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Abstrat

We onsider the problem of \optimal learn-

ing" for Markov deision proesses with un-

ertain transition probabilities. Motivated

by the orrespondene between these pro-

esses and partially-observable Markov dei-

sion proesses, we adopt poliies expressed

as �nite-state stohasti automata, and we

propose poliy improvement algorithms that

utilize Monte-Carlo tehniques for gradient

estimation and asent.

1 Introdution

This paper onsiders the problem of omputing op-

timal poliies, or \optimal learning" strategies, for

Markov deision proesses (MDP's) in whih uner-

tainty in transition probabilities is expressed in terms

of a prior distribution over possible parameter values.

A solution to this problem would onstitute a solution

to what, in reinforement learning theory, is sometimes

referred to as the \exploration versus exploitation"

problem. The goal is to maximize some measure of

total reward an agent operating in an unertain envi-

ronment derives over its entire duration of operation|

an interval that may require the agent to balane two

sometimes oniting impulses: (1) greedy exploita-

tion of its urrent world model, and (2) exploration of

its world to gain information that an re�ne the world

model and improve the agent's poliy.

An optimal leaning strategy is optimal with respet to

the prior distribution, whih desribes the agent's un-

ertainty about proess parameters (transition prob-

abilities). One way of thinking about the omputa-

tional proedures that we propose is that they perform

an o�ine omputation of an online, adaptive mahine.

We may regard the proess of approximating an opti-

mal poliy as \ompiling" an optimal learning strat-

egy, whih an then be \loaded" into an agent. The

agent an then be released into its environment, and

with ations ditated by the ompiled poliy, the agent

behaves in a manner that is optimal with respet to

it's prior, whih desribes the distribution of environ-

mental senarios the agent is likely to enounter.

If one were to observe the agent in operation, its

physial-state-to-ation mapping would appear to be

nonstationary; the agent would appear to adapt as

it observes the onsequenes of its ations, but this

adaptation is illusory in the sense that the agent sim-

ply follows its pre-ompiled poliy, whih is a stati,

nonstationary mapping from observation histories, or

various ompated versions of observation histories, to

ations.

In previous work (Du�, 2000), we adopted onju-

gate families of distributions for expliity represent-

ing and traking evolving unertainty, and we suess-

fully applied a reinforement learning-based, poliy-

improvement sheme in whih funtion approxima-

tors generalized over parameters desribing uner-

tainty (the \information state").

Here, we parameterize poliies by general �nite-state

stohasti ontrollers. In this ase, the ontroller does

not expliity model or trak evolving unertainty dis-

tributions; it simply traverses its assoiated state-

transition diagram in aordane with observed state

transitions, generating ations en route.

This paper begins by summarizing several aspets

of the orrespondene between MDP's with uner-

tain transition probabilities and partially-observable

Markov deision proesses (POMDP's). Setion 3

presents general �nite-state stohasti ontrollers, de-

rives systems of linear equations for the value fun-

tion and the value funtion gradient with respet to

ontroller parameters, and proposes a relatively diret

Monte-Carlo algorithm for poliy improvement. Se-

tion 4 proposes another Monte Carlo algorithm for gra-

dient estimation that makes use of simulated proess



sample paths.

2 BAMDP's and POMDP's

We shall refer to models for deision making in whih

one adopts a Bayesian framework to model unertainty

in the transition probabilities assoiated with some

underlying Markov deision proess as Bayes-adaptive

Markov deision proesses (BAMDP's). Historially,

researhers have onsidered the \�nite-parameter" or

\multi-matrix" ase in whih, for example, it is as-

sumed that the underlying Markov deision proess is

drawn from some �nite set of possible transition ma-

tries that are assumed to be known, and, in this in-

stane, one an ast the proess straightforwardly as a

lassial partially-observable Markov deision proess.

Here we attempt to extend the orrespondene to the

ase where our unertainty is expressed more gener-

ally in terms of distributions over transition probabil-

ities, rather than over some some �nite set of known

matries|details are presented elsewhere.

For POMDP's, the unknown state of nature is the

identity of the underlying physial state, s(t); whih

an hange with eah time-step. The true state of na-

ture is a member of a �nite set. For BAMDP's, the

unknown is the true generalized transition matrix, P;

whih is a (onstant) matrix of all transition prob-

abilities, p

a

ij

(r

a

ij

denotes the orresponding one-step

rewards)|the true state of nature is a point in a om-

pat subset of R

AN

(where A is the number of ations

and N is the number of physial states).

For POMDP's, observations are generated via a dis-

tribution over observations given (a(t); s(t+ 1)) : For

BAMDP's, observations are state transitions, i

a

! j

(state i; ation a; resulting in transition to state j)

whih are generated via p

a

ij

; a distribution over s(t+1)

given (s(t); a(t)) :

For POMDP's, the belief state, �; is a distribution

(point mass-funtion) over possible physial states.

For BAMDP's, the information state, dH(P j�); is a

distribution (density) over possible generalized transi-

tion matries, parameterized by � (Dirihlet distribu-

tion parameters, for example). Disrete and ontinu-

ous versions of Bayes's rule presribe how, respetively,

the belief state and information state are to be revised

in light of observation.

For POMDP's, the value funtion is onvex and, for

�nite horizons, pieewise-linear. We an onsider the

ase for BAMDP's by pursuing a path parallel to the

indutive development for the POMDP ase. Given

that the value funtion with t � 1 steps remaining

an be de�ned in terms of a �nite set of funtions,

n

�

k

(t�1)

(j; P )

o

K

0

k=1

; it an be shown that:

V

t

(i; dH(P j�) =

maxf

a

R

P

X

j

p

a

ij

�

r

a

ij

+ �

k

�

(�;i;j;a)

(t�1)

(j; P )

�

| {z }

�

(t)

dH(P j�)g;

where

k

�

(�; i; j; a) � argmax

k

�

Z

P

�

k

(t�1)

(j; P )p

a

ij

dH(P j�)

�

;

and where the underbraed term, evaluated at

argmax

a

, may be taken as a de�nition for an �

(t)

,

whih is a funtion of the physial state and the

generalized transition matrix. This equation de�nes

V

t

(i; dH(P j�) about a loal neighborhood of some

nominally hosen information state. We may assoiate

the maximizing a with the newly-onstruted �

(t)

:

The idea of haraterizing the value funtion in terms

of a �nite set of elements thus generalizes from the

POMDP ase. The fundamental di�erenes stem from

the fat that, for BAMDP's, the information state is

a ontinuous density|a funtion rather than a �nite-

dimensional vetor|whih alls for appropriate gener-

alization of inner produt (from summation to integra-

tion) and re-de�nition of � (from vetor to funtion).

Can we parallel the development of Monahan's algo-

rithm for POMDP's to the BAMDP ase? We an gen-

erate all possible andidate �

(t)

-funtions, and then

onsider how we might go about pruning this set of

superuous members.

For �xed i; there are A

i

possible hoies for a: In the

sum over j, eah term ould selet any of the K possi-

blilites for k

�

: This implies a total of A

i

K

N

(or AK

N

total for all i) possible �

(t)

(i; P )-funtions. A parti-

ular andidate, �

j

, is not superuous if there exists

some region of information-state spae in whih its in-

ner produt with the density dominates that of all the

other �'s (in that region of the domain, �

j

de�nes V 's

envelope). In other words, we wish to hek whether

there exists a feasible � suh that

Z

P

�

k

(t)

(i; P )dH(P j�) �

Z

P

�

j

(t)

(i; P )dH(P j�) 8k:

This set of linear-funtional inequalities generalizes the

linear system of onstraints for POMDP's, whih are

addressed using linear programming, but there ap-

pears to be no easy way to make use of this fat for

the BAMDP ase.

A more promising approah might start by adopting �-

nite state ontrollers to de�ne poliies. For POMDP's



the value funtion assoiated with a �nite-state on-

troller an be omputed by solving a system of lin-

ear equations, and reent POMDP researh has de-

veloped proedures for onstruting improved on-

trollers. For example, (Meuleau et al, 1999) diretly

searh a set of restrited �nite-state ontrollers for

the globally-optimal deterministi poliy or a loally-

optimal stohasti poliy.

This stohasti poliy asent approah would seem to

be a promising diretion to pursue with regard to

BAMDP's. The main analytial job to be done is

to derive an expression for the gradient of the value

funtion of a BAMDP governed by a stohasti pol-

iy (parametrized by a �nite-state ontroller) with re-

spet to the poliy parameters (i.e., ation distribu-

tions and memory-state transition distributions). This

issue, without the parenthetial quali�ers, has been

addressed in (Du�, 2000), and in this paper is worked

out in detail (where parenthetial quali�ers apply).

3 Finite-state stohasti ontrollers

The elements of a �nite state stohasti ontroller are:

� A �nite set, Q; of memory states. (We also use Q

to denote the number of memory states.)

� A �nite set of inputs, whih we take here to be the

set of observable state!ation!next_state

triples: i

a

! j:

� A distribution over starting memory states: �

q

�

Prfq

0

= qg:

� A distribution over ations for eah memory state:

�

a

q

� Prfajqg:

� A memory state transition distribution for eah

memory state: �

i

a

!j

qq

0

�Prfq

0

jq; i; j; ag.

We may think of a �nite-state stohasti ontroller as

a direted graph with ation-distributions assoiated

with verties, whih orrespond to memory states, and

with ars direted to suessor memory states in a way

that reets the memory-state transition distributions

(see Figure 1).

Note that a poliy represented by a �nite-state on-

troller expliitly maps a �nite number of memory

states, rather than hyperstates (as in (Du�, 2000)),

to distributions over ations.

An MDP governed by a �nite-state ontroller may be

viewed as interating automata that form a Markov

hain with a state-spae that is the ross produt,

S � Q; of the underlying MDP with the �nite-state

ontroller. The (disounted) value funtion assoiated
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Figure 1: A simple �nite state stohasti ontroller

with two memory states (only one representative ar

for eah �

i

a

!j

qq

0

8i; j; a is shown for �xed q and q

0

).

with this hybrid proess satis�es an equation express-

ing onsisteny with transitions to suessor proess

states:

V ((i; q)jP ) =

P

a

�

a

q

P

j

p

a

ij

�

r

a

ij

+

P

q

0

�

i

a

!j

qq

0

V ((j; q

0

)jP )

i

i = 1; : : : ; N

q = 1; : : : ; Q:

(1)

This equation an be rewritten in the standard form,

\(I�A)x = b;" a linear system of equations in whih

A has dimension NQ�NQ; where

A

(i�1)Q+q;(j�1)Q+q

0

�

P

a

�

a

q

p

a

ij

r

a

ij

i; j = 1; : : : ; N q; q

0

= 1; : : : ; Q

b

(i�1)Q+q

�

P

j

P

a

�

a

q

p

a

ij

r

a

ij

i = 1; : : : ; N q = 1; : : : ; Q:

(2)

Given that the Markov hain begins in state i

0

; the

expeted value of the ontrolled proess is

V

i

0

�

X

q

�

q

V (i

0

; q);

where, notationally, we understand that V 's value is

for a �xed P:

3.1 Value gradient with respet to

�nite-state stohasti ontroller

parameters

We shall employ exponentialized, normalized param-

eterized funtions to represent all ontroller transi-

tion probabilities. This form is di�erentiable with re-

spet to its parameters and ensures that the result-

ing funtions de�ne valid sets of transition probabili-

ties for the ontroller. For example, we parameterize

the initial ontroller memory state using f�

q

g

Q

q=1

via



�

q

�

e

�

q

P

q

0

e

�

q

0

: q = 1; :::; Q: Similarly, ation distribu-

tions are parameterized using

�

�

a

q

	

via �

a

q

�

e

�

a

q

P
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a

0

q

;

a = 1; :::; A 8q; and memory-state transtition proba-

bilities are parameterized using

n
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i
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0

= 1; :::; Q 8q; i; j; a:

We now proede to ompute the gradient of V

i

0

with

respet to all ontroller parameters.

First, with regard to initial memory-state parameters,

it an be shown that

�V

i

0
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q̂
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q̂

"

V (i
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X

q

�
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(3)

With regard to ation parameters, starting from Equa-

tion 1, it an be shown that
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where Æ

qq̂

is the Kroneker delta. Finally,
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X
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�
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:

With regard to memory-state transition parameters, it

an be shown that

�V (i;q)
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�V

i

0

� 

^

i

â
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â

!

^

j

q̂

b

q

0

:

3.2 A diret Monte-Carlo poliy

improvement sheme

It an be seen that the formula for

�V (i;q)

��

â

q̂

; for �xed

q̂ and â, may be rewritten as a system of linear equa-

tions, \(I � A)x = b," where A is the same matrix

that appeared in linear system for V (i; q); following

Equation 1, and b is a vetor that is zero but for N

elements orresponding to di�erent hoies of i; i.e.,

b
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(4)

Similary, the formula for

�V (i;q)
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where A is as above and b is a vetor with one nonzero
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(5)

To ompute all the gradient omponents, we need only

ompute A

�1

one. We then multiply A

�1

by the ap-

propriate b-vetor to obtain the desired omponents.

For example, to ompute the gradient omponents

with respet to initial memory state parameters, we

begin by omputing the value funtion omponents,

V (i

0

; q); q = 1; : : :Q; by multiplying the orrespond-

ing rows (rows (i

0

� 1)Q+ q, q = 1; : : : ; Q) of A

�1

by

b

V
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V

is the b-vetor assoiated with the value-

funtion linear system given previously in Equation 2.
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ation parameters, we begin by omputing the gradi-
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Similary, to ompute the gradient omponents with re-

spet to memory-state transition parameters, we be-

gin by omputing the gradient omponents,

�V (i

0

;q)

� 

^

i

â
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The preeding development has shown how we an

ompute the gradient of performane with respet to

all ontroller parameters, given a partiular value for

the generalized transition matrix, P: Our ultimate goal

is to ompute a ontroller that is optimal with respet

to the prior distribution over P , and a simple Monte-

Carlo sheme repeatedly: (1) samples from this prior,

(2) omputes the value funtion and its gradient with

respet to ontroller parameters, and (3) takes a small

step in parameter spae in the diretion suggested by

the exat gradient omputed for the sample P:

This approah requires O(N

2

Q

2

A) spae to store the

ontroller parameters. Inverting the A matrix exatly,

using LU-deomposition for example, is an O(N

3

Q

3

)

proposition, and is required eah time we sample P: Al-

ternatively, we ould apply iterative matrix-inversion

tehniques, at the ost of O(N

2

Q

2

) operations per it-

eration, to ompute an approximate inverse. Given

A

�1

; omputing the value funtion requires O(NQ

2

)

multipliations per iteration. Then omputing the gra-

dients with respet to all initial memory-state, a-

tion, and memory-state transtion parameters requires

O(Q

2

); O(N

2

Q

2

) , and O(N

2

Q

3

A) multipliations, re-

spetively. It is diÆult to be preise regarding the

time omplexity of this algorithm. For a �xed poliy,

the squared-error of Monte-Carlo estimates is inversely

proportional to number of samples (for gradient esti-

mates, we note that squared-error is proportional to

the variane of the gradient, whih may be signi�ant).

4 Monte-Carlo gradient estimation

We begin by noting that the matrix A may be inter-

preted as the \poliy-averaged" transition matrix as-

soiated with the hybrid MDP de�ned over S�Q, and

a Monte-Carlo approah for estimating the value fun-

tion and its gradient with respet to ontroller param-

eters an make use of this interpretation. The linear

systems presented in the previous setion eah have

the form (I � A)x = b: Rewriting slightly, we have

x = (I � A)

�1

b =

P

1

k=0
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b:

The (i

0

; q

0

)th row of

P

k

(A)

k

may be interpreted as

the expeted (disounted) number of visits to hybrid

proess states given that we start the proess in state

(i

0

; q

0

). For an episodi, undiounted ( = 1) prob-

lem, we an obtain an unbiased estimate for x

(i

0

;q

0

)

by starting the proess in hybrid state (i

0

; q

0

), then

following a simulated hybrid proess trajetory and

aumlating the orresponding omponents of b; i.e.,

x

(i

0

;q

0

)

�

X

(i;q)2trajetory

b

(i;q)

:

For disounted problems, we terminate eah step of the

simulated trajetory with probability 1�: Sine the A

matrix is the same for all of the linear systems, we an

use the same simulated trajetory to estimate the value

funtion and all of its gradients as well. The foregoing

interpretation suggests a Monte-Carlo algorithm of the

following form:

� Initialize all ontroller parameters.

� Do forever:

{ Sample the prior distribution to obtain a gen-

eralized transition matrix, P .

� Set the initial physial state to i

0

, and

sample the initial-memory state distribu-

tion, �; to obtain q

0

:

� While the trajetory has not been termi-

nated,

� Call the urrent hybrid state (i; q).

� Sample �, P , and � to obtain ation a,

next-state i

0

, and next-memory state q

0

(and reward r

a

ii

0

).

� Update the value funtion estimate; for

instane, by performing a TD(0) up-

date.

� Update the estimates of value gradient;

various omponents of the b-vetors

spei�ed in Setion 3.2 determine inre-

mental ontributions.

� Update the ontroller parameters by

moving in the diretion of the gradient.

� Let (i; q) = (i

0

; q

0

), and terminate the

trajetory with probability 1� :

Alternatively, we ould perform \bath" updates,

waiting until trajetories terminate before making ad-

justments to estimates and ontroller parameters.

This aount is neessarily terse; implementational de-

tails and empirial results will be presented at the

workshop. We remark that this approah should ap-

ply to POMDP's as well, and that, in ontrast to ap-

proah presented in (Du�, 2000), the prior need not

be a member of a onjugate family of distributions

(e.g., Dirihlet). Current researh seeks more robust

Monte-Carlo estimation tehniques.
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