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Abstrat

Variation independene of funtions is a sim-

ple natural `irrelevane' property arising in

a number of appliations in Arti�ial Intelli-

gene and Statistis. We show how it an be

alternatively expressed in terms of two other

representations of the same underlying stru-

ture: equivalene relations and � -�elds.
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1 AXIOMATIC FRAMEWORK

Let L, with partial order �, be a lattie. Given a

ternary operation �?? � j � on L, we all (L; �; ??) a

strong separoid (Dawid 2000), or abstrat graphoid , if,

for all elements x; y; z; w of L :

P1 :

x?? y j x

P2 :

x?? y j z

) y??x j z

P3 :

x?? y j z and

w � y

)

) x??w j z

P4 :

x?? y j z and

w � y

)

) x?? y j (z _ w)

P5 :

x?? y j z and

x??w j (y _ z)

)

) x?? (y _ w) j z

P6 :

x?? y j z and

x?? z j y

)

) x?? (y _ z) j (y ^ z)

It is straightforward to show that, when P1{P5 hold,

x?? y j z if and only if (x _ z)?? (y _ z) j z.

The above properties are abstrated from the notion

of onditional independene between random variables

(Dawid 1979a; 1980). Indeed, for random variables X ,

Y , et., on a probability spae (
; F ; P ), let D(X jY )

denote the distribution, under P , of X given Y , i.e.

the mapping whih assoiates with eah measurable

set A in the range of X , its Y -onditional probability

D(X jY )(A) := P (X 2 AjY ) | a funtion of Y de-

�ned up to P -almost sure equality. We say X is prob-

abilistially independent of Y given Z (under P ), and

write X??

p

Y j Z [P ℄, if any of the following proper-

ties, easily shown to be equivalent, holds (where equal-

ity is to be interpreted as holding P -almost surely, for

all sets A, B):

1. D(X jY; Z) = D(X jZ):

2. The funtion D(X jY; Z) of (Y; Z) is equal to a

funtion of Z alone.

3. D(X;Y jZ)(A�B) = D(X jZ)(A)�D(Y jZ)(B):

It is then straightforward to verify that the properties

P1{P5 hold for ?? = ??

p

[P ℄, with X � Y interpreted

as \X is a funtion of Y ". Property P6 does not hold

for probabilisti independene in full generality, but

an be obtained under suitable additional onditions

(Dawid 1979b).

One we have abstrated the properties P1{P5 (or P1{

P6), they an be seen as supplying a general axiomati

framework for a wide range of onepts of `irrelevane',

not neessarily assoiated with probability, as well as

for other purely mathematial strutures (Dawid 1998;

2000).

2 VARIATION INDEPENDENCE

Variation independene is one suh irrelevane prop-

erty, arising in a variety of appliations, whih is in

many ways analogous to | although, indeed, muh

simpler than | probabilisti onditional indepen-

dene. Its theory has been most spei�ally stud-

ied in the ontext of relational databases, where it is

losely related to the onept of embedded multivalued



dependeny (Sagiv and Waleka 1982; Hill 1993; Wong

1997). It also has important statistial appliations in

the theory of meta Markov models (Dawid and Lau-

ritzen 1993).

Let F be the set of all funtions, with arbitrary range

spaes, de�ned on some non-empty domain spae 
.

We do not require any underlying �-�eld or probabil-

ity measure. In the theory of relational databases, one

typially takes 
 to be a subset of a Cartesian produt

spae, and on�nes attention to oordinate projetion

mappings. However, we do not impose any suh re-

strition here.

One again, we partially order the set F by funtional

ontration: X � Y if Y (!) = Y (�) ) X(!) = X(�).

We all two funtions X;Y equivalent , and write X �

Y , if X � Y and Y � X . Then (F; �) forms a lattie,

with join X _ Y � (X;Y )

We de�ne the onditional range of X, given Y = y by:

R(X jY = y) := fX(!) : ! 2 
; Y (!) = yg. This is

non-empty for any y 2 R(Y ) := Y (
), the (unon-

ditional) range of Y . When the onditioning variable

Y is lear, we may write simply R(X j y). The ondi-

tional range represents the residual logial unertainty

about X after learning Y = y, and is analogous to

the onditional distribution D(X jY = y) of X given

Y = y in a probabilisti model. This analogy underlies

the following onept of `onditional independene' for

this logial framework.

De�nition 2.1 We say X is variation independent of

Y given Z (on 
), and write X??

v

Y j Z [
℄ (or, if 


is understood, just X??

v

Y j Z), if any of the following

properties, easily shown to be equivalent, holds:

1. For any (y; z) 2 R(Y; Z),

R(X j y; z) = R(X j z):

2. The funtion R(X jY; Z) of (Y; Z) is a funtion of

Z alone.

3. For any z 2 R(Z),

R(X;Y j z) = R(X j z)�R(Y j z):

It may be seen that the property X??

v

Y j Z [
℄ is

una�eted if any of the funtions in it is replaed by

an equivalent funtion.

It is well-known, and again straightforward to verify,

that (F; �; ??

v

[
℄) is a strong separoid.

3 EQUIVALENCE RELATIONS

The set E of equivalene relations on a set 
 forms a

lattie under the partial order of re�nement : � is less

re�ned than �

0

, written � � �

0

, if ! �

0

� ) ! � �.

The orresponding de�nitions of join _ and meet ^

are given by:

! (� _ �

0

) � , ! � � and ! �

0

�; (1)

! (� ^ �

0

) � ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

for some n � 1 there exist

�

1

; : : : ; �

n

2 
 with

�

1

= !; �

n

= �; and, for

i = 1; : : : ; n� 1; either

�

i

� �

i+1

or �

i

�

0

�

i+1

:

(2)

We de�ne the omposition, � Æ �

0

, of � and �

0

by:

! (� Æ �

0

) � ,

(

there exists � 2 
 with

! � � and � �

0

�:

(3)

Typially, this relation is not an equivalene relation.

It is readily seen that it will be so if and only if � and

�

0

ommute, i.e. � Æ �

0

= �

0

Æ � | a property we

denote by � ? �

0

. In that ase � Æ �

0

= �

0

Æ �

= � ^ �

0

.

De�nition 3.1 We write � ??

e

�

0

j �

00

if:

(� _ �

00

) Æ (�

0

_ �

00

) =�

00

(4)

Equivalently, if:

(� _ �

00

) ? (�

0

_ �

00

) (5)

and (� _ �

00

) ^ (�

0

_ �

00

) = �

00

: (6)

Note that, with this de�nition, � ? �

0

if and only if

� ??

e

�

0

j (� ^ �

0

).

We shall show that (E; �; ??

e

) is a strong separoid,

by exhibiting an isomorphism with variation indepen-

dene.

Let X 2 F. We an de�ne a orresponding equiv-

alene relation �

X

2 E : ! �

X

!

0

if and only if

X(!) = X(!

0

). Clearly, two funtions are equiva-

lent if and only if they indue the same equivalene

relation. Conversely, given any equivalene relation

� 2 E, we an onstrut the projetion �

�

: 
! 
=�,

i.e. the funtion whih assoiates with eah ! 2 
 the

unique � -equivalene lass ontaining it; and then �

will be the equivalene relation indued by �

�

2 F.

The above orrespondene between equivalene rela-

tions and (equivalene lasses of) funtions may read-

ily be shown to be a lattie isomorphism between E

and F.

Theorem 3.1

X??

v

Y j Z , �

X

??

e

�

Y

j �

Z

:



Proof. Note �rst that �

X

_ �

Y

= �

(X;Y )

, et. Thus

the property �

X

??

e

�

Y

j �

Z

beomes:

�

(X;Z)

Æ �

(Y;Z)

= �

Z

; (7)

or equivalently

�

(X;Z)

? �

(Y;Z)

(8)

and �

(X;Z)

^ �

(Y;Z)

= �

Z

: (9)

1. Suppose that �

X

??

e

�

Y

j �

Z

. Take z 2 R(Z),

x 2 R(X j z), y 2 R(Y j z). Thus there exist

!; � 2 
 with X(!) = x, Y (�) = y, and Z(!) =

Z(�) = z. Sine ! �

Z

�, by (7) there exists � 2 


with X(�) = X(!);= x; Y (�) = Y (�);= y; and

Z(�) = z. This shows that (x; y) 2 R(X;Y j z).

Thus X??

v

Y j Z.

2. Now suppose that X??

v

Y j Z. To show (7), it

is enough to show that ! �

Z

� ) ! (�

(X;Z)

Æ �

(Y;Z)

) �. So suppose ! �

Z

�, so that Z(!) =

Z(�), = z, say. De�ne x := X(!), y := Y (�).

Then x 2 R(X j z), y 2 R(Y j z) and so, sine

X??

v

Y j Z, (x; y) 2 R(X;Y j z). Thus there ex-

ists � 2 
 with X(�) = x; Y (�) = y; Z(�) = z.

Then we have ! �

(X;Z)

� and � �

(Y;Z)

�, whene

! (�

(X;Z)

Æ �

(Y;Z)

)�.

2

Corollary 3.2 (E; �; ??

e

) is a strong separoid.

4 �-FIELDS

A lass T of subsets of 
 forms a �-�eld if it is losed

under omplementation and arbitrary (not just ount-

able) unions | and thus, also, under arbitrary inter-

setions. The set T of all � -�elds on 
 is partially

ordered by inlusion:

T � T

0

, T � T

0

:

Then T ^ T

0

= T \ T

0

, while T _ T

0

is the smallest

� -�eld ontaining both T and T

0

.

De�nition 4.1 We write T ??

t

T

0

j T

00

if:

� 2 T _ T

00

� 2 T

0

_ T

00

� \ � = ;

9

>

=

>

;

)

(

there exists  2 T

00

suh that � � ; � � �:

(10)

When T

00

is trivial (in whih ase we may write

T ??

t

T

0

) the above ondition beomes: � 2 T , � 2

T

0

, � \ � = ; ) either � = ; or � = ;. This is essen-

tially the relation of `qualitative independene between

�-�elds' due to R�enyi (1970). The above extension is

based on Bartfai and Rudas (1988).

We shall show that (T; �; ??

t

) is a strong separoid,

again indiretly by exhibiting an isomorphism with

variation independene.

Let X 2 F. Then we an onstrut an assoiated

� -�eld T

X

2 T: T

X

:= fX

�1

(B) : B � R

X

g. Con-

versely, given any � -�eld T 2 T, we an de�ne a re-

lation � by: ! � !

0

if and only if, for all A 2 T ,

! 2 A () !

0

2 A. This is easily seen to be an

equivalene relation induing the � -�eld T , the equiv-

alene lass ontaining ! being just the intersetion of

all the sets in T that ontain !. Let X 2 F be the

`projetion funtion' �

�

assoiated with �2 E. Then

T = T

X

.

Again, the above orrespondene between � -�elds and

(equivalene lasses of) funtions may be shown to be

a lattie isomorphism between T and F.

Theorem 4.1

X??

v

Y j Z , T

X

??

t

T

Y

j T

Z

:

Proof. We �rst note that, sine T

X

_ T

Y

= T

(X;Y )

,

the property T

X

??

t

T

Y

j T

Z

beomes:

� 2 T

(X;Z)

� 2 T

(Y;Z)

� \ � = ;

9

>

=

>

;

)

(

there exists  2 T

Z

suh that � � ; � � �:

(11)

1. Suppose that T

X

??

t

T

Y

j T

Z

. Take z 2 R(Z),

x 2 R(X j z), y 2 R(Y j z), and let � :=

(X;Z)

�1

(x; z), � := (Y; Z)

�1

(y; z). Suppose

there existed  2 T

Z

| say  = Z

�1

(C), and thus

� = Z

�1

(

�

C) | suh that � � , � � �. Then we

would have both z 2 C and z 2

�

C . This ontra-

dition show that no suh  exists whene, sine

T

X

??

t

T

Y

j T

Z

, we must have � \ � 6= ;. Taking

then ! 2 � \ �, we have X(!) = x, Y (!) = y,

Z(!) = z, showing that (x; y) 2 R(X;Y j z).

Thus we have shown X??

v

Y j Z.

2. Now suppose that X??

v

Y j Z. Take � 2 T

(X;Z)

,

� 2 T

(Y;Z)

, suh that � \ � = ;. Let  :=

Z

�1

Z(�), Æ := Z

�1

Z(�). Suppose that  \ Æ 6= ;.

Take � 2  \ Æ, and let Z(�) = z. Then there

exist ! 2 �, � 2 � suh that Z(!) = z, Z(�) = z.

Let x := X(!), y := Y (�). Then x 2 R(X j z),

y 2 R(Y j z). Sine X??

v

Y j Z, there exists

� 2 
 with X(�) = x; Y (�) = y; Z(�) = z. But

then � 2 � \ �, whih is impossible. We dedue

that  \ Æ = ;. We thus have � � , � � Æ � �.

Sine  2 T

Z

, we have shown T

X

??

t

T

Y

j T

Z

.



2

Corollary 4.2 (T; �; ??

t

) is a strong separoid.

It would be pleasant if the above property applied

equally if we restrited attention to the set of �-�elds

in 
, but this would require further non-trivial ondi-

tions.
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