Cowell (1996) (see also Cowell

et al. (1999), Theorem 11.1) that the distribution P

m

direted Markov with respet the DAG m whih min-

imizes the Kullbak{Leibler divergene K(P; P

m

) =

E

P

flog p(x)=p

m

(x)g is the one for whih the on-

ditional probabilities p

m

(x j pa(x)

m

) agree with eah

p(x j pa(x)

m

) alulated from P for every node x in

the graph m, (here pa(x)

m

denotes the parents of x in

m).

Thus, provided the parameterization of the model m

exhibits loal meta independene, (Dawid and Lau-

ritzen 1993), we have the following result: Given

a generating distribution P (X) and a DAG m in

the disrete random variables X, the distribution

P

m

(X) direted Markov with respet to m whih min-

imizes the Kullbak{Leibler divergene K(P; P

m

) =

E

P

flog p(x)=p

m

(x)g is the same as would be obtained

either as the maximum likelihood estimate, or as

the posterior expetation of �

m

under mild ondi-

tions on the prior P

m

(�

m

jm), using an asymptotially

large number of independent observations drawn from

P (X).

4 Example: Child

The Child network (Spiegelhalter and Cowell 1992;

Spiegelhalter et al. 1993; Cowell et al. 1999), has

twenty nodes: we shall take its Disease node as our

lassi�ation node; it has six states.

Using the Child network we generated two indepen-

dent datasets eah of 10,000 ases. The �rst dataset

was used to train Child together with the na��ve Bayes

network (in whih all attributes are onditionally in-

dependent give the lass variable). It was also used

to searh for and train the best soring (with respet

to log-sore) Chow{Liu tree (Chow and Liu 1968) and

TAN (Tree Augmented Na��ve Bayes) network (Fried-

man et al. 1997). All four trained networks were then

used to lassify the data in the seond data set, umu-

lating their suesses; in addition their joint preditive

log-sores were evaluated. The results are shown in

Table 1.

We see that the Child network has the best lassi�a-

tion rate of 88.56%; given the size of the data set this is

probably an aurate estimate of the lassi�ation rate

for Disease. The TAN network is seond best, both

in terms of log-sore and lassi�ation auray. This

small table suggests a diret link between preditive

and lassi�ation auray. The simulations desribed

in Setion 6 indiates that things are not so simple,

but before then we need to make some observations

onerning Markov equivalene.

Table 1: Classi�ation auray and logarithmi sores

using data simulated from Child network.

Graphial Model Log Sore Classi�ation rate

Child -121838 88.56%

TAN -123147 87.90%

Chow{Liu Tree -125112 86.26%

Na��ve Bayes -144072 84.69%

5 Markov equivalent optimal

lassi�ers

Suppose that the generating model m

0

with distribu-

tion P were a subgraph of the DAGm. Then one ould

assign p

m

(x j pa(x)

m

) = p(x j pa(x)

m

0

) and have P

m

=

P . One an indeed go further, by onsidering Markov

equivalent graphs, that is, distint graphs representing

the same onditional independene relations. (Fryden-

berg (1990) gave onditions for two hain graphs | of

whih DAGs are a speial sublass | to be Markov

equivalent.) If m

e

0

is any graph Markov equivalent to

m

0

and m

e

0

is a subgraph of m, then one an assign

onditional probabilities p

m

(x j pa(x)

m

) to eah node



of m suh that the distribution P

m

exatly mathes

that of P . Hene, by the results of Setion 3, any suh

distribution will also be an optimal lassi�er (for C

given A).

We an go even further in identifying optimal lassi-

�ers, by onsidering the Markov blanket B := bl(C) �

A of the node C in m

0

. We have P (C jA) = P (C jB);

that is for lassi�ation purposes C is independent of

A n B, given B. For some sub-on�guration b 2 B

of the on�guration a, we will have there have r

P

=

P

b

p(̂(b) j b)p(b).

We have already seen that r

P

� r

Q jP

for any distri-

bution Q. Suppose that m

0

and m have the same loal

struture L(C) at C de�ned as follows: in both models

the node C has the same set of parents and hildren,

and furthermore that eah of node C's hildren has

the same set of parents in both models. Then we an

assign to m a distribution Q whose onditional prob-

abilities of the nodes C and eah of its hildren (given

their respetive parents) have the same values as arise

in P . Under these onditions, then whatever assign-

ment is made to the other onditional probabilities to

ensure Q is direted Markov with respet to m, Q will

be optimal as a lassi�er for C given A.

Combined with the two previous results, we have the

following lemma.

Lemma 1.

Let P be direted Markov with respet to the DAG

m

0

having nodes onsisting of a lass node C and set

of attribute nodes A. Let G

L(C);e

P

denote the set of all

LDAGs whih are Markov equivalent to any graph hav-

ing the same loal struture L(C) at C as m

0

. Then

for any LDAGm whih ontains some graph of G

L(C);e

P

as a subgraph, there exists a distribution Q direted

Markov with respet to m, whih has the same | and

hene optimal | lassi�ation rate of C given A as

the distribution P .

The haraterization given in Lemma 1 is suÆient

for optimal lassi�ers, but it annot be neessary: in-

deed it is straightforward to onstrut some direted

Markov distributions P for whih there is some opti-

mal lassi�ation distribution Q direted Markov over

a DAG m where m 62 G

L(C);e

P

.

6 A simulation study

We ran two sets of similar simulation studies, one using

all four node LDAGs, the other using all �ve node

LDAGs. The experiments were similar in nature, so we

�rst desribe the experiments on four node networks

�rst in detail, and then more briey the experiments

on �ve node Bayesian networks.

6.1 The four-node network experiments

For these, the DAG m

0

shown on the left Figure 1 was

taken as the generating network in all four-node net-

work simulations. The node C is the lassi�ation vari-

able, the remaining nodes being the attributes. Note

that all attributes are in the Markov blanket of the

lass node. All nodes were binary. In eah simula-

tion, a probability distribution direted Markov with

respet to m

0

was generated at random, by the fol-

lowing method. Eah of the onditional probabilities

P

0

(C jA

1

) and P

0

(A

3

jC;A

2

) for eah parent on�gu-

ration, together with the unonditional probabilities,

P

0

(A

1

), P

0

(A

2

), were sampled independently from

Beta(1,1) (that is, at) priors. The produt of these

simulated distributions de�ned the joint distribution

P

0

(C;A

1

; A

2

; A

3

). Next, for eah graph m 2 G

4

,

where G

4

is the set of 543 LDAGs on the four nodes

C;A

1

; A

2

; A

3

, the Kullbak{Leibler projetion of P

0

onto m, denoted by P

m

(C;A

1

; A

2

; A

3

), was found. It

was used to evaluate the Kullbak{Leibler divergene

K(P

0

; P

m

) and the expeted lassi�ation rate r

P

m

jP

0

of P

m

given P

0

(using (2)). Thus eah run generated

543 pairs of numbers. Examples of satterplots pro-

dued by suh samples are shown in Figure 2. For

eah suh set of number pairs, Spearman's rank or-

relation oeÆient and Kendall's rank orrelation o-

eÆient were evaluated. In all, 3,000 suh simulations

were performed, leading to 3,000 pairs of values for the

rank orrelation oeÆients. Their values are plotted

as histogram density plots in Figure 3.

A similar set of 3,000 simulations was performed using

a full subset G

e

4

� G

4

of Markov inequivalent LDAGs

(numbering 185 in all); histograms of the rank orre-

lation oeÆients are also plotted in Figure 3.
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Figure 1: Generating models used in the four node

(left) and �ve node (right) experiments.

6.2 Five node experiments

A similar set of simulations was performed using the

set of all LDAGs on �ve nodes, G

5

, of whih there are

29,281, and a omplete subset G

e

5

� G

5

of Markov in-

equivalent LDAGs on �ve nodes, there being 8,782 of

these. 1,600 simulations were performed on eah of

these two sets of graphs, the data generating model,

whih we also all m

0

, is on the right in Figure 1. His-



togram density plots of the rank orrelation oeÆients

are shown in Figure 4.
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Figure 2: Satterplots of Kullbak{Leibler divergene

vs. lassi�ation rate from a seletion of twelve simu-

lations on the set of all four node LDAGs. The �gures

above eah plot are Spearman's and Kendall's rank

orrelation oeÆients respetively.

6.3 Interpreting the results

We now omment on the plots obtained from the sim-

ulation runs. First note that the generating model

is simple to loate in eah satterplot | it has zero

Kullbak{Leibler divergene and the highest possible

lassi�ation rate, and hene is loated at the bot-

tom right in eah satterplot. Now for overall predi-

tive performane to be indiative of good lassi�ation

performane, low Kullbak{Leibler divergene should

be strongly assoiated with high lassi�ation. In or-

der to quantify the dependene of lassi�ation rate

against divergene for eah simulation, we alulated

Spearman's and Kendall's rank orrelation oeÆients;

density plots in the forms of histograms of these val-

ues are shown in Figure 3 for the simulations based on

four-node LDAGs, and in Figure 4 for the simulations

based on �ve-node LDAGs, all bin-widths being 0.1.

Note the somewhat anomalous jump in the interval

(�0:1; 0℄. This is due to those simulations in whih,

with the sampled distribution, all graphs were opti-

mal as lassi�ers (as in the �nal plot of Figure 2. (In-

identally, suh distributions show that the onditions

of Lemma 1 are suÆient but not neessary.) The

frations of suh runs are shown in the plots by the

horizontal line in the retangle, with the area above

the line representing these situations where all graphs

are equally optimal as lassi�ers.
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Figure 3: Density plots of Spearman's and Kendall's

rank orrelation oeÆient obtained from pooling eah

of the 1600 simulations on the set G

4

of all four node

LDAGs (4A) and a set G

e

4

all four node Markov in-

equivalent LDAGs (4E).

From the histograms we see that the mode (in the

Spearman's rank plots) is in the range (-0.9,-0.8℄, with

only around 20% of suh runs in this range, and only

around 30% of runs ahieving a orrelation of less

than -0.8. The satterplots shown in Figure 2 indi-

ate that a orrelation of -0.8 or less is generally re-

quired for �nding good lassi�ers using a searh based

on marginal likelihood. These results indiate that a

lassi�er searh based on marginal likelihood may be

e�etive on only around 30% or fewer of oasions.

(Similar onlusions an be drawn from the Kendall's

rank orrelation oeÆient histograms.) Even this

may be an overestimate, beause our analysis has been

based on Kullbak{Leibler projetions of the generat-

ing distribution, orresponding to training networks

with an in�nite amount of data. However, real prob-

lems are haraterized by �nite data sets, sometimes
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Figure 4: Density plots of Spearman's and Kendall's

rank orrelation oeÆient obtained from pooling eah

of the 3000 simulations on the set G

5

of all �ve node

LDAGs (5A) and a set G

e

5

all �ve node Markov in-

equivalent LDAGs (5E).

quite small, so that the vagaries of sample variation

and sensitivity to priors, not to mention problems with

missing data, will probably exaerbate the situation.

Although we have used small networks, it seems to

us likely that our onlusions will hold for networks

with many more nodes, espeially if in the generating

network the Markov blanket of the lass node is small.

7 Conlusions

Based on a simulation study on the set of all four node

and �ve node LDAGs, and assuming an in�nite train-

ing set, we have estimated that �nding good or opti-

mal lassi�ers using a model seletion proedure based

upon marginal likelihood might be e�etive in only

30% or fewer oasions, and in some ases ould pro-

due very bad lassi�ers. Thus, although the riterion

of maximizing the marginal likelihood an in prini-

ple �nd optimal Bayesian network lassi�ers, given a

suÆiently large amount of data, in pratie it may

not be the best sore to use for guiding the searh

among Bayesian network lassi�ers. Our onlusions

eho those of Kontkanen et al. (1999) and Friedman

et al. (1997), who based their onlusions on analyses

of real data sets.
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