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Abstract

Stochastic logic programs (SLPs) and the
various distributions they define are pre-
sented with a stress on their characterisation
in terms of Markov chains. Sampling, pa-
rameter estimation and structure learning for
SLPs are discussed. The application of SLPs
to Bayesian learning, computational linguis-
tics and computational biology are consid-
ered. Lafferty’s Gibbs-Markov models are
compared and contrasted with SLPs.

1 INTRODUCTION

... I find nothing in logistic for the dis-
coverer but shackles . .. if it requires 27 equa-
tions to establish that 1 is a number, how
many will it require to demonstrate a real
theorem? (Poincaré, quoted in (Machover
and Bell, 1977))

There is currently considerable interest amongst the
Al community in developing probabilistic knowledge
representations that extend existing approaches to in-
corporate domain knowledge and/or relational data
(Ngo and Haddaway, 1997; Friedman et al., 1999; Ker-
sting and De Raedt, 2000; Muggleton, 2000b; Cussens,
2000).

One approach to this problem is to integrate proba-
bilistic and ‘logical’ methods: an idea that has a long
history dating back to (Boole, 1854). The idea is to
use a set of logical formulae to encode domain knowl-
edge. Boole used propositional logic, but now we can
use first-order logic to encode domain knowledge in a
first-order theory. Such a theory can describe relations
between objects. Probability can then be ‘added’ so
that the probability with which an object has some
attribute depends on the attributes which related ob-
jects have (Friedman et al., 1999) or, more generally,

so that probabilities depend on what is entailed by the
logically-encoded domain knowledge (Ngo and Had-
daway, 1997).

Note that there is a long history in statistics of work
on ‘relational learning’, i.e. probabilistic models where
data are not independent and identically distributed.
Consider a multivariate time series of some sort (e.g.
ARIMA) for the analysis of, say, financial data. Here
the objects are days and the ‘attributes’ of these ob-
jects might be the prices of various commodities on
those days. In such a model, we have that, e.g. the
price of pork-belly futures on day ¢ is related (or more
precisely correlated) with the exchange rate of the dol-
lar on day t — 1. In time series the relation between
objects is one of temporal succession; in spatial statis-
tics, we have more complex spatial relationships.

It is important that future work in the AT community
on ‘relational learning’ takes advantage of this existing
work on time series and spatial statistics, although this
is not achieved here. My motivation for using logic to
encode relations between objects is simply the flexi-
bility it gives for expressing all sorts of relations, it is
not motivated by a desire to formalise statistical infer-
ence. Although logical analysis is useful in clarifying
foundations, there can be, as Poincaré noted, severe
problems with its application to real problems.

This paper concerns stochastic logic programs (SLPs);
one approach to effecting a marriage between logic and
probability which follows this pragmatic approach to
logic. The paper is organised as follows. Section 2
examines statistical aspects of SLPs, giving the vari-
ous distributions that can be defined with an SLP and
addressing sampling and parameter estimation, and
structure learning. Section 3 argues that the distri-
butions defined by SLPs are useful for a number of
applications. Section 4 compares SLPs to Lafferty’s
Gibbs-Markov models and the paper then concludes
with Section 5.



2 STATISTICAL ASPECTS OF SLPS

This section begins with definitions for various types
of SLPs and describes the distributions defined by
an SLP, paying particular attention to the connection
with Markov chains.

Definition 1 A stochastic logic program (SLP) S is a
definite logic program where some of the clauses are pa-
rameterised with non-negative numbers. A pure SLP
is an SLP where all clauses have parameters, as op-
posed to an impure SLP where not all clauses have
parameters. A normalised SLP is one where parame-
ters for clauses which share the same predicate symbol
sum to one. If this is not the case, then we have an
unnormalised SLP.

In this paper we will restrict attention to pure nor-
malised SLPs, since these have a nice characterisation
in terms of Markov chains. Fig 1 shows Sy, a very sim-
ple example of a pure normalised SLP. Note that the
first clause in Sy, although syntactically legal, would
not be found in a real logic program, since it is log-
ically equivalent to the simpler clause s(X) + p(X).
However, the distributions defined by SLPs depend on
the syntactic structure of the underlying logic program
in such a way that replacing 0.4 : s(X) < p(X), p(X)
by 0.4 : s(X) « p(X) would change the probability
distributions defined by Sp.
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Figure 1: Sp: A simple pure, normalised SLP

2.1 DISTRIBUTIONS DEFINED BY SLPS

SLPs associate probability distributions with goals.
Unfortunately lack of space disallows a proper account
of the role goals play in logic programming, so an in-
formal description is given. The essentials are best
understood by considering SLD-trees, an example of
which is given in Fig 2. An SLD-tree is a search tree
for refutations of the top-level goal at the root of the
tree. In the case of Fig 2 the top level goal is : = s(X)
which is Prolog notation for the first-order formula
VX -s(X). Essentially, a child of a goal is produced
by unifying the leftmost atomic formula in the goal
with the head of a clause in the SLP and replacing
that leftmost atomic formula with the clause body. If
the leftmost atomic formula fails to unify with a clause
head despite them both sharing the same predicate
symbol then a fail child is produced. Since there are
two clause heads in Sp which unify with s (X), the goal
:= s(X) has two (non-failure) children. Any variable

substitutions required to effect this unification are ap-
plied to the new goal. So, for example, unifying the
leftmost p(X) of :- p(X),p(X) with clause head p(a)
leaves the goal : - p(a).

- 8(X).
0.4:{}

-p(X),p(X).
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0.3:{X/

-p(a). - p(b).

03:(})/ |07t O3l | 07.(y

fail fail

Figure 2: Annotated SLD-tree for Sy

An derivation is a branch of the SLD-tree. A refu-
tation is a derivation ending with the empty goal O;
Fig 2 shows that there are four refutations of : - s(X),
two of which instantiate X to a and two which instan-
tiate X to b. Note that Fig 2 also contains two failure
derivations, the leftmost one of which corresponds to
an attempt to unify p(a) with p(b).

The execution of a normal logic program corresponds
to a search for refutations in the SLD-tree; in standard
Prolog this search is a depth-first, leftmost-first search.
An SLP essentially replaces this deterministic explo-
ration of the SLD-tree with a probabilistic one which
we can describe in terms of Markov chains where the
states of the chain are goals.

Definition 2 Let S be a pure normalised SLP and let
Gy be a goal. Let l; be the parameter associated with
clause C;. S and Gy define a Markov chain where the
states of the Markov chain are goals G. The initial
state probabilities are:

{1
a, =
0

and the transition probabilities are:

if G, = Go

otherwise

l; if G is a child of
G produced by using C;
Zf GN = GN/ =0
1 if G, =Gy = fail
0 otherwise

Prr' =



The absorbing states of the Markov chain are O and
fail and we identify finite derivations with infinite
sequences in the Markov chain which reach either O
and fail and remain there. This identification al-
lows the Markov chain to define a distribution over all
derivations in the SLD-tree. There are three sorts of
derivations: (i) finite derivations ending in O; (ii) finite
derivations ending in fail and (iii) infinite derivations.
This distribution over derivations is denoted ¥\ s,a)
where G is the initial goal and A is a vector composed
of the logs of the parameters ;. If v;(z) is the fre-
quency with which clause C; is used in a derivation x
and v(z) is the vector of all these n clause counts we
have

e)\-u(x) (1)

H ll/z(a:

Yirnsa) (@

Let R(G) be the set of all refutations of a goal G. Con-
sider now the conditional distribution f() s,q) defined
as follows:

def
fons.o) (@) F s, (@l € R(G))
Next define:
Z(zs G) Z Yons,a (@) = Yos,a) (R(G))

z€R(G)

Z(x,s,a) 18 just the probability (according to ¥y s,a))
that a derivation of GG is a refutation. For example we
have Z()HSO,HS(X)) = 0.832. Note that Z()\7S,D) =1
and Z(, s fajly = 0. For other goals we have

=> LiZns.an (2)

where the sum is over all G’ which are children of G
and where [; is the parameter associated with C;, the
clause used to generate G' from G. It is useful to
think of Z(, s,g) as the ‘weight’ of the subtree below
G, where failure derivations have zero weight.

Z(x,5,a)

We now have that

f s (;17) _ Z(;\}S,G)w()\:st) (iL") ifx e R(G)
(*5,6) 0 if 2 ¢ R(G)

so for refutations r we have from (1)

fons.a(r) = Z(_)\%&G)e)\'y(r)
fns,) 1s then a loglinear model with the clause fre-
quencies v(r) as features. We can also define f() s )

in terms of a Markov chain. As before we have:

1 if G, =Gy
Ay =
0 otherwise

but now the transition probabilities are:

2080 if G s a child of

(A,S,Gr)

Dut = G, produced by using C;
1 itG,=G, =0
0 otherwise

(3)

Having now defined 95 s,q) and f(x s,q) it is possible
to define p() s,i) the third sort of distribution defined
by an SLP. First recall that each refutation instanti-
ates the variables in the initial top-level goal. These
instantiations are known as computed answers and we
can use them to define the yields of refutations as fol-
lows:

Definition 3 The yield Y (r) of a refutation r of a
unit goal G =< A is Al where 0 is the computed an-
swer for G using r. The set of proofs for an atom yy,
is the set X (yx) = {r|Y (r) = y}.

An SLP defines a distribution over these yielded atoms
by simple marginalisation:

P(,\SG)yk o Z f()\SG

reX(yr)

In the case of Sp, there are two refutations of : = s(X)
that yield the atom s(a) and two that yield s(b). We
have

(0.036 + 0.12) /0.832 = 0.1875
(0.196 + 0.48)/0.832 = 0.8125

P(rSo,s(x)) (5(a))
P(X,So,+5(X)) (s(b))

The distributions ¥\ s,¢), firs,6) and po.s,q) are
all essentially defined in terms of making probabilistic
choices when moving down the SLD-tree. Because of
this they can be defined in terms of goals rather than
nodes in the SLD-tree. If the logic program underlying
the SLP is recursive, it may be that the same goal
occurs more than once in the SLD-tree. However, the
SLD-subtree underneath a goal is identical wherever a
goal appears in the tree, and if we are always travelling
down the tree we can ignore at which particular node
in the tree the goal appears.

n (Cussens, 2000), in contrast, a Markov chain is de-
fined using an SLP which jumps between leaves of the
SLD-tree by first backtracking n steps with (roughly)
probability p™(1 — p) and thus arriving at an inte-
rior node of the tree and then probabilistically moving
down the tree (according to 9y s ) until a leaf is
reached. In this case the states of the Markov chain
are nodes of the SLD-tree rather than goals. Fig 3
illustrates a proposed transition from leaf M? to leaf



M* via node G where we backtrack through two choice
points (n’ = 2) and then move down through two
choice points (n* = 2). The parameter of the first
clause used to reach M? from G is I?, and [* is defined

similarly.

G_0

not a choice point

Figure 3: Jumping from M? to M* in the SLD-tree

The purpose of the Markov chain is to explore a
posterior distribution over some space of models (i.e.
MCMC), where the prior distribution has been defined
by p(r,s,q)- Each leaf node corresponding to a refu-
tation is assumed to yield an atom representing some
model in the model space. Failure derivations are iden-
tified with zero likelihood models. Let ¢(M*) denote
the likelihood of the model at leaf M*, then a pro-
posed transition from leaf M? to leaf M* is accepted
with probability a(M?, M*) where:

s ey 1= T E(M)
a(M,M):mln{p( )l_l*m, }

This defines yet another Markov chain but one where
O and fail are not absorbing.

2.2 SAMPLING FROM SLPS

Sampling from p( s, amounts to running the
Markov chain associated with f(\ s,g) and then just
remembering the substitutions that were made along
the way. As Section 3 argues, p(xs,q) is the most
useful distribution and as shown later in this section,
efficient sampling from p(, s @) is crucial for parameter
estimation for SLPs.

Unfortunately, sampling from p() s, ) is hard because

Z(x,8,G
the 72((;,3,@1))
culated from the clause parameters [;. One option
is to approximate this ratio and use an importance
sampling approach to compensate for the approxima-
tion. Such an approach is described in (Cussens, 2000)

values can not usually be easily cal-

which also describes a method for exact computation
of Z values using (2).

2.3 PARAMETER ESTIMATION IN SLPS

Suppose we have data in the form of a sequence of
atomic formulae which we take to have been generated
by p(a,s,q) where the parameters A are unknown. As-
sume that § and G are fixed so that ¢, s,q) is abbrevi-
ated to 1. It is possible to apply the EM algorithm to
do maximum likelihood estimation for A by taking the
dataset of atomic formulae to be the result of truncat-
ing and then grouping a hidden dataset of derivations
generated according to . This is done by positing
the following sampling mechanism. Derivations are
sampled according to ¥, these are then truncated by
throwing away all the failure derivations leaving only
refutations. The refutations are then grouped together
according to their yields so that only the yielded atoms
are observed.

(Dempster et al., 1977) show how to apply the EM
algorithm to grouped and truncated data. Details of
its application to SLPs (called failure-adjusted maz-
imisation (FAM)) are given in (Cussens, 2001). Here
we just outline how to compute ¥ym)[vi|ly] the ex-
pected frequency according to the current parameters
A" with which clause C; ‘“fired” while producing the
data y. This is just a weighted sum of ¥\ o) [vi|yx] the
clause’s expected frequency when producing each of
the observed atoms yj plus ¥ym) [v;|fail] its expected
frequency when generating failure derivations. This
sum is given in (4) where Ny, is the frequency of y; in
the data, and N is the size of the data.

Dam iyl = Y Nuthao [vilye] + (4)
k

N(Z;(}L) — 1)y [vi]fail]

The practicality of applying EM to SLPs depends on
the computation or accurate estimation of the expec-
tations in (4). If an SLP is failure-free then the sec-
ond term in (4) disappears and the SLP is essentially
an SCFG. The inside-outside algorithm can then be
applied, or possibly even the forward-backward al-
gorithm if the SLP represents a HMM. Note that
(Z;(}l) — 1) quantifies the degree to which an SLP di-
verges from an SCFG—it is a measure of ‘non-context-
freeness’. In general, context-free methods will not
suffice and it may be possible to adapt the tabular ap-
proach of (Kameya and Sato, 2000) which is applied
to parameter estimation for PRISM models. Another,
appealingly simple, approach is to estimate expecta-
tions by sampling from ¢y ). An estimate of Zyx) can



be obtained by counting how often derivations turn out
to be refutations.

2.4 LEARNING THE STRUCTURE OF
SLPS

Inductive logic programming (ILP) is the area of ma-
chine learning concerned with the induction of logic
programs from background knowledge and data. Since
the structure of an SLP is simply a logic program, it
follows that ILP techniques can be used in SLP struc-
ture learning. Indeed, (Muggleton, 2000a) has already
done this, using the ILP algorithm Progol to learn the
structure of an SLP and then obtaining a rough but
quickly calculable estimate for the parameters.

Recall that f() s ) is a loglinear distribution so work
on learning the structure (or features) of loglinear
models can be applied to SLPs. In (Della Pietra
et al., 1997) greedy feature selection is intertwined
with parameter estimation. In SLPs, features are es-
sentially clauses, so an adaptation of the algorithm of
(Della Pietra et al., 1997) can use ILP to construct
clauses. (Dehaspe, 1997) is related work in this direc-
tion.

3 APPLICATIONS OF SLPS

SLPs are useful when the flexibility of defining a dis-
tribution over first-order terms using p( s ) can be
exploited. This is the case when defining priors over
the structure of statistical models. For example, one
can define a space of Bayesian nets using a logic pro-
gram and then parameterise that logic program to give
an SLP which defines a prior distribution over that
space. MCMC can then be used, as sketched in Sec-
tion 2.1 and described in (Cussens, 2000) to explore
the posterior distribution.

The flexibility of first-order representations has long
been exploited in computational linguistics. (Muggle-
ton, 1996) explicitly introduced SLPs as generalisa-
tions of Hidden Markov models (HMMs) and Stochas-
tic Context-Free Grammars (SCFGs). Statistical ap-
proaches, often using HMMs and SCFGs, have revolu-
tionised computational linguistics (Hirschberg, 1998).
More recently, there has been work using Maximum
Entropy methods (i.e. loglinear models) applied to
non-context-free models (Abney, 1997; Riezler, 1998).
SLPs fall into this non-context-free category, and can,
for example, been seen as a special case of Rie-
zler’s Probabilistic Constraint Logic Programs (Rie-
zler, 1998) which Riezler uses to represent constraint
grammars. Given that there is strong evidence that
natural language is not context-free, it is important
that research effort is focussed on these more complex

statistical linguistic models to advance further the sta-
tistical NLP revolution.

Another potential application area is biological se-
quence analysis given the successful application of
HMMs and SCFGs there. However, (Durbin et al.,
1998) sound a note of caution concerning more com-
plex models such as SLPs:

We will not explore stochastic context-
sensitive or stochastic unrestricted grammars
in any detail, as we are unaware of any prac-
tical applications of these in computational
biology

4 SLPS AND GIBBS-MARKOV
MODELS

(Lafferty, 1996) notes that

Standard statistical approaches to speech
and language processing problems use hidden
Markov models, or ... stochastic context-
free grammars ... But such models are lim-
ited in their ability to incorporate contextual
information and long-distance dependencies.
Because of the Markov assumption, all pre-
dictive information must be encoded in the
states.

(Lafferty, 1996) proposes Gibbs-Markov models
(GMMs) to overcome this limitation. These models
have an underlying HMM or PCFG, but state tran-
sition and output symbol probabilities are given by
Gibbs distributions. If H; is the vector of states vis-
ited and symbols output prior to time ¢ then P(S:|H;)
the probability of arriving at state Sy is given by:
_ b o
P(St|7‘[t) = Z(Ht)e

where f(Si,H;) is a vector of binary feature values
where each value is zero or one. (Lafferty, 1996) shows
how the EM algorithm and generalized iterative scal-
ing can be used for parameter estimation for GMMs
and also describes a GMM for statistical language
modelling.

Both GMMs and SLPs have an embedded context-
free grammar. In the case of SLPs this is the failure-
free SLP (equivalent to an SCFG) which can be pro-
duced by replacing each variable by a new distinct vari-
able, so that s(X) < p(X),p(X) becomes s(X1) «+
p(X2),p(X3).

In contrast to GMMs, state transitions associated with
fns,6) depend not on the past history of states but



on the set of possible future states. For a goal G,; these
are the goals in the subtree with G, at its root—recall
the definition of p.x given in (3). Also in contrast
to GMMSs, context-dependence is achieved due to the
possibility of failure. Indeed, as shown in the presen-
tation of the FAM algorithm, Z(_)\%&G) quantifies the
degree of context-dependence.

5 CONCLUSIONS

In this paper a number of important issues have been
omitted such as the incorporation of logically encoded
domain knowledge using impure SLPs and the con-
nections with (i) Bayesian nets and (ii) alternative
logical-statistical frameworks. Despite this, there has
been provided the basic statistical properties of SLPs.
From a statistical point of view perhaps the most use-
ful property of SLPs is their ability to define Markov
models with a complex space of states defined via a
very well understood formalism: first-order logic. The
connection with logic programming will hopefully pro-
vide the computational and implementational tech-
niques required for SLPs to become usable (and used)
statistical models.
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