
Statisti
al Aspe
ts of Sto
hasti
 Logi
 Programs

James Cussens

Department of Computer S
ien
e, University of York

Heslington, York, YO10 5DD, UK

j
�
s.york.a
.uk

Abstra
t

Sto
hasti
 logi
 programs (SLPs) and the

various distributions they de�ne are pre-

sented with a stress on their 
hara
terisation

in terms of Markov 
hains. Sampling, pa-

rameter estimation and stru
ture learning for

SLPs are dis
ussed. The appli
ation of SLPs

to Bayesian learning, 
omputational linguis-

ti
s and 
omputational biology are 
onsid-

ered. La�erty's Gibbs-Markov models are


ompared and 
ontrasted with SLPs.

1 INTRODUCTION

: : : I �nd nothing in logisti
 for the dis-


overer but sha
kles : : : if it requires 27 equa-

tions to establish that 1 is a number, how

many will it require to demonstrate a real

theorem? (Poin
ar�e, quoted in (Ma
hover

and Bell, 1977))

There is 
urrently 
onsiderable interest amongst the

AI 
ommunity in developing probabilisti
 knowledge

representations that extend existing approa
hes to in-


orporate domain knowledge and/or relational data

(Ngo and Haddaway, 1997; Friedman et al., 1999; Ker-

sting and De Raedt, 2000; Muggleton, 2000b; Cussens,

2000).

One approa
h to this problem is to integrate proba-

bilisti
 and `logi
al' methods: an idea that has a long

history dating ba
k to (Boole, 1854). The idea is to

use a set of logi
al formulae to en
ode domain knowl-

edge. Boole used propositional logi
, but now we 
an

use �rst-order logi
 to en
ode domain knowledge in a

�rst-order theory. Su
h a theory 
an des
ribe relations

between obje
ts. Probability 
an then be `added' so

that the probability with whi
h an obje
t has some

attribute depends on the attributes whi
h related ob-

je
ts have (Friedman et al., 1999) or, more generally,

so that probabilities depend on what is entailed by the

logi
ally-en
oded domain knowledge (Ngo and Had-

daway, 1997).

Note that there is a long history in statisti
s of work

on `relational learning', i.e. probabilisti
 models where

data are not independent and identi
ally distributed.

Consider a multivariate time series of some sort (e.g.

ARIMA) for the analysis of, say, �nan
ial data. Here

the obje
ts are days and the `attributes' of these ob-

je
ts might be the pri
es of various 
ommodities on

those days. In su
h a model, we have that, e.g. the

pri
e of pork-belly futures on day t is related (or more

pre
isely 
orrelated) with the ex
hange rate of the dol-

lar on day t � 1. In time series the relation between

obje
ts is one of temporal su

ession; in spatial statis-

ti
s, we have more 
omplex spatial relationships.

It is important that future work in the AI 
ommunity

on `relational learning' takes advantage of this existing

work on time series and spatial statisti
s, although this

is not a
hieved here. My motivation for using logi
 to

en
ode relations between obje
ts is simply the 
exi-

bility it gives for expressing all sorts of relations, it is

not motivated by a desire to formalise statisti
al infer-

en
e. Although logi
al analysis is useful in 
larifying

foundations, there 
an be, as Poin
ar�e noted, severe

problems with its appli
ation to real problems.

This paper 
on
erns sto
hasti
 logi
 programs (SLPs);

one approa
h to e�e
ting a marriage between logi
 and

probability whi
h follows this pragmati
 approa
h to

logi
. The paper is organised as follows. Se
tion 2

examines statisti
al aspe
ts of SLPs, giving the vari-

ous distributions that 
an be de�ned with an SLP and

addressing sampling and parameter estimation, and

stru
ture learning. Se
tion 3 argues that the distri-

butions de�ned by SLPs are useful for a number of

appli
ations. Se
tion 4 
ompares SLPs to La�erty's

Gibbs-Markov models and the paper then 
on
ludes

with Se
tion 5.



2 STATISTICAL ASPECTS OF SLPS

This se
tion begins with de�nitions for various types

of SLPs and des
ribes the distributions de�ned by

an SLP, paying parti
ular attention to the 
onne
tion

with Markov 
hains.

De�nition 1 A sto
hasti
 logi
 program (SLP) S is a

de�nite logi
 program where some of the 
lauses are pa-

rameterised with non-negative numbers. A pure SLP

is an SLP where all 
lauses have parameters, as op-

posed to an impure SLP where not all 
lauses have

parameters. A normalised SLP is one where parame-

ters for 
lauses whi
h share the same predi
ate symbol

sum to one. If this is not the 
ase, then we have an

unnormalised SLP.

In this paper we will restri
t attention to pure nor-

malised SLPs, sin
e these have a ni
e 
hara
terisation

in terms of Markov 
hains. Fig 1 shows S

0

, a very sim-

ple example of a pure normalised SLP. Note that the

�rst 
lause in S

0

, although synta
ti
ally legal, would

not be found in a real logi
 program, sin
e it is log-

i
ally equivalent to the simpler 
lause s(X)  p(X).

However, the distributions de�ned by SLPs depend on

the synta
ti
 stru
ture of the underlying logi
 program

in su
h a way that repla
ing 0:4 : s(X) p(X); p(X)

by 0:4 : s(X)  p(X) would 
hange the probability

distributions de�ned by S

0

.

0.4:s(X) :- p(X), p(X). 0.3:p(a). 0.2:q(a).

0.6:s(X) :- q(X). 0.7:p(b). 0.8:q(b).

Figure 1: S

0

: A simple pure, normalised SLP

2.1 DISTRIBUTIONS DEFINED BY SLPS

SLPs asso
iate probability distributions with goals.

Unfortunately la
k of spa
e disallows a proper a

ount

of the role goals play in logi
 programming, so an in-

formal des
ription is given. The essentials are best

understood by 
onsidering SLD-trees, an example of

whi
h is given in Fig 2. An SLD-tree is a sear
h tree

for refutations of the top-level goal at the root of the

tree. In the 
ase of Fig 2 the top level goal is :- s(X)

whi
h is Prolog notation for the �rst-order formula

8X:s(X). Essentially, a 
hild of a goal is produ
ed

by unifying the leftmost atomi
 formula in the goal

with the head of a 
lause in the SLP and repla
ing

that leftmost atomi
 formula with the 
lause body. If

the leftmost atomi
 formula fails to unify with a 
lause

head despite them both sharing the same predi
ate

symbol then a fail 
hild is produ
ed. Sin
e there are

two 
lause heads in S

0

whi
h unify with s(X), the goal

:- s(X) has two (non-failure) 
hildren. Any variable

substitutions required to e�e
t this uni�
ation are ap-

plied to the new goal. So, for example, unifying the

leftmost p(X) of :- p(X),p(X) with 
lause head p(a)

leaves the goal :- p(a).

:- s(X).

:-p(X),p(X). :- q(X).

:-p(a). :- p(b).

fail fail

0.3:{X/a}
0.7:{X/b}

0.2:{X/a}
0.8:{X/b}

0.3:{} 0.7:fail 0.3:fail 0.7:{}

0.4:{}
0.6:{}

Figure 2: Annotated SLD-tree for S

0

An derivation is a bran
h of the SLD-tree. A refu-

tation is a derivation ending with the empty goal 2;

Fig 2 shows that there are four refutations of :- s(X),

two of whi
h instantiate X to a and two whi
h instan-

tiate X to b. Note that Fig 2 also 
ontains two failure

derivations, the leftmost one of whi
h 
orresponds to

an attempt to unify p(a) with p(b).

The exe
ution of a normal logi
 program 
orresponds

to a sear
h for refutations in the SLD-tree; in standard

Prolog this sear
h is a depth-�rst, leftmost-�rst sear
h.

An SLP essentially repla
es this deterministi
 explo-

ration of the SLD-tree with a probabilisti
 one whi
h

we 
an des
ribe in terms of Markov 
hains where the

states of the 
hain are goals.

De�nition 2 Let S be a pure normalised SLP and let

G

0

be a goal. Let l

i

be the parameter asso
iated with


lause C

i

. S and G

0

de�ne a Markov 
hain where the

states of the Markov 
hain are goals G

�

. The initial

state probabilities are:

a

�

=

(

1 if G

�

= G

0

0 otherwise

and the transition probabilities are:

p

��

0

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

l

i

if G

�

0

is a 
hild of

G

�

produ
ed by using C

i

1 if G

�

= G

�

0

= 2

1 if G

�

= G

�

0

= fail

0 otherwise



The absorbing states of the Markov 
hain are 2 and

fail and we identify �nite derivations with in�nite

sequen
es in the Markov 
hain whi
h rea
h either 2

and fail and remain there. This identi�
ation al-

lows the Markov 
hain to de�ne a distribution over all

derivations in the SLD-tree. There are three sorts of

derivations: (i) �nite derivations ending in 2; (ii) �nite

derivations ending in fail and (iii) in�nite derivations.

This distribution over derivations is denoted  

(�;S;G)

where G is the initial goal and � is a ve
tor 
omposed

of the logs of the parameters l

i

. If �

i

(x) is the fre-

quen
y with whi
h 
lause C

i

is used in a derivation x

and �(x) is the ve
tor of all these n 
lause 
ounts we

have

 

(�;S;G)

(x) =

n

Y

i=1

l

�

i

(x)

i

= e

���(x)

(1)

Let R(G) be the set of all refutations of a goal G. Con-

sider now the 
onditional distribution f

(�;S;G)

de�ned

as follows:

f

(�;S;G)

(x)

def

=  

(�;S;G)

(xjx 2 R(G))

Next de�ne:

Z

(�;S;G)

def

=

X

x2R(G)

 

(�;S;G)

(x) =  

(�;S;G)

(R(G))

Z

(�;S;G)

is just the probability (a

ording to  

(�;S;G)

)

that a derivation of G is a refutation. For example we

have Z

(�;S

0

; s(X))

= 0:832. Note that Z

(�;S;2)

= 1

and Z

(�;S;fail)

= 0. For other goals we have

Z

(�;S;G)

=

X

l

i

Z

(�;S;G

0

)

(2)

where the sum is over all G

0

whi
h are 
hildren of G

and where l

i

is the parameter asso
iated with C

i

, the


lause used to generate G

0

from G. It is useful to

think of Z

(�;S;G)

as the `weight' of the subtree below

G, where failure derivations have zero weight.

We now have that

f

(�;S;G)

(x) =

(

Z

�1

(�;S;G)

 

(�;S;G)

(x) if x 2 R(G)

0 if x 62 R(G)

so for refutations r we have from (1)

f

(�;S;G)

(r) = Z

�1

(�;S;G)

e

���(r)

f

(�;S;G)

is then a loglinear model with the 
lause fre-

quen
ies �(r) as features. We 
an also de�ne f

(�;S;G)

in terms of a Markov 
hain. As before we have:

a

�

=

(

1 if G

�

= G

0

0 otherwise

but now the transition probabilities are:

p

��

0

=

8

>

>

>

>

<

>

>

>

>

:

Z

(�;S;G

�

0

)

Z

(�;S;G

�

)

l

i

if G

�

0

is a 
hild of

G

�

produ
ed by using C

i

1 if G

�

= G

�

0

= 2

0 otherwise

(3)

Having now de�ned  

(�;S;G)

and f

(�;S;G)

it is possible

to de�ne p

(�;S;G)

the third sort of distribution de�ned

by an SLP. First re
all that ea
h refutation instanti-

ates the variables in the initial top-level goal. These

instantiations are known as 
omputed answers and we


an use them to de�ne the yields of refutations as fol-

lows:

De�nition 3 The yield Y (r) of a refutation r of a

unit goal G = A is A� where � is the 
omputed an-

swer for G using r. The set of proofs for an atom y

k

is the set X(y

k

) = frjY (r) = y

k

g.

An SLP de�nes a distribution over these yielded atoms

by simple marginalisation:

p

(�;S;G)

(y

k

)

def

=

X

r2X(y

k

)

f

(�;S;G)

(r)

In the 
ase of S

0

, there are two refutations of :- s(X)

that yield the atom s(a) and two that yield s(b). We

have

p

(�;S

0

; s(X))

(s(a)) = (0:036 + 0:12)=0:832 = 0:1875

p

(�;S

0

; s(X))

(s(b)) = (0:196 + 0:48)=0:832 = 0:8125

The distributions  

(�;S;G)

, f

(�;S;G)

and p

(�;S;G)

are

all essentially de�ned in terms of making probabilisti



hoi
es when moving down the SLD-tree. Be
ause of

this they 
an be de�ned in terms of goals rather than

nodes in the SLD-tree. If the logi
 program underlying

the SLP is re
ursive, it may be that the same goal

o

urs more than on
e in the SLD-tree. However, the

SLD-subtree underneath a goal is identi
al wherever a

goal appears in the tree, and if we are always travelling

down the tree we 
an ignore at whi
h parti
ular node

in the tree the goal appears.

In (Cussens, 2000), in 
ontrast, a Markov 
hain is de-

�ned using an SLP whi
h jumps between leaves of the

SLD-tree by �rst ba
ktra
king n steps with (roughly)

probability p

n

(1 � p) and thus arriving at an inte-

rior node of the tree and then probabilisti
ally moving

down the tree (a

ording to  

(�;S;G)

) until a leaf is

rea
hed. In this 
ase the states of the Markov 
hain

are nodes of the SLD-tree rather than goals. Fig 3

illustrates a proposed transition from leaf M

i

to leaf



M

�

via node G where we ba
ktra
k through two 
hoi
e

points (n

i

= 2) and then move down through two


hoi
e points (n

�

= 2). The parameter of the �rst


lause used to rea
hM

i

from G is l

i

, and l

�

is de�ned

similarly.

........

.......

......

G_0

G

Mi

M*

Ci C*

fail
not a choice point

ni = n* =2

Figure 3: Jumping from M

i

to M

�

in the SLD-tree

The purpose of the Markov 
hain is to explore a

posterior distribution over some spa
e of models (i.e.

MCMC), where the prior distribution has been de�ned

by p

(�;S;G)

. Ea
h leaf node 
orresponding to a refu-

tation is assumed to yield an atom representing some

model in the model spa
e. Failure derivations are iden-

ti�ed with zero likelihood models. Let `(M

�

) denote

the likelihood of the model at leaf M

�

, then a pro-

posed transition from leaf M

i

to leaf M

�

is a

epted

with probability �(M

i

;M

�

) where:

�(M

i

;M

�

) = min

�

p

(n

�

�n

i

)

1� l

i

1� l

�

`(M

�

)

`(M

i

)

; 1

�

This de�nes yet another Markov 
hain but one where

2 and fail are not absorbing.

2.2 SAMPLING FROM SLPS

Sampling from p

(�;S;G)

amounts to running the

Markov 
hain asso
iated with f

(�;S;G)

and then just

remembering the substitutions that were made along

the way. As Se
tion 3 argues, p

(�;S;G)

is the most

useful distribution and as shown later in this se
tion,

eÆ
ient sampling from p

(�;S;G)

is 
ru
ial for parameter

estimation for SLPs.

Unfortunately, sampling from p

(�;S;G)

is hard be
ause

the

Z

(�;S;G

�

0

)

Z

(�;S;G

�

)

values 
an not usually be easily 
al-


ulated from the 
lause parameters l

i

. One option

is to approximate this ratio and use an importan
e

sampling approa
h to 
ompensate for the approxima-

tion. Su
h an approa
h is des
ribed in (Cussens, 2000)

whi
h also des
ribes a method for exa
t 
omputation

of Z values using (2).

2.3 PARAMETER ESTIMATION IN SLPS

Suppose we have data in the form of a sequen
e of

atomi
 formulae whi
h we take to have been generated

by p

(�;S;G)

where the parameters � are unknown. As-

sume that S andG are �xed so that  

(�;S;G)

is abbrevi-

ated to  

�

. It is possible to apply the EM algorithm to

do maximum likelihood estimation for � by taking the

dataset of atomi
 formulae to be the result of trun
at-

ing and then grouping a hidden dataset of derivations

generated a

ording to  

�

. This is done by positing

the following sampling me
hanism. Derivations are

sampled a

ording to  

�

, these are then trun
ated by

throwing away all the failure derivations leaving only

refutations. The refutations are then grouped together

a

ording to their yields so that only the yielded atoms

are observed.

(Dempster et al., 1977) show how to apply the EM

algorithm to grouped and trun
ated data. Details of

its appli
ation to SLPs (
alled failure-adjusted max-

imisation (FAM)) are given in (Cussens, 2001). Here

we just outline how to 
ompute  

�

(h)

[�

i

jy℄ the ex-

pe
ted frequen
y a

ording to the 
urrent parameters

�

(h)

with whi
h 
lause C

i

`�red' while produ
ing the

data y. This is just a weighted sum of  

�

(h)

[�

i

jy

k

℄ the


lause's expe
ted frequen
y when produ
ing ea
h of

the observed atoms y

k

plus  

�

(h)

[�

i

jfail℄ its expe
ted

frequen
y when generating failure derivations. This

sum is given in (4) where N

k

is the frequen
y of y

k

in

the data, and N is the size of the data.

 

�

(h)

[�

i

jy℄ =

X

k

N

k

 

�

(h)

[�

i

jy

k

℄ + (4)

N(Z

�1

�

(h)

� 1) 

�

(h)

[�

i

jfail℄

The pra
ti
ality of applying EM to SLPs depends on

the 
omputation or a

urate estimation of the expe
-

tations in (4). If an SLP is failure-free then the se
-

ond term in (4) disappears and the SLP is essentially

an SCFG. The inside-outside algorithm 
an then be

applied, or possibly even the forward-ba
kward al-

gorithm if the SLP represents a HMM. Note that

(Z

�1

�

(h)

� 1) quanti�es the degree to whi
h an SLP di-

verges from an SCFG|it is a measure of `non-
ontext-

freeness'. In general, 
ontext-free methods will not

suÆ
e and it may be possible to adapt the tabular ap-

proa
h of (Kameya and Sato, 2000) whi
h is applied

to parameter estimation for PRISM models. Another,

appealingly simple, approa
h is to estimate expe
ta-

tions by sampling from  

�

(h)

. An estimate of Z

�

(h)


an



be obtained by 
ounting how often derivations turn out

to be refutations.

2.4 LEARNING THE STRUCTURE OF

SLPS

Indu
tive logi
 programming (ILP) is the area of ma-


hine learning 
on
erned with the indu
tion of logi


programs from ba
kground knowledge and data. Sin
e

the stru
ture of an SLP is simply a logi
 program, it

follows that ILP te
hniques 
an be used in SLP stru
-

ture learning. Indeed, (Muggleton, 2000a) has already

done this, using the ILP algorithm Progol to learn the

stru
ture of an SLP and then obtaining a rough but

qui
kly 
al
ulable estimate for the parameters.

Re
all that f

(�;S;G)

is a loglinear distribution so work

on learning the stru
ture (or features) of loglinear

models 
an be applied to SLPs. In (Della Pietra

et al., 1997) greedy feature sele
tion is intertwined

with parameter estimation. In SLPs, features are es-

sentially 
lauses, so an adaptation of the algorithm of

(Della Pietra et al., 1997) 
an use ILP to 
onstru
t


lauses. (Dehaspe, 1997) is related work in this dire
-

tion.

3 APPLICATIONS OF SLPS

SLPs are useful when the 
exibility of de�ning a dis-

tribution over �rst-order terms using p

(�;S;G)


an be

exploited. This is the 
ase when de�ning priors over

the stru
ture of statisti
al models. For example, one


an de�ne a spa
e of Bayesian nets using a logi
 pro-

gram and then parameterise that logi
 program to give

an SLP whi
h de�nes a prior distribution over that

spa
e. MCMC 
an then be used, as sket
hed in Se
-

tion 2.1 and des
ribed in (Cussens, 2000) to explore

the posterior distribution.

The 
exibility of �rst-order representations has long

been exploited in 
omputational linguisti
s. (Muggle-

ton, 1996) expli
itly introdu
ed SLPs as generalisa-

tions of Hidden Markov models (HMMs) and Sto
has-

ti
 Context-Free Grammars (SCFGs). Statisti
al ap-

proa
hes, often using HMMs and SCFGs, have revolu-

tionised 
omputational linguisti
s (Hirs
hberg, 1998).

More re
ently, there has been work using Maximum

Entropy methods (i.e. loglinear models) applied to

non-
ontext-free models (Abney, 1997; Riezler, 1998).

SLPs fall into this non-
ontext-free 
ategory, and 
an,

for example, been seen as a spe
ial 
ase of Rie-

zler's Probabilisti
 Constraint Logi
 Programs (Rie-

zler, 1998) whi
h Riezler uses to represent 
onstraint

grammars. Given that there is strong eviden
e that

natural language is not 
ontext-free, it is important

that resear
h e�ort is fo
ussed on these more 
omplex

statisti
al linguisti
 models to advan
e further the sta-

tisti
al NLP revolution.

Another potential appli
ation area is biologi
al se-

quen
e analysis given the su

essful appli
ation of

HMMs and SCFGs there. However, (Durbin et al.,

1998) sound a note of 
aution 
on
erning more 
om-

plex models su
h as SLPs:

We will not explore sto
hasti
 
ontext-

sensitive or sto
hasti
 unrestri
ted grammars

in any detail, as we are unaware of any pra
-

ti
al appli
ations of these in 
omputational

biology

4 SLPS AND GIBBS-MARKOV

MODELS

(La�erty, 1996) notes that

Standard statisti
al approa
hes to spee
h

and language pro
essing problems use hidden

Markov models, or : : : sto
hasti
 
ontext-

free grammars : : : But su
h models are lim-

ited in their ability to in
orporate 
ontextual

information and long-distan
e dependen
ies.

Be
ause of the Markov assumption, all pre-

di
tive information must be en
oded in the

states.

(La�erty, 1996) proposes Gibbs-Markov models

(GMMs) to over
ome this limitation. These models

have an underlying HMM or PCFG, but state tran-

sition and output symbol probabilities are given by

Gibbs distributions. If H

t

is the ve
tor of states vis-

ited and symbols output prior to time t then P (S

t

jH

t

)

the probability of arriving at state S

t

is given by:

P (S

t

jH

t

) =

1

Z(H

t

)

e

��f(S

t

;H

t

)

where f(S

t

;H

t

) is a ve
tor of binary feature values

where ea
h value is zero or one. (La�erty, 1996) shows

how the EM algorithm and generalized iterative s
al-

ing 
an be used for parameter estimation for GMMs

and also des
ribes a GMM for statisti
al language

modelling.

Both GMMs and SLPs have an embedded 
ontext-

free grammar. In the 
ase of SLPs this is the failure-

free SLP (equivalent to an SCFG) whi
h 
an be pro-

du
ed by repla
ing ea
h variable by a new distin
t vari-

able, so that s(X)  p(X); p(X) be
omes s(X1)  

p(X2); p(X3).

In 
ontrast to GMMs, state transitions asso
iated with

f

(�;S;G)

depend not on the past history of states but



on the set of possible future states. For a goalG

�

these

are the goals in the subtree with G

�

at its root|re
all

the de�nition of p

��

0

given in (3). Also in 
ontrast

to GMMs, 
ontext-dependen
e is a
hieved due to the

possibility of failure. Indeed, as shown in the presen-

tation of the FAM algorithm, Z

�1

(�;S;G)

quanti�es the

degree of 
ontext-dependen
e.

5 CONCLUSIONS

In this paper a number of important issues have been

omitted su
h as the in
orporation of logi
ally en
oded

domain knowledge using impure SLPs and the 
on-

ne
tions with (i) Bayesian nets and (ii) alternative

logi
al-statisti
al frameworks. Despite this, there has

been provided the basi
 statisti
al properties of SLPs.

From a statisti
al point of view perhaps the most use-

ful property of SLPs is their ability to de�ne Markov

models with a 
omplex spa
e of states de�ned via a

very well understood formalism: �rst-order logi
. The


onne
tion with logi
 programming will hopefully pro-

vide the 
omputational and implementational te
h-

niques required for SLPs to be
ome usable (and used)

statisti
al models.
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