Monte-Carlo Algorithms for the
Improvement of Finite-State Stochastic Controllers:
Application to Bayes-Adaptive Markov Decision Processes

Michael O. Duff
Department of Computer Science
University of Massachusetts at Amherst
duff@cs.umass.edu

Abstract

We consider the problem of “optimal learn-
ing” for Markov decision processes with un-
certain transition probabilities. Motivated
by the correspondence between these pro-
cesses and partially-observable Markov deci-
sion processes, we adopt policies expressed
as finite-state stochastic automata, and we
propose policy improvement algorithms that
utilize Monte-Carlo techniques for gradient
estimation and ascent.

1 Introduction

This paper considers the problem of computing op-
timal policies, or “optimal learning” strategies, for
Markov decision processes (MDP’s) in which uncer-
tainty in transition probabilities is expressed in terms
of a prior distribution over possible parameter values.

A solution to this problem would constitute a solution
to what, in reinforcement learning theory, is sometimes
referred to as the “exploration versus exploitation”
problem. The goal is to maximize some measure of
total reward an agent operating in an uncertain envi-
ronment derives over its entire duration of operation—
an interval that may require the agent to balance two
sometimes conflicting impulses: (1) greedy exploita-
tion of its current world model, and (2) exploration of
its world to gain information that can refine the world
model and improve the agent’s policy.

An optimal leaning strategy is optimal with respect to
the prior distribution, which describes the agent’s un-
certainty about process parameters (transition prob-
abilities). One way of thinking about the computa-
tional procedures that we propose is that they perform
an offline computation of an online, adaptive machine.
We may regard the process of approximating an opti-
mal policy as “compiling” an optimal learning strat-

egy, which can then be “loaded” into an agent. The
agent can then be released into its environment, and
with actions dictated by the compiled policy, the agent
behaves in a manner that is optimal with respect to
it’s prior, which describes the distribution of environ-
mental scenarios the agent is likely to encounter.

If one were to observe the agent in operation, its
physical-state-to-action mapping would appear to be
nonstationary; the agent would appear to adapt as
it observes the consequences of its actions, but this
adaptation is illusory in the sense that the agent sim-
ply follows its pre-compiled policy, which is a static,
nonstationary mapping from observation histories, or
various compacted versions of observation histories, to
actions.

In previous work (Duff, 2000), we adopted conju-
gate families of distributions for explicity represent-
ing and tracking evolving uncertainty, and we success-
fully applied a reinforcement learning-based, policy-
improvement scheme in which function approxima-
tors generalized over parameters describing uncer-
tainty (the “information state”).

Here, we parameterize policies by general finite-state
stochastic controllers. In this case, the controller does
not explicity model or track evolving uncertainty dis-
tributions; it simply traverses its associated state-
transition diagram in accordance with observed state
transitions, generating actions en route.

This paper begins by summarizing several aspects
of the correspondence between MDP’s with uncer-
tain transition probabilities and partially-observable
Markov decision processes (POMDP’s). Section 3
presents general finite-state stochastic controllers, de-
rives systems of linear equations for the value func-
tion and the value function gradient with respect to
controller parameters, and proposes a relatively direct
Monte-Carlo algorithm for policy improvement. Sec-
tion 4 proposes another Monte Carlo algorithm for gra-
dient estimation that makes use of simulated process

sample paths.

2 BAMDP’s and POMDP’s

We shall refer to models for decision making in which
one adopts a Bayesian framework to model uncertainty
in the transition probabilities associated with some
underlying Markov decision process as Bayes-adaptive
Markov decision processes (BAMDP’s). Historically,
researchers have considered the “finite-parameter” or
“multi-matrix” case in which, for example, it is as-
sumed that the underlying Markov decision process is
drawn from some finite set of possible transition ma-
trices that are assumed to be known, and, in this in-
stance, one can cast the process straightforwardly as a
classical partially-observable Markov decision process.
Here we attempt to extend the correspondence to the
case where our uncertainty is expressed more gener-
ally in terms of distributions over transition probabil-
ities, rather than over some some finite set of known
matrices—details are presented elsewhere.

For POMDP’s, the unknown state of nature is the
identity of the underlying physical state, s(t), which
can change with each time-step. The true state of na-
ture is a member of a finite set. For BAMDP’s, the
unknown is the true generalized transition matriz, P,
which is a (constant) matrix of all transition prob-
abilities, pf; (rfj denotes the corresponding one-step
rewards)—the true state of nature is a point in a com-
pact subset of RN (where A is the number of actions
and N is the number of physical states).

For POMDP’s, observations are generated via a dis-
tribution over observations given (a(t),s(t + 1)) . For
BAMDP’s, observations are state transitions, i* — j
(state 4, action a, resulting in transition to state j)
which are generated via pf;, a distribution over s(t+1)
given (s(t), a(t)) .

For POMDP’s, the belief state, mw, is a distribution
(point mass-function) over possible physical states.
For BAMDP’s, the information state, dH(P|f), is a
distribution (density) over possible generalized transi-
tion matrices, parameterized by 6 (Dirichlet distribu-
tion parameters, for example). Discrete and continu-
ous versions of Bayes’s rule prescribe how, respectively,
the belief state and information state are to be revised
in light of observation.

For POMDP’s, the value function is convex and, for
finite horizons, piecewise-linear. We can consider the
case for BAMDP’s by pursuing a path parallel to the
inductive development for the POMDP case. Given
that the value function with ¢t — 1 steps remaining
can be defined in terms of a finite set of functions,

KI
, it can be shown that:

{a](ct_l)(ja P)}

Vi(i,dH(Plf) =
max{a [Y b (vl + 701G, P)) dH(PIB)},
J

v

()

where
k*(0,i,j,a) = arg max {/Paéct_l)(j, P)p?jdH(P|9)} ,

and where the underbraced term, evaluated at
argmax,, may be taken as a definition for an a,,
which is a function of the physical state and the
generalized transition matrix. This equation defines
Vi(i,dH(P|f) about a local neighborhood of some
nominally chosen information state. We may associate
the maximizing a with the newly-constructed a).

The idea of characterizing the value function in terms
of a finite set of elements thus generalizes from the
POMDP case. The fundamental differences stem from
the fact that, for BAMDP’s, the information state is
a continuous density—a function rather than a finite-
dimensional vector—which calls for appropriate gener-
alization of inner product (from summation to integra-
tion) and re-definition of a (from vector to function).

Can we parallel the development of Monahan’s algo-
rithm for POMDP’s to the BAMDP case? We can gen-
erate all possible candidate o -functions, and then
consider how we might go about pruning this set of
superfluous members.

For fixed i, there are A; possible choices for a. In the
sum over j, each term could select any of the K possi-
blilites for k*. This implies a total of 4;K™ (or AK™N
total for all ¢) possible ;) (i, P)-functions. A partic-
ular candidate, o/, is not superfluous if there exists
some region of information-state space in which its in-
ner product with the density dominates that of all the
other o’s (in that region of the domain, o/ defines V’s
envelope). In other words, we wish to check whether
there exists a feasible 8 such that

/P ol (i, P)AH (P|6) < /P od, (i, PYH(PI9) V.

This set of linear-functional inequalities generalizes the
linear system of constraints for POMDP’s, which are
addressed using linear programming, but there ap-
pears to be no easy way to make use of this fact for
the BAMDP case.

A more promising approach might start by adopting fi-
nite state controllers to define policies. For POMDP’s

the value function associated with a finite-state con-
troller can be computed by solving a system of lin-
ear equations, and recent POMDP research has de-
veloped procedures for constructing improved con-
trollers. For example, (Meuleau et al, 1999) directly
search a set of restricted finite-state controllers for
the globally-optimal deterministic policy or a locally-
optimal stochastic policy.

This stochastic policy ascent approach would seem to
be a promising direction to pursue with regard to
BAMDP’s. The main analytical job to be done is
to derive an expression for the gradient of the value
function of a BAMDP governed by a stochastic pol-
icy (parametrized by a finite-state controller) with re-
spect to the policy parameters (i.e., action distribu-
tions and memory-state transition distributions). This
issue, without the parenthetical qualifiers, has been
addressed in (Duff, 2000), and in this paper is worked
out in detail (where parenthetical qualifiers apply).

3 Finite-state stochastic controllers

The elements of a finite state stochastic controller are:
e A finite set, @, of memory states. (We also use @)
to denote the number of memory states.)

e A finite set of inputs, which we take here to be the
set of observable state—action—next_state
triples: ¢* — j.

e A distribution over starting memory states: aq =
Pr{q =gq}.

e A distribution over actions for each memory state:

s = Prialq}.
e A memory state transition distribution for each
it ' ..
memory state: 1, =Pr{q'|q,i,j,a}.

We may think of a finite-state stochastic controller as
a directed graph with action-distributions associated
with vertices, which correspond to memory states, and
with arcs directed to successor memory states in a way
that reflects the memory-state transition distributions
(see Figure 1).

Note that a policy represented by a finite-state con-
troller explicitly maps a finite number of memory
states, rather than hyperstates (as in (Duff, 2000)),
to distributions over actions.

An MDP governed by a finite-state controller may be
viewed as interacting automata that form a Markov
chain with a state-space that is the cross product,
S x @, of the underlying MDP with the finite-state
controller. The (discounted) value function associated

nl——>] i-->j

4%

a a
2

&) €

9 4

Figure 1: A simple finite state stochastic controller
with two memory states (only one representative arc

for each nZT’j Vi, j,a is shown for fixed ¢ and ¢').

with this hybrid process satisfies an equation express-
ing consistency with transitions to successor process
states:

VI(G,QIP) = X, 8508y
Sty VGO i=1, N
q=1,...,Q.
(1)
This equation can be rewritten in the standard form,
“(I—~yA)x =0b,” alinear system of equations in which
A has dimension NQxN(, where

Ai-ntaG-ne+e = 2 §PHT
,j=1,...,N qq¢ =1,...,Q
bi—)Q+g = 205 2.4 SqPHTH

i=1,...,N ¢g=1,...,Q.
(2)

Given that the Markov chain begins in state ¢g, the
expected value of the controlled process is

‘/io = Z aqV(iO; q);
q

where, notationally, we understand that V’s value is
for a fixed P.

3.1 Value gradient with respect to
finite-state stochastic controller
parameters

We shall employ exponentialized, normalized param-
eterized functions to represent all controller transi-
tion probabilities. This form is differentiable with re-
spect to its parameters and ensures that the result-
ing functions define valid sets of transition probabili-
ties for the controller. For example, we parameterize
the initial controller memory state using {q&q}?:l via

_e¥1
¥,
Xg
tions are parameterized using {XZ} via &2 = ﬁ,
e q
CLI
., A Vq, and memory-state transtition proba-

bilities are parameterized using {1/1 H7} via, n;qﬂj =

o= . ¢ =1,...,Q. Similarly, action distribu-

a=1,.

’L —)]
e aq’

— =7, ¢ =1, ..
qu ewqq' " ’
We now procede to compute the gradient of V;, with
respect to all controller parameters.

7Q vq’i’j7a

First, with regard to initial memory-state parameters,
it can be shown that

Zo, Zaq Zo,] (j:].,...Q.
(3)

With regard to action parameters, starting from Equa-
tion 1, it can be shown that

A
dpg

ov (i, a oV,

el D VD INDIN p“n;q”’%”
+6ll¢1£a {Z pz] |:Tz] +72 nl _”V()

—2 & (Zj’ Pije |:rzj’ +72q1 ﬂqqr el V(' qd))}>

where §,4 is the Kronecker delta. Finally,

8‘/1’0 8V('LO7 q)
—_ = O{ . ~ .
an ; q an

With regard to memory-state transition parameters, it
can be shown that

oV
= 15,5 o fap”n;ﬁ%

q’

oV (i,q)
W;a:);

qq’

b€ty [VG.2) ~ Sy VG o)

and
6V(7’07)

awz“ag ’

6%0 _ Z

8'(/)1 4)] p

3.2 A direct Monte-Carlo policy
improvement scheme

It can be seen that the formula for %, for fixed
q and a, may be rewritten as a system of linear equa-
tions, “(I — yA)z = b,” where A is the same matrix
that appeared in linear system for V(i,q), following
Equation 1, and b is a vector that is zero but for N

elements corresponding to different choices of ¢; i.e.,

b(i-1)Q+4 {Z Py [r” Y, ”’V(J,q}

_Zagg(zj"pij’[z] vy UZ _)]V D}
i=1,...,N.

(4)

¢ i J,

Similary, the formula for %, for fixed g,

dq’
and @, may be written in the form “(I —yA)x = b,”
where A is as above and b is a vector with one nonzero

element:
b Ve, nl el [V(i 7

S G,)]

i—1)Q+4

()

To compute all the gradient components, we need only
compute A~! once. We then multiply A~! by the ap-
propriate b-vector to obtain the desired components.
For example, to compute the gradient components
with respect to initial memory state parameters, we
begin by computing the value function components,
V(io,q), ¢ = 1,...Q, by multiplying the correspond-
ing rows (rows (ip — 1)Q +q,¢=1,...,Q) of A~ by
by, where by is the b-vector associated with the value-
fauélction linear system given previously in Equation 2.
50
To compute the gradient components with respect to
action parameters, we begin by computing the gradi-
ent components, %”}1”’), q=1,...,Q, by multiplying
q
,Q, of A7l by bya
q

is then obtained from Equation 3.

rows (ip — DQ +¢q, ¢ = 1,...
where b,a is the b-vector associated with the action
q

parameter gradient linear system given previously in
Equation 4. Since b,a contains only N non-zero ele-
q

N, of A~!
contribute. Finally, we obtain Wi as the o -weighted

oxe
£ OV (io,q)
oxe

q
q

ments, only columns (i —1)Q+¢,i=1,...,

sum o components.

Similary, to compute the gradient components with re-
spect to memory-state transition parameters, we be-

gin by computing the gradient components, %,
g = 1,...,Q, by multiplying rows (ig — I)Q + q,
g=1,. ..,Q,ofA1bybl_,1,wherebl_wlsthe

‘1‘1
b-vector associated with the memory state transition

parameter gradient linear system given previously in

Equation 5. Since b ;a_; contains only one non-zero
Ga’

element, only column (z — 1)@ + ¢, of A~! contributes.

Finally, we obtain 82;.‘/;"_);% the a,-weighted sum of

qq’

8V(z0,)
oyt

qq’

components.

The preceding development has shown how we can
compute the gradient of performance with respect to
all controller parameters, given a particular value for
the generalized transition matrix, P. Our ultimate goal
is to compute a controller that is optimal with respect
to the prior distribution over P, and a simple Monte-
Carlo scheme repeatedly: (1) samples from this prior,
(2) computes the value function and its gradient with
respect to controller parameters, and (3) takes a small
step in parameter space in the direction suggested by
the exact gradient computed for the sample P.

This approach requires O(N?Q?A) space to store the
controller parameters. Inverting the A matrix exactly,
using LU-decomposition for example, is an O(N3Q?)
proposition, and is required each time we sample P. Al-
ternatively, we could apply iterative matrix-inversion
techniques, at the cost of O(N2@Q?) operations per it-
eration, to compute an approximate inverse. Given
A~!, computing the value function requires O(NQ?)
multiplications per iteration. Then computing the gra-
dients with respect to all initial memory-state, ac-
tion, and memory-state transtion parameters requires
0(Q?), O(N?Q?) , and O(N?Q?A) multiplications, re-
spectively. It is difficult to be precise regarding the
time complexity of this algorithm. For a fixed policy,
the squared-error of Monte-Carlo estimates is inversely
proportional to number of samples (for gradient esti-
mates, we note that squared-error is proportional to
the variance of the gradient, which may be significant).

4 Monte-Carlo gradient estimation

We begin by noting that the matrix A may be inter-
preted as the “policy-averaged” transition matrix as-
sociated with the hybrid MDP defined over S x @, and
a Monte-Carlo approach for estimating the value func-
tion and its gradient with respect to controller param-
eters can make use of this interpretation. The linear
systems presented in the previous section each have
the form (I — yA)z = b. Rewriting slightly, we have
= (I —yA) b= Y2, (vA)b.

The (io,qo)th row of >_, (vA)* may be interpreted as
the expected (discounted) number of visits to hybrid
process states given that we start the process in state
(i0,40). For an episodic, undicounted (y = 1) prob-
lem, we can obtain an unbiased estimate for x(;,)
by starting the process in hybrid state (ig, go), then
following a simulated hybrid process trajectory and
accumlating the corresponding components of b; i.e.,

L(ig,q0) & Z

(i,q)Etrajectory

b(iyg)-

For discounted problems, we terminate each step of the
simulated trajectory with probability 1—+. Since the A

matrix is the same for all of the linear systems, we can
use the same simulated trajectory to estimate the value
function and all of its gradients as well. The foregoing
interpretation suggests a Monte-Carlo algorithm of the
following form:

e Initialize all controller parameters.
e Do forever:

— Sample the prior distribution to obtain a gen-
eralized transition matrix, P.

x Set the initial physical state to ig, and
sample the initial-memory state distribu-
tion, a, to obtain qq.

* While the trajectory has not been termi-
nated,

- Call the current hybrid state (i, q)-

- Sample &, P, and 7 to obtain action a,
next-state 7', and next-memory state ¢’
(and reward rg,).

- Update the value function estimate; for
instance, by performing a TD(0) up-
date.

- Update the estimates of value gradient;
various components of the b-vectors
specified in Section 3.2 determine incre-
mental contributions.

- Update the controller parameters by
moving in the direction of the gradient.

- Let (i,q) = (i',q'), and terminate the
trajectory with probability 1 — v.

Alternatively, we could perform “batch” updates,
waiting until trajectories terminate before making ad-
justments to estimates and controller parameters.

This account is necessarily terse; implementational de-
tails and empirical results will be presented at the
workshop. We remark that this approach should ap-
ply to POMDP’s as well, and that, in contrast to ap-
proach presented in (Duff, 2000), the prior need not
be a member of a conjugate family of distributions
(e.g., Dirichlet). Current research seeks more robust
Monte-Carlo estimation techniques.

References

Duff, M. O. (2000) “Reinforcement learning for
Bayes-adaptive Markov decision processes,” Re-
search Note 3/25/00, http://envy.cs.umass.edu/ Peo-
ple/duft/duff.html.

Meuleau, N., Kim, K. E., Kaelbling, L. P., & Cassan-
dra, A. R. (1999) “Solving POMDPs by searching the
space of finite policies,” UAI-99.

