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Abstract

Variation independence of functions is a sim-
ple natural ‘irrelevance’ property arising in
a number of applications in Artificial Intelli-
gence and Statistics. We show how it can be
alternatively expressed in terms of two other
representations of the same underlying struc-
ture: equivalence relations and 7-fields.
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1 AXIOMATIC FRAMEWORK

Let L, with partial order <, be a lattice. Given a
ternary operation -1l - |- on L, we call (L, <, 11) a
strong separoid (Dawid 2000), or abstract graphoid, if,
for all elements z,y,z,w of L :

Pl: zlyl=z

P2: zly|=z = yllz|z
A d

P3: ylzan } = zllw]|z
w<y
§in d

pa: " y|zan } = zlly]|(zVw)
w<y
A d

P5: ylzan = zll (yVw)|=z
sl w]|(yVz)
§in d

PG: y|zan } = zll(yVz)|(yAz)
xllz |y

It is straightforward to show that, when P1-P5 hold,
xll y|zif and only if (zV 2)1L (y V 2) | 2.

The above properties are abstracted from the notion
of conditional independence between random variables
(Dawid 1979a; 1980). Indeed, for random variables X,

Y, etc., on a probability space (2, F, P), let D(X]Y)
denote the distribution, under P, of X given Y, i.e.
the mapping which associates with each measurable
set A in the range of X, its Y-conditional probability
D(X|Y)(A) .= P(X € A]Y) — a function of YV de-
fined up to P-almost sure equality. We say X is prob-
abilistically independent of Y given Z (under P), and
write X 11 ,Y | Z [P], if any of the following proper-
ties, easily shown to be equivalent, holds (where equal-

ity is to be interpreted as holding P-almost surely, for
all sets A, B):

1. D(X|Y, Z) = D(X| Z).

2. The function D(X|Y,Z) of (Y,Z) is equal to a
function of Z alone.

3. DIX,Y|Z)(AxB)=D(X|Z)(A) x D(Y| Z)(B).
It is then straightforward to verify that the properties
P1-P5 hold for 1L = 11, [P], with X <Y interpreted
as “X is a function of Y”. Property P6 does not hold
for probabilistic independence in full generality, but

can be obtained under suitable additional conditions
(Dawid 1979b).

Once we have abstracted the properties P1-P5 (or P1-
P6), they can be seen as supplying a general axiomatic
framework for a wide range of concepts of ‘irrelevance’,
not necessarily associated with probability, as well as
for other purely mathematical structures (Dawid 1998;
2000).

2 VARIATION INDEPENDENCE

Variation independence is one such irrelevance prop-
erty, arising in a variety of applications, which is in
many ways analogous to — although, indeed, much
simpler than — probabilistic conditional indepen-
dence. Its theory has been most specifically stud-
ied in the context of relational databases, where it is
closely related to the concept of embedded multivalued



dependency (Sagiv and Walecka 1982; Hill 1993; Wong
1997). It also has important statistical applications in
the theory of meta Markov models (Dawid and Lau-
ritzen 1993).

Let F be the set of all functions, with arbitrary range
spaces, defined on some non-empty domain space €.
We do not require any underlying o-field or probabil-
ity measure. In the theory of relational databases, one
typically takes 2 to be a subset of a Cartesian product
space, and confines attention to coordinate projection
mappings. However, we do not impose any such re-
striction here.

Once again, we partially order the set F by functional
contraction: X <Y if Y(w) =Y (n) = X(w) = X(n).
We call two functions X,Y equivalent, and write X ~
V,if X <Y and Y < X. Then (F, <) forms a lattice,
with join X VY = (X,Y)

We define the conditional range of X, given Y = y by:
R(X|Y =y) ={X(w) : w € 2,Y(w) = y}. Thisis
non-empty for any y € R(Y) := Y(Q), the (uncon-
ditional) range of Y. When the conditioning variable
Y is clear, we may write simply R(X|y). The condi-
tional range represents the residual logical uncertainty
about X after learning Y = y, and is analogous to
the conditional distribution D(X|Y = y) of X given
Y =y in a probabilistic model. This analogy underlies
the following concept of ‘conditional independence’ for
this logical framework.

Definition 2.1 We say X is variation independent of
Y given Z (on Q), and write X 1., Y | Z [Q] (or, if Q
is understood, just X 1, Y | Z), if any of the following
properties, easily shown to be equivalent, holds:

1. For any (y,2) € R(Y, Z),

R(X|y,z) = R(X|2).
2. The function R(X|Y, Z) of (Y, Z) is a function of
Z alone.
3. For any z € R(Z),
R(X,Y|z) = R(X|2) x R(Y|2).

It may be seen that the property X 1L, Y | Z [Q] is

unaffected if any of the functions in it is replaced by
an equivalent function.

It is well-known, and again straightforward to verify,
that (F, <, 1, [Q]) is a strong separoid.

3 EQUIVALENCE RELATIONS

The set E of equivalence relations on a set () forms a
lattice under the partial order of refinement: ~ is less

refined than ~', written ~ < ~' if w ~' n = w ~ .

The corresponding definitions of join V and meet A
are given by:

w(~Vv~Yn & w~nandw~'n; (1)
for some n > 1 there exist
C1y.-vyCn € Q with

G =w,( =mn, and, for (2)
i1=1,...,n—1, either

G~ Ciyr or G ~' Cig1.

wi~A~Yp &

We define the composition, ~ o ~', of ~ and ~' by:

w~Cand ¢ ~"n. ®)

, there exists ( € 2 with
w(~on)n
Typically, this relation is not an equivalence relation.
It is readily seen that it will be so if and only if ~ and
~' commute, i.e. ~ o ~' = ~' 0o ~ — a property we

denote by ~ 1L ~'. In that case ~ o ~' = ~' o ~
=~ A~

Definition 3.1 We write ~ 1L, ~' | ~" if:

(N V NII) ° (NI V NII) — NII (4)
Equivalently, if:

(N V NII) J_ (NI V NII) (5

and (~V ~") A~ VAT = ST (6)

Note that, with this definition, ~ L ~' if and only if
~ J_I_e ~! | (N A NI)_

We shall show that (E, <, 1l.) is a strong separoid,
by exhibiting an isomorphism with variation indepen-
dence.

Let X € F. We can define a corresponding equiv-
alence relation ~x € E: w ~x ' if and only if
X(w) = X(w'). Clearly, two functions are equiva-
lent if and only if they induce the same equivalence
relation. Conversely, given any equivalence relation
~ € E, we can construct the projection w.. : Q@ — Q/~,
i.e. the function which associates with each w € Q the
unique ~ -equivalence class containing it; and then ~
will be the equivalence relation induced by 7. € F.

The above correspondence between equivalence rela-
tions and (equivalence classes of) functions may read-
ily be shown to be a lattice isomorphism between E
and F.

Theorem 3.1

XJ_LUY|Z S ~x A, NY|NZ-



Proof. Note first that ~x V ~y= ~(x y), etc. Thus
the property ~x 1, ~y | ~z becomes:

~(X,Z) © N(Y,Z) = ~7, (7)
or equivalently

~(Y,2Z) (8)
~yz) =~z 9)

~xz) L
and ~(X,Z) A

1. Suppose that ~x I, ~y | ~z. Take z € R(Z),
x € R(X|z), y € R(Y|z). Thus there exist

w,n € Q with X(w) =z, Y(n) =y, and Z(w) =

Z(n) = z. Since w ~z n, by (7) there exists { €
with X(¢) = X(w),= #; ¥(¢) = Y(n),= y; and
Z({) = z. This shows that (z,y) € R(X,Y]2).

Thus X 1L,Y | Z.

2. Now suppose that X1l ,Y | Z. To show (7), it
is enough to show that w ~z 17 = w(~(x z)
o ~(y,z))N. So suppose w ~z 1, so that Z(w) =
Z(n), = z, say. Define z := X(w), y := Y(n).
Then z € R(X|z), y € R(Y|z) and so, since
X1,Y | Z, (z,y) € R(X,Y|z). Thus there ex-
ists ¢ € Q with X(¢) = 2,Y () = y,Z(() = =.
Then we have w ~(x 7) ¢ and ¢ ~(y,z) 1, whence
w (~(x,2) © ~(v,2))1-

Corollary 3.2 (E, <, 1l.) is a strong separoid.

4 7-FIELDS

A class T of subsets of 2 forms a 7-field if it is closed
under complementation and arbitrary (not just count-
able) unions — and thus, also, under arbitrary inter-
sections. The set T of all 7-fields on Q is partially
ordered by inclusion:

T<T'&TCT.

Then T AT =T NT', while TV T"is the smallest
7-field containing both 7 and 7.

Definition 4.1 We write 71, 7' | 7" if:

aeTVT"
there exists v € 7"
BeTVT" = h that a C v, 3 C 7
such that a C v, 3 C 7.
anB=1>0

(10)

When 7" is trivial (in which case we may write
T1L:T") the above condition becomes: a € T, 8 €
T',anNnB =0 = either « = 0 or 8 = (). This is essen-
tially the relation of ‘qualitative independence between

o-fields’ due to Rényi (1970). The above extension is
based on Bartfai and Rudas (1988).

We shall show that (T, <, 1) is a strong separoid,
again indirectly by exhibiting an isomorphism with
variation independence.

Let X € F. Then we can construct an associated
r-field Tx € T: Tx := {X~Y(B) : B C Rx}. Con-
versely, given any 7-field 7 € T, we can define a re-
lation ~ by: w ~ ' if and only if, for all A € T,
w € A < W € A. This is easily seen to be an
equivalence relation inducing the 7-field 7, the equiv-
alence class containing w being just the intersection of
all the sets in 7 that contain w. Let X € F be the
‘projection function’ 7., associated with ~ € E. Then

T =Tx.

Again, the above correspondence between 7-fields and
(equivalence classes of) functions may be shown to be
a lattice isomorphism between T and F.

Theorem 4.1

XU, Y| Z&Tx Ty | Tz.

Proof. We first note that, since Tx V Ty = T(x.v),
the property Tx 1L; Ty | Tz becomes:

€
g . ;_-(XZ) there exists v € Tz
aﬁﬂ(:g) such that & C v, 8 C 7.

(11)

1. Suppose that Tx1L; Ty | Tz. Take z € R(Z),
r € R(Xl|z), y € R{Y]|z), and let a :=
(X,2)"Yx,2), B = (V,Z2)"'(y z) Suppose
there existed v € Tz —say v = Z~1(C), and thus
7 = Z7Y(C) — such that o C 7, 3 C 4. Then we
would have both z € C' and z € C. This contra-
diction show that no such v exists whence, since
Tx Ty | Tz, we must have a N 3 # ). Taking
then w € anN B, we have X (w) = z, Y(w) =y,
Z(w) = z, showing that (z,y) € R(X,Y]z).
Thus we have shown X 11, Y | Z.

2. Now suppose that X 1, Y | Z. Take a € T(x,z),
B € Tiv,z), such that an 3 = 0. Let vy :=
Z7YZ(a), 6 := Z71Z(B). Suppose that yNJ # 0.
Take £ € yN 4, and let Z(§) = z. Then there
exist w € a, n € B such that Z(w) =2, Z(n) = 2
Let z := X(w), y := Y(n). Then z € R(X|z2),
y € R(Y|z). Since X1,Y | Z, there exists
¢ € Qwith X({) ==2,Y() =y,Z(¢) = z. But
then ¢ € a N B, which is impossible. We deduce
that yNd = . We thus have « C v, 8 C 6§ C 4.
Since v € Tz, we have shown Tx 1, Ty | Tz.



Corollary 4.2 (T, <, 1) is a strong separoid.

It would be pleasant if the above property applied
equally if we restricted attention to the set of o-fields
in €, but this would require further non-trivial condi-
tions.
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