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Abstra
t

Variation independen
e of fun
tions is a sim-

ple natural `irrelevan
e' property arising in

a number of appli
ations in Arti�
ial Intelli-

gen
e and Statisti
s. We show how it 
an be

alternatively expressed in terms of two other

representations of the same underlying stru
-

ture: equivalen
e relations and � -�elds.
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1 AXIOMATIC FRAMEWORK

Let L, with partial order �, be a latti
e. Given a

ternary operation �?? � j � on L, we 
all (L; �; ??) a

strong separoid (Dawid 2000), or abstra
t graphoid , if,

for all elements x; y; z; w of L :

P1 :

x?? y j x

P2 :

x?? y j z

) y??x j z

P3 :

x?? y j z and

w � y

)

) x??w j z

P4 :

x?? y j z and

w � y

)

) x?? y j (z _ w)

P5 :

x?? y j z and

x??w j (y _ z)

)

) x?? (y _ w) j z

P6 :

x?? y j z and

x?? z j y

)

) x?? (y _ z) j (y ^ z)

It is straightforward to show that, when P1{P5 hold,

x?? y j z if and only if (x _ z)?? (y _ z) j z.

The above properties are abstra
ted from the notion

of 
onditional independen
e between random variables

(Dawid 1979a; 1980). Indeed, for random variables X ,

Y , et
., on a probability spa
e (
; F ; P ), let D(X jY )

denote the distribution, under P , of X given Y , i.e.

the mapping whi
h asso
iates with ea
h measurable

set A in the range of X , its Y -
onditional probability

D(X jY )(A) := P (X 2 AjY ) | a fun
tion of Y de-

�ned up to P -almost sure equality. We say X is prob-

abilisti
ally independent of Y given Z (under P ), and

write X??

p

Y j Z [P ℄, if any of the following proper-

ties, easily shown to be equivalent, holds (where equal-

ity is to be interpreted as holding P -almost surely, for

all sets A, B):

1. D(X jY; Z) = D(X jZ):

2. The fun
tion D(X jY; Z) of (Y; Z) is equal to a

fun
tion of Z alone.

3. D(X;Y jZ)(A�B) = D(X jZ)(A)�D(Y jZ)(B):

It is then straightforward to verify that the properties

P1{P5 hold for ?? = ??

p

[P ℄, with X � Y interpreted

as \X is a fun
tion of Y ". Property P6 does not hold

for probabilisti
 independen
e in full generality, but


an be obtained under suitable additional 
onditions

(Dawid 1979b).

On
e we have abstra
ted the properties P1{P5 (or P1{

P6), they 
an be seen as supplying a general axiomati


framework for a wide range of 
on
epts of `irrelevan
e',

not ne
essarily asso
iated with probability, as well as

for other purely mathemati
al stru
tures (Dawid 1998;

2000).

2 VARIATION INDEPENDENCE

Variation independen
e is one su
h irrelevan
e prop-

erty, arising in a variety of appli
ations, whi
h is in

many ways analogous to | although, indeed, mu
h

simpler than | probabilisti
 
onditional indepen-

den
e. Its theory has been most spe
i�
ally stud-

ied in the 
ontext of relational databases, where it is


losely related to the 
on
ept of embedded multivalued



dependen
y (Sagiv and Wale
ka 1982; Hill 1993; Wong

1997). It also has important statisti
al appli
ations in

the theory of meta Markov models (Dawid and Lau-

ritzen 1993).

Let F be the set of all fun
tions, with arbitrary range

spa
es, de�ned on some non-empty domain spa
e 
.

We do not require any underlying �-�eld or probabil-

ity measure. In the theory of relational databases, one

typi
ally takes 
 to be a subset of a Cartesian produ
t

spa
e, and 
on�nes attention to 
oordinate proje
tion

mappings. However, we do not impose any su
h re-

stri
tion here.

On
e again, we partially order the set F by fun
tional


ontra
tion: X � Y if Y (!) = Y (�) ) X(!) = X(�).

We 
all two fun
tions X;Y equivalent , and write X �

Y , if X � Y and Y � X . Then (F; �) forms a latti
e,

with join X _ Y � (X;Y )

We de�ne the 
onditional range of X, given Y = y by:

R(X jY = y) := fX(!) : ! 2 
; Y (!) = yg. This is

non-empty for any y 2 R(Y ) := Y (
), the (un
on-

ditional) range of Y . When the 
onditioning variable

Y is 
lear, we may write simply R(X j y). The 
ondi-

tional range represents the residual logi
al un
ertainty

about X after learning Y = y, and is analogous to

the 
onditional distribution D(X jY = y) of X given

Y = y in a probabilisti
 model. This analogy underlies

the following 
on
ept of `
onditional independen
e' for

this logi
al framework.

De�nition 2.1 We say X is variation independent of

Y given Z (on 
), and write X??

v

Y j Z [
℄ (or, if 


is understood, just X??

v

Y j Z), if any of the following

properties, easily shown to be equivalent, holds:

1. For any (y; z) 2 R(Y; Z),

R(X j y; z) = R(X j z):

2. The fun
tion R(X jY; Z) of (Y; Z) is a fun
tion of

Z alone.

3. For any z 2 R(Z),

R(X;Y j z) = R(X j z)�R(Y j z):

It may be seen that the property X??

v

Y j Z [
℄ is

una�e
ted if any of the fun
tions in it is repla
ed by

an equivalent fun
tion.

It is well-known, and again straightforward to verify,

that (F; �; ??

v

[
℄) is a strong separoid.

3 EQUIVALENCE RELATIONS

The set E of equivalen
e relations on a set 
 forms a

latti
e under the partial order of re�nement : � is less

re�ned than �

0

, written � � �

0

, if ! �

0

� ) ! � �.

The 
orresponding de�nitions of join _ and meet ^

are given by:

! (� _ �

0

) � , ! � � and ! �

0

�; (1)

! (� ^ �

0

) � ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

for some n � 1 there exist

�

1

; : : : ; �

n

2 
 with

�

1

= !; �

n

= �; and, for

i = 1; : : : ; n� 1; either

�

i

� �

i+1

or �

i

�

0

�

i+1

:

(2)

We de�ne the 
omposition, � Æ �

0

, of � and �

0

by:

! (� Æ �

0

) � ,

(

there exists � 2 
 with

! � � and � �

0

�:

(3)

Typi
ally, this relation is not an equivalen
e relation.

It is readily seen that it will be so if and only if � and

�

0


ommute, i.e. � Æ �

0

= �

0

Æ � | a property we

denote by � ? �

0

. In that 
ase � Æ �

0

= �

0

Æ �

= � ^ �

0

.

De�nition 3.1 We write � ??

e

�

0

j �

00

if:

(� _ �

00

) Æ (�

0

_ �

00

) =�

00

(4)

Equivalently, if:

(� _ �

00

) ? (�

0

_ �

00

) (5)

and (� _ �

00

) ^ (�

0

_ �

00

) = �

00

: (6)

Note that, with this de�nition, � ? �

0

if and only if

� ??

e

�

0

j (� ^ �

0

).

We shall show that (E; �; ??

e

) is a strong separoid,

by exhibiting an isomorphism with variation indepen-

den
e.

Let X 2 F. We 
an de�ne a 
orresponding equiv-

alen
e relation �

X

2 E : ! �

X

!

0

if and only if

X(!) = X(!

0

). Clearly, two fun
tions are equiva-

lent if and only if they indu
e the same equivalen
e

relation. Conversely, given any equivalen
e relation

� 2 E, we 
an 
onstru
t the proje
tion �

�

: 
! 
=�,

i.e. the fun
tion whi
h asso
iates with ea
h ! 2 
 the

unique � -equivalen
e 
lass 
ontaining it; and then �

will be the equivalen
e relation indu
ed by �

�

2 F.

The above 
orresponden
e between equivalen
e rela-

tions and (equivalen
e 
lasses of) fun
tions may read-

ily be shown to be a latti
e isomorphism between E

and F.

Theorem 3.1

X??

v

Y j Z , �

X

??

e

�

Y

j �

Z

:



Proof. Note �rst that �

X

_ �

Y

= �

(X;Y )

, et
. Thus

the property �

X

??

e

�

Y

j �

Z

be
omes:

�

(X;Z)

Æ �

(Y;Z)

= �

Z

; (7)

or equivalently

�

(X;Z)

? �

(Y;Z)

(8)

and �

(X;Z)

^ �

(Y;Z)

= �

Z

: (9)

1. Suppose that �

X

??

e

�

Y

j �

Z

. Take z 2 R(Z),

x 2 R(X j z), y 2 R(Y j z). Thus there exist

!; � 2 
 with X(!) = x, Y (�) = y, and Z(!) =

Z(�) = z. Sin
e ! �

Z

�, by (7) there exists � 2 


with X(�) = X(!);= x; Y (�) = Y (�);= y; and

Z(�) = z. This shows that (x; y) 2 R(X;Y j z).

Thus X??

v

Y j Z.

2. Now suppose that X??

v

Y j Z. To show (7), it

is enough to show that ! �

Z

� ) ! (�

(X;Z)

Æ �

(Y;Z)

) �. So suppose ! �

Z

�, so that Z(!) =

Z(�), = z, say. De�ne x := X(!), y := Y (�).

Then x 2 R(X j z), y 2 R(Y j z) and so, sin
e

X??

v

Y j Z, (x; y) 2 R(X;Y j z). Thus there ex-

ists � 2 
 with X(�) = x; Y (�) = y; Z(�) = z.

Then we have ! �

(X;Z)

� and � �

(Y;Z)

�, when
e

! (�

(X;Z)

Æ �

(Y;Z)

)�.

2

Corollary 3.2 (E; �; ??

e

) is a strong separoid.

4 �-FIELDS

A 
lass T of subsets of 
 forms a �-�eld if it is 
losed

under 
omplementation and arbitrary (not just 
ount-

able) unions | and thus, also, under arbitrary inter-

se
tions. The set T of all � -�elds on 
 is partially

ordered by in
lusion:

T � T

0

, T � T

0

:

Then T ^ T

0

= T \ T

0

, while T _ T

0

is the smallest

� -�eld 
ontaining both T and T

0

.

De�nition 4.1 We write T ??

t

T

0

j T

00

if:

� 2 T _ T

00

� 2 T

0

_ T

00

� \ � = ;

9

>

=

>

;

)

(

there exists 
 2 T

00

su
h that � � 
; � � �
:

(10)

When T

00

is trivial (in whi
h 
ase we may write

T ??

t

T

0

) the above 
ondition be
omes: � 2 T , � 2

T

0

, � \ � = ; ) either � = ; or � = ;. This is essen-

tially the relation of `qualitative independen
e between

�-�elds' due to R�enyi (1970). The above extension is

based on Bartfai and Rudas (1988).

We shall show that (T; �; ??

t

) is a strong separoid,

again indire
tly by exhibiting an isomorphism with

variation independen
e.

Let X 2 F. Then we 
an 
onstru
t an asso
iated

� -�eld T

X

2 T: T

X

:= fX

�1

(B) : B � R

X

g. Con-

versely, given any � -�eld T 2 T, we 
an de�ne a re-

lation � by: ! � !

0

if and only if, for all A 2 T ,

! 2 A () !

0

2 A. This is easily seen to be an

equivalen
e relation indu
ing the � -�eld T , the equiv-

alen
e 
lass 
ontaining ! being just the interse
tion of

all the sets in T that 
ontain !. Let X 2 F be the

`proje
tion fun
tion' �

�

asso
iated with �2 E. Then

T = T

X

.

Again, the above 
orresponden
e between � -�elds and

(equivalen
e 
lasses of) fun
tions may be shown to be

a latti
e isomorphism between T and F.

Theorem 4.1

X??

v

Y j Z , T

X

??

t

T

Y

j T

Z

:

Proof. We �rst note that, sin
e T

X

_ T

Y

= T

(X;Y )

,

the property T

X

??

t

T

Y

j T

Z

be
omes:

� 2 T

(X;Z)

� 2 T

(Y;Z)

� \ � = ;

9

>

=

>

;

)

(

there exists 
 2 T

Z

su
h that � � 
; � � �
:

(11)

1. Suppose that T

X

??

t

T

Y

j T

Z

. Take z 2 R(Z),

x 2 R(X j z), y 2 R(Y j z), and let � :=

(X;Z)

�1

(x; z), � := (Y; Z)

�1

(y; z). Suppose

there existed 
 2 T

Z

| say 
 = Z

�1

(C), and thus

�
 = Z

�1

(

�

C) | su
h that � � 
, � � �
. Then we

would have both z 2 C and z 2

�

C . This 
ontra-

di
tion show that no su
h 
 exists when
e, sin
e

T

X

??

t

T

Y

j T

Z

, we must have � \ � 6= ;. Taking

then ! 2 � \ �, we have X(!) = x, Y (!) = y,

Z(!) = z, showing that (x; y) 2 R(X;Y j z).

Thus we have shown X??

v

Y j Z.

2. Now suppose that X??

v

Y j Z. Take � 2 T

(X;Z)

,

� 2 T

(Y;Z)

, su
h that � \ � = ;. Let 
 :=

Z

�1

Z(�), Æ := Z

�1

Z(�). Suppose that 
 \ Æ 6= ;.

Take � 2 
 \ Æ, and let Z(�) = z. Then there

exist ! 2 �, � 2 � su
h that Z(!) = z, Z(�) = z.

Let x := X(!), y := Y (�). Then x 2 R(X j z),

y 2 R(Y j z). Sin
e X??

v

Y j Z, there exists

� 2 
 with X(�) = x; Y (�) = y; Z(�) = z. But

then � 2 � \ �, whi
h is impossible. We dedu
e

that 
 \ Æ = ;. We thus have � � 
, � � Æ � �
.

Sin
e 
 2 T

Z

, we have shown T

X

??

t

T

Y

j T

Z

.
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Corollary 4.2 (T; �; ??

t

) is a strong separoid.

It would be pleasant if the above property applied

equally if we restri
ted attention to the set of �-�elds

in 
, but this would require further non-trivial 
ondi-

tions.
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