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Abstra
t

We 
onsider the problem of \optimal learn-

ing" for Markov de
ision pro
esses with un-


ertain transition probabilities. Motivated

by the 
orresponden
e between these pro-


esses and partially-observable Markov de
i-

sion pro
esses, we adopt poli
ies expressed

as �nite-state sto
hasti
 automata, and we

propose poli
y improvement algorithms that

utilize Monte-Carlo te
hniques for gradient

estimation and as
ent.

1 Introdu
tion

This paper 
onsiders the problem of 
omputing op-

timal poli
ies, or \optimal learning" strategies, for

Markov de
ision pro
esses (MDP's) in whi
h un
er-

tainty in transition probabilities is expressed in terms

of a prior distribution over possible parameter values.

A solution to this problem would 
onstitute a solution

to what, in reinfor
ement learning theory, is sometimes

referred to as the \exploration versus exploitation"

problem. The goal is to maximize some measure of

total reward an agent operating in an un
ertain envi-

ronment derives over its entire duration of operation|

an interval that may require the agent to balan
e two

sometimes 
on
i
ting impulses: (1) greedy exploita-

tion of its 
urrent world model, and (2) exploration of

its world to gain information that 
an re�ne the world

model and improve the agent's poli
y.

An optimal leaning strategy is optimal with respe
t to

the prior distribution, whi
h des
ribes the agent's un-


ertainty about pro
ess parameters (transition prob-

abilities). One way of thinking about the 
omputa-

tional pro
edures that we propose is that they perform

an o�ine 
omputation of an online, adaptive ma
hine.

We may regard the pro
ess of approximating an opti-

mal poli
y as \
ompiling" an optimal learning strat-

egy, whi
h 
an then be \loaded" into an agent. The

agent 
an then be released into its environment, and

with a
tions di
tated by the 
ompiled poli
y, the agent

behaves in a manner that is optimal with respe
t to

it's prior, whi
h des
ribes the distribution of environ-

mental s
enarios the agent is likely to en
ounter.

If one were to observe the agent in operation, its

physi
al-state-to-a
tion mapping would appear to be

nonstationary; the agent would appear to adapt as

it observes the 
onsequen
es of its a
tions, but this

adaptation is illusory in the sense that the agent sim-

ply follows its pre-
ompiled poli
y, whi
h is a stati
,

nonstationary mapping from observation histories, or

various 
ompa
ted versions of observation histories, to

a
tions.

In previous work (Du�, 2000), we adopted 
onju-

gate families of distributions for expli
ity represent-

ing and tra
king evolving un
ertainty, and we su

ess-

fully applied a reinfor
ement learning-based, poli
y-

improvement s
heme in whi
h fun
tion approxima-

tors generalized over parameters des
ribing un
er-

tainty (the \information state").

Here, we parameterize poli
ies by general �nite-state

sto
hasti
 
ontrollers. In this 
ase, the 
ontroller does

not expli
ity model or tra
k evolving un
ertainty dis-

tributions; it simply traverses its asso
iated state-

transition diagram in a

ordan
e with observed state

transitions, generating a
tions en route.

This paper begins by summarizing several aspe
ts

of the 
orresponden
e between MDP's with un
er-

tain transition probabilities and partially-observable

Markov de
ision pro
esses (POMDP's). Se
tion 3

presents general �nite-state sto
hasti
 
ontrollers, de-

rives systems of linear equations for the value fun
-

tion and the value fun
tion gradient with respe
t to


ontroller parameters, and proposes a relatively dire
t

Monte-Carlo algorithm for poli
y improvement. Se
-

tion 4 proposes another Monte Carlo algorithm for gra-

dient estimation that makes use of simulated pro
ess



sample paths.

2 BAMDP's and POMDP's

We shall refer to models for de
ision making in whi
h

one adopts a Bayesian framework to model un
ertainty

in the transition probabilities asso
iated with some

underlying Markov de
ision pro
ess as Bayes-adaptive

Markov de
ision pro
esses (BAMDP's). Histori
ally,

resear
hers have 
onsidered the \�nite-parameter" or

\multi-matrix" 
ase in whi
h, for example, it is as-

sumed that the underlying Markov de
ision pro
ess is

drawn from some �nite set of possible transition ma-

tri
es that are assumed to be known, and, in this in-

stan
e, one 
an 
ast the pro
ess straightforwardly as a


lassi
al partially-observable Markov de
ision pro
ess.

Here we attempt to extend the 
orresponden
e to the


ase where our un
ertainty is expressed more gener-

ally in terms of distributions over transition probabil-

ities, rather than over some some �nite set of known

matri
es|details are presented elsewhere.

For POMDP's, the unknown state of nature is the

identity of the underlying physi
al state, s(t); whi
h


an 
hange with ea
h time-step. The true state of na-

ture is a member of a �nite set. For BAMDP's, the

unknown is the true generalized transition matrix, P;

whi
h is a (
onstant) matrix of all transition prob-

abilities, p

a

ij

(r

a

ij

denotes the 
orresponding one-step

rewards)|the true state of nature is a point in a 
om-

pa
t subset of R

AN

(where A is the number of a
tions

and N is the number of physi
al states).

For POMDP's, observations are generated via a dis-

tribution over observations given (a(t); s(t+ 1)) : For

BAMDP's, observations are state transitions, i

a

! j

(state i; a
tion a; resulting in transition to state j)

whi
h are generated via p

a

ij

; a distribution over s(t+1)

given (s(t); a(t)) :

For POMDP's, the belief state, �; is a distribution

(point mass-fun
tion) over possible physi
al states.

For BAMDP's, the information state, dH(P j�); is a

distribution (density) over possible generalized transi-

tion matri
es, parameterized by � (Diri
hlet distribu-

tion parameters, for example). Dis
rete and 
ontinu-

ous versions of Bayes's rule pres
ribe how, respe
tively,

the belief state and information state are to be revised

in light of observation.

For POMDP's, the value fun
tion is 
onvex and, for

�nite horizons, pie
ewise-linear. We 
an 
onsider the


ase for BAMDP's by pursuing a path parallel to the

indu
tive development for the POMDP 
ase. Given

that the value fun
tion with t � 1 steps remaining


an be de�ned in terms of a �nite set of fun
tions,

n

�

k

(t�1)

(j; P )

o

K

0

k=1

; it 
an be shown that:

V

t

(i; dH(P j�) =

maxf

a

R

P

X

j

p

a

ij

�

r

a

ij

+ 
�

k

�

(�;i;j;a)

(t�1)

(j; P )

�

| {z }

�

(t)

dH(P j�)g;

where

k

�

(�; i; j; a) � argmax

k

�

Z

P

�

k

(t�1)

(j; P )p

a

ij

dH(P j�)

�

;

and where the underbra
ed term, evaluated at

argmax

a

, may be taken as a de�nition for an �

(t)

,

whi
h is a fun
tion of the physi
al state and the

generalized transition matrix. This equation de�nes

V

t

(i; dH(P j�) about a lo
al neighborhood of some

nominally 
hosen information state. We may asso
iate

the maximizing a with the newly-
onstru
ted �

(t)

:

The idea of 
hara
terizing the value fun
tion in terms

of a �nite set of elements thus generalizes from the

POMDP 
ase. The fundamental di�eren
es stem from

the fa
t that, for BAMDP's, the information state is

a 
ontinuous density|a fun
tion rather than a �nite-

dimensional ve
tor|whi
h 
alls for appropriate gener-

alization of inner produ
t (from summation to integra-

tion) and re-de�nition of � (from ve
tor to fun
tion).

Can we parallel the development of Monahan's algo-

rithm for POMDP's to the BAMDP 
ase? We 
an gen-

erate all possible 
andidate �

(t)

-fun
tions, and then


onsider how we might go about pruning this set of

super
uous members.

For �xed i; there are A

i

possible 
hoi
es for a: In the

sum over j, ea
h term 
ould sele
t any of the K possi-

blilites for k

�

: This implies a total of A

i

K

N

(or AK

N

total for all i) possible �

(t)

(i; P )-fun
tions. A parti
-

ular 
andidate, �

j

, is not super
uous if there exists

some region of information-state spa
e in whi
h its in-

ner produ
t with the density dominates that of all the

other �'s (in that region of the domain, �

j

de�nes V 's

envelope). In other words, we wish to 
he
k whether

there exists a feasible � su
h that

Z

P

�

k

(t)

(i; P )dH(P j�) �

Z

P

�

j

(t)

(i; P )dH(P j�) 8k:

This set of linear-fun
tional inequalities generalizes the

linear system of 
onstraints for POMDP's, whi
h are

addressed using linear programming, but there ap-

pears to be no easy way to make use of this fa
t for

the BAMDP 
ase.

A more promising approa
h might start by adopting �-

nite state 
ontrollers to de�ne poli
ies. For POMDP's



the value fun
tion asso
iated with a �nite-state 
on-

troller 
an be 
omputed by solving a system of lin-

ear equations, and re
ent POMDP resear
h has de-

veloped pro
edures for 
onstru
ting improved 
on-

trollers. For example, (Meuleau et al, 1999) dire
tly

sear
h a set of restri
ted �nite-state 
ontrollers for

the globally-optimal deterministi
 poli
y or a lo
ally-

optimal sto
hasti
 poli
y.

This sto
hasti
 poli
y as
ent approa
h would seem to

be a promising dire
tion to pursue with regard to

BAMDP's. The main analyti
al job to be done is

to derive an expression for the gradient of the value

fun
tion of a BAMDP governed by a sto
hasti
 pol-

i
y (parametrized by a �nite-state 
ontroller) with re-

spe
t to the poli
y parameters (i.e., a
tion distribu-

tions and memory-state transition distributions). This

issue, without the parentheti
al quali�ers, has been

addressed in (Du�, 2000), and in this paper is worked

out in detail (where parentheti
al quali�ers apply).

3 Finite-state sto
hasti
 
ontrollers

The elements of a �nite state sto
hasti
 
ontroller are:

� A �nite set, Q; of memory states. (We also use Q

to denote the number of memory states.)

� A �nite set of inputs, whi
h we take here to be the

set of observable state!a
tion!next_state

triples: i

a

! j:

� A distribution over starting memory states: �

q

�

Prfq

0

= qg:

� A distribution over a
tions for ea
h memory state:

�

a

q

� Prfajqg:

� A memory state transition distribution for ea
h

memory state: �

i

a

!j

qq

0

�Prfq

0

jq; i; j; ag.

We may think of a �nite-state sto
hasti
 
ontroller as

a dire
ted graph with a
tion-distributions asso
iated

with verti
es, whi
h 
orrespond to memory states, and

with ar
s dire
ted to su

essor memory states in a way

that re
e
ts the memory-state transition distributions

(see Figure 1).

Note that a poli
y represented by a �nite-state 
on-

troller expli
itly maps a �nite number of memory

states, rather than hyperstates (as in (Du�, 2000)),

to distributions over a
tions.

An MDP governed by a �nite-state 
ontroller may be

viewed as intera
ting automata that form a Markov


hain with a state-spa
e that is the 
ross produ
t,

S � Q; of the underlying MDP with the �nite-state


ontroller. The (dis
ounted) value fun
tion asso
iated
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Figure 1: A simple �nite state sto
hasti
 
ontroller

with two memory states (only one representative ar


for ea
h �

i

a

!j

qq

0

8i; j; a is shown for �xed q and q

0

).

with this hybrid pro
ess satis�es an equation express-

ing 
onsisten
y with transitions to su

essor pro
ess

states:

V ((i; q)jP ) =

P

a

�

a

q

P

j

p

a

ij

�

r

a

ij

+


P

q

0

�

i

a

!j

qq

0

V ((j; q

0

)jP )

i

i = 1; : : : ; N

q = 1; : : : ; Q:

(1)

This equation 
an be rewritten in the standard form,

\(I�
A)x = b;" a linear system of equations in whi
h

A has dimension NQ�NQ; where

A

(i�1)Q+q;(j�1)Q+q

0

�

P

a

�

a

q

p

a

ij

r

a

ij

i; j = 1; : : : ; N q; q

0

= 1; : : : ; Q

b

(i�1)Q+q

�

P

j

P

a

�

a

q

p

a

ij

r

a

ij

i = 1; : : : ; N q = 1; : : : ; Q:

(2)

Given that the Markov 
hain begins in state i

0

; the

expe
ted value of the 
ontrolled pro
ess is

V

i

0

�

X

q

�

q

V (i

0

; q);

where, notationally, we understand that V 's value is

for a �xed P:

3.1 Value gradient with respe
t to

�nite-state sto
hasti
 
ontroller

parameters

We shall employ exponentialized, normalized param-

eterized fun
tions to represent all 
ontroller transi-

tion probabilities. This form is di�erentiable with re-

spe
t to its parameters and ensures that the result-

ing fun
tions de�ne valid sets of transition probabili-

ties for the 
ontroller. For example, we parameterize

the initial 
ontroller memory state using f�

q

g

Q

q=1

via



�

q

�

e

�

q

P

q

0

e

�

q

0

: q = 1; :::; Q: Similarly, a
tion distribu-

tions are parameterized using

�

�

a

q

	

via �

a

q

�

e

�

a

q

P

a

0

e

�

a

0

q

;

a = 1; :::; A 8q; and memory-state transtition proba-

bilities are parameterized using

n

 

i

a

!j

qq

0

o

via �

i

a

!j

qq

0

�

e

 

i

a

!j

qq

0

P

q

0

e

 

i

a

!j

qq

0

; q

0

= 1; :::; Q 8q; i; j; a:

We now pro
ede to 
ompute the gradient of V

i

0

with

respe
t to all 
ontroller parameters.

First, with regard to initial memory-state parameters,

it 
an be shown that

�V

i

0

��

q̂

= �

q̂

"

V (i

0

; q̂)�

X

q

�

q

V (i

0

; q)

#

q̂ = 1; : : :Q:

(3)

With regard to a
tion parameters, starting from Equa-

tion 1, it 
an be shown that

�V (i;q)

��

â

q̂

= 


P

j

P

q

0

P

a

�

a

q

p

a

ij

�

i

a

!j

qq

0

�V (j;q

0

)

��

â

q̂

+Æ

qq̂

�

â

q̂

n

P

j

p

â

ij

h

r

â

ij

+ 


P

q

0

�

i

â

!j

q̂q

0

V (j; q

0

)

i

�

P

a

�

a

q̂

�

P

j

0

p

a

ij

0

h

r

a

ij

0

+ 


P

q

0

�

i

a

!j

0

q̂q

0

V (j

0

; q

0

)

i�o

;

where Æ

qq̂

is the Krone
ker delta. Finally,

�V

i

0

��

â

q̂

=

X

q

�

q

�V (i

0

; q)

��

â

q̂

:

With regard to memory-state transition parameters, it


an be shown that

�V (i;q)

� 

^

i

â

!

^

j

q̂bq

0

= 


P

j

P

q

0

P

a

�

a

q

p

a

ij

�

i

a

!j

qq

0

�V (j;q

0

)

� 

^

i

â

!

^

j

q̂bq

0

+Æ

i

^

i

Æ

qq̂


�

â

q̂

p

â

^

i

^

j

�

^

i

â

!

^

j

q̂

b

q

0

h

V (

^

j;

b

q

0

)�

P

q

0

�

^

i

â

!

^

j

q̂q

0

V (

^

j; q

0

)

i

;

and

�V

i

0

� 

^

i

â

!

^

j

q̂

b

q

0

=

X

q

�

q

�V (i

0

; q)

� 

^

i

â

!

^

j

q̂

b

q

0

:

3.2 A dire
t Monte-Carlo poli
y

improvement s
heme

It 
an be seen that the formula for

�V (i;q)

��

â

q̂

; for �xed

q̂ and â, may be rewritten as a system of linear equa-

tions, \(I � 
A)x = b," where A is the same matrix

that appeared in linear system for V (i; q); following

Equation 1, and b is a ve
tor that is zero but for N

elements 
orresponding to di�erent 
hoi
es of i; i.e.,

b

(i�1)Q+q̂

= �

â

q̂

n

P

j

p

â

ij

h

r

â

ij

+ 


P

q

0

�

i

â

!j

qq

0

V (j; q

0

i

�

P

a

�

a

q̂

�

P

j

0

p

a

ij

0

h

r

a

ij

0

+ 


P

q

0

�

i

a

!j

0

qq

0

V (j

0

; q)

i�o

;

i = 1; : : : ; N:

(4)

Similary, the formula for

�V (i;q)

� 

^

i

â

!

^

j

q̂bq

0

; for �xed q̂;

b

q

0

;

^

i;

^

j;

and â; may be written in the form \(I � 
A)x = b,"

where A is as above and b is a ve
tor with one nonzero

element:

b

(

^

i�1)Q+q̂

= 
�

â

q̂

p

â

^

i

^

j

�

^

i

â

!

^

j

q̂

b

q

0

h

V (

^

j;

b

q

0

�

P

q

0

�

^

i

â

!

^

j

q̂q

0

V (

^

j; q

0

)

i

:

(5)

To 
ompute all the gradient 
omponents, we need only


ompute A

�1

on
e. We then multiply A

�1

by the ap-

propriate b-ve
tor to obtain the desired 
omponents.

For example, to 
ompute the gradient 
omponents

with respe
t to initial memory state parameters, we

begin by 
omputing the value fun
tion 
omponents,

V (i

0

; q); q = 1; : : :Q; by multiplying the 
orrespond-

ing rows (rows (i

0

� 1)Q+ q, q = 1; : : : ; Q) of A

�1

by

b

V

; where b

V

is the b-ve
tor asso
iated with the value-

fun
tion linear system given previously in Equation 2.

�V

i

0

��

q̂

is then obtained from Equation 3.

To 
ompute the gradient 
omponents with respe
t to

a
tion parameters, we begin by 
omputing the gradi-

ent 
omponents,

�V (i

0

;q)

��

â

q̂

; q = 1; : : : ; Q; by multiplying

rows (i

0

� 1)Q + q, q = 1; : : : ; Q, of A

�1

by b

�

â

q̂

,

where b

�

â

q̂

is the b-ve
tor asso
iated with the a
tion

parameter gradient linear system given previously in

Equation 4. Sin
e b

�

â

q̂


ontains only N non-zero ele-

ments, only 
olumns (i�1)Q+ q̂; i = 1; : : : ; N; of A

�1


ontribute. Finally, we obtain

�V

i

0

��

â

q̂

as the �

q

-weighted

sum of

�V (i

0

;q)

��

â

q̂


omponents.

Similary, to 
ompute the gradient 
omponents with re-

spe
t to memory-state transition parameters, we be-

gin by 
omputing the gradient 
omponents,

�V (i

0

;q)

� 

^

i

â

!

^

j

q̂bq

0

;

q = 1; : : : ; Q; by multiplying rows (i

0

� 1)Q + q,

q = 1; : : : ; Q, of A

�1

by b

 

^

i

â

!

^

j

q̂bq

0

, where b

 

^

i

â

!

^

j

q̂bq

0

is the

b-ve
tor asso
iated with the memory-state transition

parameter gradient linear system given previously in

Equation 5. Sin
e b

 

^

i

â

!

^

j

q̂bq

0


ontains only one non-zero

element, only 
olumn (

^

i�1)Q+ q̂; of A

�1


ontributes.

Finally, we obtain

�V

i

0

� 

^

i

â

!

^

j

q̂bq

0

as the �

q

-weighted sum of

�V (i

0

;q)

� 

^

i

â

!

^

j

q̂bq

0


omponents.



The pre
eding development has shown how we 
an


ompute the gradient of performan
e with respe
t to

all 
ontroller parameters, given a parti
ular value for

the generalized transition matrix, P: Our ultimate goal

is to 
ompute a 
ontroller that is optimal with respe
t

to the prior distribution over P , and a simple Monte-

Carlo s
heme repeatedly: (1) samples from this prior,

(2) 
omputes the value fun
tion and its gradient with

respe
t to 
ontroller parameters, and (3) takes a small

step in parameter spa
e in the dire
tion suggested by

the exa
t gradient 
omputed for the sample P:

This approa
h requires O(N

2

Q

2

A) spa
e to store the


ontroller parameters. Inverting the A matrix exa
tly,

using LU-de
omposition for example, is an O(N

3

Q

3

)

proposition, and is required ea
h time we sample P: Al-

ternatively, we 
ould apply iterative matrix-inversion

te
hniques, at the 
ost of O(N

2

Q

2

) operations per it-

eration, to 
ompute an approximate inverse. Given

A

�1

; 
omputing the value fun
tion requires O(NQ

2

)

multipli
ations per iteration. Then 
omputing the gra-

dients with respe
t to all initial memory-state, a
-

tion, and memory-state transtion parameters requires

O(Q

2

); O(N

2

Q

2

) , and O(N

2

Q

3

A) multipli
ations, re-

spe
tively. It is diÆ
ult to be pre
ise regarding the

time 
omplexity of this algorithm. For a �xed poli
y,

the squared-error of Monte-Carlo estimates is inversely

proportional to number of samples (for gradient esti-

mates, we note that squared-error is proportional to

the varian
e of the gradient, whi
h may be signi�
ant).

4 Monte-Carlo gradient estimation

We begin by noting that the matrix A may be inter-

preted as the \poli
y-averaged" transition matrix as-

so
iated with the hybrid MDP de�ned over S�Q, and

a Monte-Carlo approa
h for estimating the value fun
-

tion and its gradient with respe
t to 
ontroller param-

eters 
an make use of this interpretation. The linear

systems presented in the previous se
tion ea
h have

the form (I � 
A)x = b: Rewriting slightly, we have

x = (I � 
A)

�1

b =

P

1

k=0

(
A)

k

b:

The (i

0

; q

0

)th row of

P

k

(
A)

k

may be interpreted as

the expe
ted (dis
ounted) number of visits to hybrid

pro
ess states given that we start the pro
ess in state

(i

0

; q

0

). For an episodi
, undi
ounted (
 = 1) prob-

lem, we 
an obtain an unbiased estimate for x

(i

0

;q

0

)

by starting the pro
ess in hybrid state (i

0

; q

0

), then

following a simulated hybrid pro
ess traje
tory and

a

umlating the 
orresponding 
omponents of b; i.e.,

x

(i

0

;q

0

)

�

X

(i;q)2traje
tory

b

(i;q)

:

For dis
ounted problems, we terminate ea
h step of the

simulated traje
tory with probability 1�
: Sin
e the A

matrix is the same for all of the linear systems, we 
an

use the same simulated traje
tory to estimate the value

fun
tion and all of its gradients as well. The foregoing

interpretation suggests a Monte-Carlo algorithm of the

following form:

� Initialize all 
ontroller parameters.

� Do forever:

{ Sample the prior distribution to obtain a gen-

eralized transition matrix, P .

� Set the initial physi
al state to i

0

, and

sample the initial-memory state distribu-

tion, �; to obtain q

0

:

� While the traje
tory has not been termi-

nated,

� Call the 
urrent hybrid state (i; q).

� Sample �, P , and � to obtain a
tion a,

next-state i

0

, and next-memory state q

0

(and reward r

a

ii

0

).

� Update the value fun
tion estimate; for

instan
e, by performing a TD(0) up-

date.

� Update the estimates of value gradient;

various 
omponents of the b-ve
tors

spe
i�ed in Se
tion 3.2 determine in
re-

mental 
ontributions.

� Update the 
ontroller parameters by

moving in the dire
tion of the gradient.

� Let (i; q) = (i

0

; q

0

), and terminate the

traje
tory with probability 1� 
:

Alternatively, we 
ould perform \bat
h" updates,

waiting until traje
tories terminate before making ad-

justments to estimates and 
ontroller parameters.

This a

ount is ne
essarily terse; implementational de-

tails and empiri
al results will be presented at the

workshop. We remark that this approa
h should ap-

ply to POMDP's as well, and that, in 
ontrast to ap-

proa
h presented in (Du�, 2000), the prior need not

be a member of a 
onjugate family of distributions

(e.g., Diri
hlet). Current resear
h seeks more robust

Monte-Carlo estimation te
hniques.
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