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Abstract

We study a simple learning algorithm for binary
classification. Instead of predicting with the best
hypothesis in the hypothesis class, this algorithm
predicts with a weighted average of all hypothe­
ses, weighted exponentially with respect to their
training error. We show that the prediction of this
algorithm is much more stable than the predic­
tion of an algorithm that predicts with the best
hypothesis. By allowing the algorithm to abstain
from predicting on some examples, we show that
the predictions it makes when it does not abstain
are very reliable. Finally, we show that the prob­
ability that the algorithm abstains is comparable
to the generalization error of the best hypothesis
in the class.

1 Introduction

Consider a binary classification learning problem. Suppose
we use a hypothesis class H and are presented with a train­
ing set (x1; y1); : : : ; (xm; ym) drawn independently from a
distribution D over the example domain X � f�1;+1g.
Most learning algorithms for this problem that have been
studied in computational learning theory are based on iden­
tifying the hypothesis h 2 H that minimizes the training
error. One of the main problems with this approach is the
phenomenon called overfitting. Overfitting is encountered
when the hypothesis class H is too “large,” “complex” or
“flexible” relative to the size of the training set. In this case,
it is likely that the algorithm will find a hypothesis whose
training error is very small but whose generalization error,
or test error, is large. To overcome this problem, one usually
uses either model­selection or regularization terms. Model
selection methods try to identify the “right” complexity for
H. A regularization term is a measure of the complexity of
the hypothesis h that is added to the training error to define
a cost for each hypothesis. By minimizing this cost, the
learning algorithm attempts to minimize both the training
error and the amount of overfitting.

However, it is not clear that predicting with the hypoth­
esis that minimizes the training error is indeed the only or
the best thing to do. One popular alternative to predicting
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using the single best hypothesis is to average the prediction
of those hypotheses whose performance on the training set
is close to optimal. Two popular methods of this type are
Bayesian averaging [9] and bagging [3, 4]. There is con­
siderable experimental evidence that such averaging can
significantly reduce the amount of overfitting suffered by
the learning algorithm. However, there is, we believe, a
lack of theory for explaining this reduction.

In the context of bagging, the common explanation is
based on the argument that averaging reduces the variance
of the classification rule. However, as argued elsewhere [6,
12], there is currently no adequate definition of variance for
classification problems. In addition, this explanation fails
to take into account the effect that the complexity of the
model class has on overfitting.

In the Bayesian approach, the problem of overfitting is
generally ignored. Instead, the basic argument is that the
Bayesian method is always the best method, and therefore,
the only important issues are how to choose a good prior
distribution and how to efficiently calculate the posterior
average. However, the optimality of the Bayesian method
is based on the assumption that the data we observe are
generated according to one of the distribution models in the
chosen class of models. While this assumption is attractive
for theory, it almost never holds in practice. In practice, one
usually uses relatively simple models, either because there
is not enough data to estimate the “true” model, because
the computational complexity is prohibitive, or because our
prior knowledge of the system is only partial. Even when
very complex models are used, it is rarely the case that
one can assume that the data are generated by a model
in the class. As a result, Bayesian theory is inadequate for
explaining why Bayesian prediction methods are better than
predicting with the best model in the class.

In this paper, we propose a prediction method that is
based on averaging among the empirically best classifica­
tion rules. This method is similar to, but different from,
the Bayesian method. The advantage of this method is that
we can theoretically justify its usage without making the
aforementioned Bayesian assumption that the data is gen­
erated by a distribution from a given class of distributions.
Instead, we make the following weaker assumptions which
are common in the context of empirical error minimization
methods. First, we assume that the data is generated i.i.d.
according to the distribution D defined above but make ab­



solutely no assumption about D other than that it is a fixed
distribution. Second, we choose a class of prediction rules
(mappings from the input to the binary output) and assume
that there are prediction rules in that class whose probability
of error (with respect to the distributionD) is small, but not
necessarily equal to zero.

We deviate from the analysis used for empirical error
minimization methods in our definition of a classification
rule. In the context of a binary prediction problem, we
allow the classifier three possible outputs. Two of them,
�1 and +1 are interpreted, as before, as predictions of the
label. The third, denoted by 0, should be interpreted as “no
prediction” or “insufficient data”.

What is the benefit of allowing the predictor this new
output? The advantage is that it allows the user of the
classifier to identify those examples on which overfitting
might occur. For example, suppose that the best hypothesis
h in our hypothesis class H has an expected error of 1%.
Suppose further that the size of the training set and the
complexity ofH are such that the hypothesis that minimizes
the empirical error h� is likely to have a generalization
error of 5%. If we use h

� to make our predictions, then
the most we can hope to get from a uniform­convergence
type analysis is an upper bound on the generalization error
that is close to 5%; we have no way of identifying where
these errors might occur. On the other hand, if we allow the
algorithm to output a zero, we can hope that the algorithm
will output zero on about 4% of the input, and will be
incorrect on about 1% of the data. In such a case, we say that
the classifier identifies the locations of potential overfitting
and allows the user to choose a special course of action for
this case (such as referring the example back to a human
to make the classification). In this case, we can justifiably
say that the algorithm managed to avoid overfitting. It is
not misleading us into thinking that we have a classifier that
is very accurate just because its error on the training set is
small.

As a toy example, Figure 1 shows a tiny learning prob­
lem in which positive and negative training examples are
indicated by pluses and minuses. In this example, hypothe­
ses are represented by rectangles, and we suppose that there
is a large space of rectangular hypotheses, the best three of
which are shown in the figure. Each of these makes two
mistakes on this data set. However, if we take an average
of hypotheses, one can imagine that it would be possible
to obtain a combined classifier that abstains on all points
in the shaded region where there is likely to be disagree­
ment among the hypotheses, and predicts according to the
weighted majority elsewhere. Such a combined classifier,
when it does not abstain, would give nearly perfect predic­
tions having successfully identified the regions where errors
are most likely to occur.

Of course, if the generated classifier outputs zero most
of the time, then there is no benefit from having it. We
need to show two things to be convinced that the addition
of the new output is useful. First, we need to show that the
probability of outputting a zero is of the same order as the
bounds on overfitting that we would get from an analysis
based on uniform convergence. Second, we need to show
that when the output is +1 or�1, the probability of making
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Figure 1: A toy example.

a mistake is similar to the generalization error of the best
hypothesis in the class. In this paper, we prove that our
algorithm has both these properties in the case that H is a
finite class of models. In future work, we hope to show how
this work can be extended to infinite model classes.

If H is finite, the uniform convergence bound is the
well­known Occam’s razor bound [2]. If H is infinite, we
have to resort to bounds based on VC­dimension [14]. Un­
fortunately, these bounds are usually very loose and provide
very poor estimates for the generalization error of learning
algorithms in real­world applications.

In recent years, researchers in computational learning
theory have started to consider algorithms that search for a
good classification rule by optimizing quantities other than
the training error. Algorithms of this type include support­
vector machines [14] and boosting [12] which maximize
the “margin” of a linear classifier. Other work by Shawe­
Taylor and Williamson [13] and McAllester [10] provide
PAC­style analyses of Bayesian algorithms. Bayesian al­
gorithms compute the posterior distribution over the space
of hypotheses and predict by averaging the predictions of all
hypotheses whose training error is close to the minimum.

In this paper, we study a learning algorithm that is
very similar to the algorithm that would be suggested by
Bayesian analysis but uses a slightly different formula for
computing the posterior distribution. This formula is the
“exponential weights” formula introduced by Littlestone
and Warmuth in the context of the weighted­majority algo­
rithm [8] and further analyzed by Cesa­Bianchi et al. [5].
Note however that we are generating a fixed classification
rule and are therefore working in the standard batch learning
model and not in the online learning model.

The analysis of the algorithm consists of two parts.
First, we consider, for each instance x, the log of the ratio
of the total weight between those hypotheses that predict



+1 on x and those hypotheses that predict �1. We denote

this ratio by ˆ̀
(x). We prove that ˆ̀

(x) is rather insensitive
to the random choice of the training set. In particular, we

prove that the variation in ˆ̀
(x) is independent of the concept

class H! This proof is interesting because it avoids using
the standard “union bound”; in fact, it altogether avoids
making any uniform claim on all of the hypotheses in H.

Using this central theorem, we can show that if ˆ̀
(x)

is far from zero, then predicting with sign( ˆ̀
(x)) is very

stable, i.e., is unlikely to change from training set to training
set. More precisely, we introduce a non­stochastic quantity

`(x) and show that ˆ̀
(x) is, with high probability, very

close to `(x). Our algorithm predicts with sign( ˆ̀
(x)) when

ˆ̀
(x) is far from zero and abstains from prediction when

ˆ̀
(x) is close to zero. We prove that the probability that

this algorithm makes a prediction different from sign(`(x))
when it does not abstain is very small. On the other hand,
we show that ifH is finite and there is a hypothesisHwhose
error is � then the error of sign(`(x)) is at most about 2�.

The relation between our algorithm and algorithms that
predict with the best hypothesis on the training set has a
close correspondence to the relation between Bayesian pre­
diction algorithms and MAP (maximum a­posteriori) algo­
rithms. However, the analysis is carried out without making
a Bayesian assumption, that is, we do not assume that the
training data are generated by a model in a pre­specified
class chosen by a pre­specified prior distribution. The prior
and posterior distributions are internal to the algorithm and
are not part of the world around it.

We hope that this paper will shed some new light on
the use of algorithms that average many hypotheses such as
Bayesian algorithms and averaging methods such as bag­
ging [3, 4].

The paper is organized as follows. We start in Section 2
by describing the prediction algorithm. We give the basic
analysis of the algorithm in Section 3. In Section 4, we
bound the performance of `(x) in terms of the error of the
best hypothesis in the class. We conclude in Section 5 by
giving a bound that is uniform with respect to the learning
rate parameter � which makes it possible to choose this
parameter after observing the training set.

2 The algorithm

LetD be a fixed but unknown distribution over (x; y) pairs,
where x 2 X and y 2 f�1;+1g. Let H be a fixed class
of hypotheses, i.e., mappings from X to f�1;+1g. Let S
denote a sample of m training examples, each drawn inde­
pendently at random according toD. We denote the true er­
ror of a hypothesis h by "(h)

:

= Pr
(x;y)�D

�

h(x) 6= y

�

and

the estimated error according to the sample S by "̂(h)

:

=

1
m

P

m

i=1

�

h(x) 6= y

�

.
The prediction algorithm that we study calculates for

each hypothesis h a weight that is defined as w(h)

:

=

e

��"̂(h) where � > 0 is a parameter of the algorithm. The
prediction on a new instance x is defined as a function of
the empirical log ratio:

ˆ̀
�

(x)

:

=

1

�

ln

 

P

h;h(x)=+1 w(h)
P

h;h(x)=�1 w(h)

!

=

1

�

ln

 

P

h;h(x)=+1 e
��"̂(h)

P

h;h(x)=�1 e
��"̂(h)

!

:

The prediction is defined to be

p̂

�;∆(x) =

�

sign( ˆ̀
(x)) if j ˆ̀(x)j > ∆

0 otherwise

where ∆ � 0 is a second parameter of the algorithm. In­
tuitively, the parameter ∆ characterizes the range of values

of ˆ̀
�

(x) in which the training data is insufficient to make
a good prediction and a better choice is to abstain. When
clear from context, we generally drop the subscripts and

write simply ˆ̀
(x) and p̂(x).

3 Analysis of the algorithm

For an instance x, we define the true log ratio to be

`

�

(x)

:

=

1

�

ln

P

h;h(x)=+1 e
��"(h)

P

h;h(x)=�1 e
��"(h)

which we often write as `(x) when � is clear from context.

The basic idea of our analysis is to show that ˆ̀
(x)must usu­

ally be close to `(x) with high probability. In particular, we
will prove the following two theorems. First, we will prove
that for any fixed x the difference between the empirical log
ratio and the true log ratio is small:

Theorem 1 For any distribution D, any instance x, any
�; � > 0 and any s 2 f�1;+1g:

Pr
S�D

m

h

s(`(x)�

ˆ̀
(x)) � 2�+

�

8m

i

� 2e�2�2
m

:

Then, in order to show that our algorithm has reasonable
performance, we will transform Theorem 1 which gives a
guarantee that holds with high probability for any fixed
instance to a claim that holds with respect to a randomly
chosen instance:

Theorem 2 For any � > 0 and � > 0, if we set

∆ = 2

s

ln(
p

2=�)

m

+

�

8m

then, with probability at least 1� � over the random choice
of the training set

Pr
(x;y)�D

�

p̂(x) 6= 0 and p̂(x) 6= sign(`(x))
�

� �:

This theorem guarantees that, when our algorithm pre­
dicts something different than 0 (which can be interpreted
as “I don’t know”) it is very likely to be making the same
prediction as `(x). Note that the statements of Theorems 1
and 2 have no dependence on the hypothesis class H. In
fact, we believe the theorems and their proofs can be ex­
tended to infinite hypothesis classes, given the appropriate
measurability assumptions.

We define some notation that will be used in the proofs.
For K � H, let

R

�

(K) =

1

�

ln

 

X

h2K

e

��"(h)

!



and let R̂
�

(K) be the random variable

R̂

�

(K) =

1

�

ln

 

X

h2K

e

��"̂(h)

!

:

We show that R̂
�

(K) is close to R

�

(K) (with high proba­

bility) in two steps: First, we show that R̂
�

(K) is close to

its expectation E
�

R̂

�

(K)

�

with high probability. Then we

show that E
�

R̂

�

(K)

�

is close to R
�

(K).
To prove the first result, we apply McDiarmid’s theo­

rem [11]:

Theorem 3 (McDiarmid) LetX1; : : : ; Xm

be independent
random variables taking values in a setV . Let f : V m

! R

be such that, for i = 1; : : : ;m:

jf(x1; : : : ; xm)� f(x1; : : : ; xi�1; x
0

i

; x

i+1; : : : ; xm)j � c

i

for all x1; : : : ; xm;x0
i

2 V . Then for � > 0, s 2 f�1;+1g

Pr
�

s

�

f(X1; : : : ; Xm

)� E
�

f(X1; : : : ; Xm

)

��

� �

�

� exp

�

�

2�2

P

m

i=1 c
2
i

�

:

Lemma 1 Let K and R̂

�

(K) be as above for a sample of
size m. For � > 0, � > 0 and s 2 f�1;+1g

Pr
�

s

�

R̂

�

(K) � E
�

R̂

�

(K)

��

� �

�

� e

�2�2
m

:

Proof: We apply McDiarmid’s theorem with the X
i

’s set
to the labeled examples of S, and the function f set equal

to the random variable R̂

�

(K). Let S0 be the sample S

in which one example (x
i

; y

i

) is replaced by (x

0

i

; y

0

i

). Let
"̂

0

(h) be the empirical error of h on S0, and let

R̂

0

�

(K) =

1

�

ln

 

X

h2K

e

��"̂

0

(h)

!

:

Then

R̂

0

�

(K) � R̂

�

(K) =

1

�

ln

 

P

h2K

e

��"̂

0

(h)

P

h2K

e

��"̂(h)

!

�

1

�

ln

�

max
h2K

e

��("̂

0

(h)�"̂(h))

�

= max
h2K

("̂

0

(h)� "̂(h)) �

1

m

:

The first inequality uses the fact that (
P

i

a

i

)=(

P

i

b

i

) �

max
i

a

i

=b

i

for positive a
i

’s and b
i

’s. The second inequality
uses the fact that changing one example can change the
empirical error by at most 1=m.

By the symmetry of this argument, jR̂
�

(K)�R̂

0

�

(K)j �

1=m. Plugging in c
i

= 1=m in McDiarmid’s theorem gives
the result.

Lemma 2 Let K, R
�

(K) and R̂

�

(K) be as above for a
sample of size m. Then for � > 0

R

�

(K) � E
�

R̂

�

(K)

�

� R

�

(K) +

�

8m
:

Proof: For the lower bound on E

�

R̂

�

(K)

�

, let K =

fh1; : : : ; hNg, and let

g(x1; : : : ; xN ) =
1

�

ln

 

N

X

i=1

e

�x

i

!

:

Then g is convex. This can be seen by computing g’s
Hessian:

@

2
g

@x

2
i

= C

0

@

e

�x

i

N

X

j=1

e

�x

j

� e

2�x
i

1

A

and
@

2
g

@x

i

@x

j

= �Ce

�(x

i

+x

j

)

where

C =

�

�

P

n

i=1 e
�x

i

�2
:

Thus,
@

2
g

@x

2
i

=

X

j 6=i

�

�

�

�

@

2
g

@x

i

@x

j

�

�

�

�

which implies that g’s Hessian matrix is diagonally domi­
nant and therefore positive semidefinite. Hence, g is con­
vex.

Therefore, by Jensen’s inequality,

E

�

R̂

�

(K)

�

= E

�

g(�"̂(h1); : : : ;�"̂(hN ))

�

� g(�E

�

"̂(h1)

�

; : : : ;�E

�

"̂(h

N

)

�

)

= g(�"(h1); : : : ;�"(hN)) = R

�

(K):

To prove the upper bound on E
�

R̂

�

(K)

�

, we have by
Jensen’s inequality (applied to the concave log function),

E

�

R̂

�

(K)

�

=

1

�

E

"

ln

 

X

h2K

e

��"̂(h)

!#

�

1

�

ln

 

X

h2K

E

h

e

��"̂(h)

i

!

: (1)

Fix h and let " = "(h) and "̂ = "̂(h). Let Z
i

be a
Bernoulli random variable that is 1 if h(x

i

) 6= y

i

and 0
otherwise. Then we can write

E

h

e

�("�"̂)

i

= E

"

exp

 

�

m

m

X

i=1

("� Z

i

)

!#

=

m

Y

i=1

E

h

exp
�

�

m

("� Z

i

)

�i

�

�

e

�

2
=8m2

�

m

= e

�

2
=8m

:

The second equality uses independence of the Z

i

’s. The
last step uses the fact, proved by Hoeffding [7], that for any
random variable X with E[X] = 0 and a � X � b, and
for s > 0,

E

�

e

sX

�

� e

s

2
(b�a)

2
=8
:

Here we let s = �=m and X = "� Z

i

.



Thus, E
�

e

��"̂(h)

�

� e

�

2
=8m

e

��"(h). Combined with
Eq. (1), this gives that

E

�

R̂

�

(K)

�

�

1

�

ln

 

e

�

2
=8m

X

h2K

e

��"(h)

!

= R

�

(K)+

�

8m

as claimed.

Proof of Theorem 1: Given x, we partition the hypothesis
set H into two. The subset K includes the hypotheses h
such that h(x) = +1 and its complementKc includes all h
for which h(x) = �1. We can now write

`(x)�

ˆ̀
(x) =

1

�

ln

 

P

h2K

e

��"(h)

P

h2K

e

��"̂(h)

!

+

1

�

ln

 

P

h2K

c

e

��"̂(h)

P

h2K

c

e

��"(h)

!

= R

�

(K) �R

�

(K

c

)� R̂

�

(K) + R̂

�

(K

c

)

(2)

Combining Lemma 1 and Lemma 2 we find that

Pr
�

R

�

(K) � R̂

�

(K) > �

�

� e

�2�2
m

: (3)

and

Pr
h

R̂

�

(K

c

)�R

�

(K

c

) > �+

�

8m

i

� e

�2�2
m

: (4)

Combining Eqs. (2), (3) and (4) we prove the claim for
s = +1. The proof for s = �1 is almost identical.

Lemma 3 For any distribution D, any �; � > 0 and any
s 2 f�1;+1g, the probability over samples S � D

m that

Pr
(x;y)�D

h

s(`(x) �

ˆ̀
(x)) � 2�+

�

8m

i

�

p

2e��
2
m

is at most
p

2e��
2
m.

Proof: Since Theorem 1 holds for all x, it also holds for a
random x. Thus,

E

S�D

m

�

Pr
(x;y)�D

h

s(`(x) �

ˆ̀
(x)) � 2�+

�

8m

i

�

= E

(x;y)�D

h

Pr
S�D

m

h

s(`(x) �

ˆ̀
(x)) � 2�+

�

8m

ii

� 2e�2�2
m

:

The lemma now follows using Markov’s inequality.

Theorem 2 follows immediately from this lemma.

4 Performance relative to the best

hypothesis

We now show that there exists a setting of � and ∆ that yields
performance guarantees relative to the best hypothesis in the
class. We compare these guarantees to those given by the
Occam argument [2] for the algorithm that uses a hypothesis
that minimizes the empirical error rate.

In Lemma 3, we showed that the value of ˆ̀
(x) is, with

high probability, close to `(x). We now show that, with

respect to the actual distribution D, the sign of `(x) is
closely related to that of the best hypothesis in H. By
combining these theorems, we show that the generalization
error of our algorithm is close to that of the best hypothesis
in H.

Note that the following theorem does not involve the
training set in any way; it is a claim about y`(x) which is a
deterministic function of (x; y).

Theorem 4 Let H be a finite hypothesis class and let � be
the error of the best hypothesis in H with respect to the
distribution D over the examples. Let � > 0 and ∆ � 0 be
such that ∆� � 1=2. Then for any 
 � ln(8jHj)=�,

Pr
(x;y)�D

�

y`(x) � 0
�

� 2
�

1 + 2jHje��

�

(�+ 
);

and

Pr
(x;y)�D

�

y`(x) � 2∆
�

�

�

1 + e

2∆���1 + 2jHje�(2∆�
)
�

(�+ 
)

� 4
�

1 + 2jHje�(2∆�
)
�

(�+ 
):

Before proving the theorem, we give a corollary for a
specific setting of the parameters � and ∆ as a function of
the sample size m, the size of the hypothesis class H and
the reliability parameter �.

Corollary 1 Let 1=2 > � > 0, � > 0 and

� = ln
�

8jHj
�

m

1=2��; ∆ = 2

v

u

u

t

ln
�

p

2=�
�

m

+

ln
�

8jHj
�

8m1=2+�
:

For m � 8,

Pr
(x;y)�D

�

y`(x) � 0
�

�

�

2 +
1

4m

��

�+

lnm

m

1=2��

�

;

and for

m �

2
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p

2

�

!

ln(8jHj)

3

5

1=�

;

we have

Pr
(x;y)�D

�

y`(x) � 2∆
�

� 5

0

B

B

@

�+ 4

v

u

u

t

ln
�

p

2=�
�

m

+

ln
�

8jHj
�

4m1=2+�
+

1

m

1=2��

1

C

C

A

:

Proof: To prove the corollary, we use Theorem 4 with
two different settings of 
. The first bound is a result of

choosing 
 = (lnm)=m

1=2��, the second is a result of

choosing 
 = 2∆ +m

��1=2.

We now discuss the significance of each statement in
the corollary. Let us fix the reliability parameter �.

The first statement of Corollary 1 shows that the sign
of the true log ratio is a reasonably good proxy for the best



hypothesis in the class. Specifically, the error of sign(`(x))
is

2"(h�) +O

�

ln(m)

m

1=2��

�

:

Combining this with the statement of Theorem 2, we find
that the probability that our algorithm does not abstain and
makes an incorrect prediction is upper bounded by

2"(h�) +O

�

ln(m)

m

1=2��

�

+ �: (5)

Note that this bound is independent of jHj.
In comparison, the upper bound on the hypothesis that

minimizes the empirical risk is

"(h

�

) +O

 

r

ln(jHj=�)

m

!

: (6)

We see that the dependence on m here is slightly better, but
the bound depends on the hypothesis class, which is what
we expect from an algorithm that cannot abstain.

For our algorithm, the dependence on jHj instead ap­
pears in the bound on the probability of abstaining on a test
example; this is given in the second statement of the corol­
lary. Combining that statement with Lemma 3, we find that
for

m = Ω
�

�

p

ln(1=�) ln(jHj)
�1=�

�

;

our algorithm will predict zero with probability at most

5"(h�) +O

 

p

ln(1=�) + ln(jHj)

m

1=2��

!

:

This bound is similar to the Occam bound (Eq. 6), but the
choice of �makes an important difference in the dependence
on m.

We now argue that the factor of two in front of the error
of the best hypothesis in the class which appears in the first
part of the corollary is necessary. Suppose that the example
domain X �f�1;+1g is partitioned into two parts A1 and
A2 such that D(A1) = 1 � 2� and D(A2) = 2�. Suppose
that all the hypotheses in H predict correctly on examples
in A1, while for each (x; y) 2 A2 each of the hypotheses
predicts�1 or +1 with equal probability. In this case, each
of the hypotheses in H has error about 1 � �; on the other
hand, with high probability, our algorithm will predict 0 or
“I don’t know” on A2 while it will always predict correctly
on A1.

In addition to showing that the factor of two has to be in
the bound, this example points to the practical advantage of
interpreting 0 as “I don’t know” rather than as “�1=+1 with
equal probability”. The second interpretation would give
us back a hypothesis that predicts correctly with probability
1� � but while masking the information that we have about
the location of the prediction errors. On the other hand, the
first interpretation retains this information so that we know
when the predictions can be trusted and when they cannot.

At first, it may seem impossible that the bound in Eq. (5)
is independent of the number of hypotheses. This would
seem to suggest that overfitting can never happen, regard­
less of the complexity of the hypothesis space. In truth,

if the hypothesis space is too complex, the algorithm will
simply abstain more often. For example, suppose that the
hypothesis space consists of all binary functions on a fi­
nite domain. For any set of training examples, there is a
function that has zero training error (assuming no example
appears twice with different labels). However, we expect
any algorithm to be unable to predict the label of a new test
example. Indeed, in this case, our algorithm will abstain

on all unseen examples (since ˆ̀
(x) is exactly zero off the

training set).
We now prove the theorem.

Proof of Theorem 4: We partition the hypotheses in H
into two sets according to their true error. We call those
hypotheses whose error is smaller than �+ 
 strong and the
other hypotheses weak.

We denote byW
w

the total weight of the weak hypothe­
ses:

W

w

=

1

Z

X

h2H: "(h)��+


e

��"(h)

where
Z =

X

h2H

e

��"(h)

:

To upper bound W
w

, note that we always have at least one
strong hypothesis, namely, the one that achieves "(h) = �.
Thus,

W

w

�

jHje

��(�+
)

e

���

= jHje

��


: (7)

From the assumption that 
 � ln(8jHj)=�, we get that
W

w

� 1=8.
For a given example (x; y), we partition the strong hy­

potheses into two subsets according to whether or not the
hypothesis gives the correct prediction on (x; y). We denote
the total weight of these subsets by

W

+

s

(x; y) =

1

Z

X

h2H: "(h)<�+
; h(x)=y

e

��"(h)

W

�

s

(x; y) =

1

Z

X

h2H: "(h)<�+
; h(x)6=y

e

��"(h)

:

By the definition of Z, for any (x; y),

W

+

s

(x; y) +W

�

s

(x; y) +W

w

= 1:

We now prove the second part of the theorem; the first
part follows from the second part by setting ∆ = 0. We first
bound y`(x) using W

w

, W+

s

(x; y) and W�

s

(x; y):

y`(x) �

1

�

ln

�

W

+

s

(x; y)

W

�

s

(x; y) +W

w

�

:

Thus, y`(x) � 2∆ implies

W

�

s

(x; y) +W

w

1�
�

W

�

s

(x; y) +W

w

�

� e

�2∆�
;

or equivalently,

W

�

s

(x; y) +W

w

�

1

1 + e

2∆�
:

= c:

We denote by h � S the random choice of a hypothesis

from the strong set with probability e��"(h)=Z
s

where Z
s



normalizes the weights within the strong set to sum to 1.
We find that

Pr
(x;y)�D

�

y`(x) � 2∆
�

� Pr
(x;y)�D

�

W

�

s

(x; y)

W

�

s

(x; y) +W

+

s

(x; y)

�

c�W

w

1�W

w

�

= Pr
(x;y)�D

�

Pr
h�S

�

h(x) 6= y

�

�

c�W

w

1�W

w

�

� E

(x;y)�D

�

Pr
h�S

�

h(x) 6= y

�

�

1�W

w

c�W

w

(8)

= E

h�S

�

Pr
(x;y)�D

�

h(x) 6= y

�

�

1�W

w

c�W

w

(9)

� (�+ 
)

1�W

w

c�W

w

(10)

� (�+ 
)

�

1 + e

2∆���1 + 2W
w

e

2∆��
: (11)

Eqs. (8) and (9) use Markov’s inequality and Fubini’s the­
orem. Eq. (10) follows from the fact that "(h) < � + 


for every strong hypothesis. Eq. (11) uses our assumptions
that ∆� � 1=2 and W

w

� 1=8 together with the inequality
(1 � x)=(1 � x(1 + r)) � 1 + 2xr for x > 0, r > 0 and

x(1 + r) � 1=2 (with x =W

w

and r = e

2∆�).
Combining this bound with Eq. (7) proves the second

statement of the theorem.

Theorem 4 shows that the error of our predictor cannot
be much worse than twice the error of the best hypothesis.
On the other hand, it is possible in some favorable situations
for our predictor to significantly outperform the best hypoth­
esis. For example, suppose that there is an h

�

2 H such
that "(h�) = 1=8, and that for each h 2 H

0

= H � fh

�

g,
we have "(h) = 1=4. Suppose further that for each x, the
fraction of h 2 H0 with the right label is 3=4. Choosing the
hypothesis with lowest observed error would give, hope­
fully, the hypothesis h� that has an error rate of 1=8. In our
setting, for a labeled example (x; y), if h�(x) = y, then

y`(x) =

1

�

ln

�

e

��=8
+ (3=4)jH0

je

��=4

(1=4)jH0

je

��=4

�

=

1

�

ln

�

3 +
4e�=8

jH

0

j

�

:

Thus, for � = 1, we have y`(x) = ln(3+4e1=8
=jH

0

j). Sim­

ilarly, if h�(x) 6= y we have y`(x) � ln(3 � 12e1=8
=jH

0

j).
Note that this implies that p1;0(x) correctly classifies all
the examples (for jHj large). Theorem 1, with � set to a
constant, then guarantees for m = O(lg 1=�) that p̂1;0(x)

has an error rate of at most �. Note that in this example
we choose to average (almost) uniformly the hypotheses
although one hypothesis is clearly superior. In case there
are more hypotheses with low error, the balance between
the two sets becomes more delicate, and this is what our
predictor performs.

5 Uniform bounds

The bound given in Lemma 1 applies to the case in which the

parameter � is fixed ahead of time so that R̂
�

(K) converges

toE
�

R̂

�

(K)

�

for only a single value of�. In the next lemma,
we show that on a single sample, this convergence is likely
to take place for all values of � � 1 simultaneously.1 The
proof of this is primarily taken from Allwein, Schapire and
Singer [1].

Lemma 4 Let K and R̂

�

(K) be as above for a sample of
size m. For � > 0,

Pr
�

9� � 1 :
�

�

R̂

�

(K) � E
�

R̂

�

(K)

�

�

�

� �

�

�

8 ln jKj

�

e

��

2
m=2

:

The proof is given in Appendix A.
We can now state the following theorems similar to

Theorems 1 and 2. These theorems show that it is possible
to design an algorithm that chooses � after the sample has
been chosen without paying a large penalty in accuracy.

Theorem 5 Let K and R̂

�

(K) be as above for a sample
of size m. For any distribution D, any � > 0 and any
s 2 f�1;+1g:

Pr
S�D

m

h

9� � 1 : s(`

�

(x)�

ˆ̀
�

(x)) � 2�+
�

8m

i

�

8 ln jKj

�

e

��

2
m=2

:

Theorem 6 For any � > 0, if we set

∆
�

= 2

s

2

m

ln

�

16m ln jHj

�

2

�

+

�

m

then, with probability at least 1� � over the random choice
of the training set, for all � � 1

Pr
(x;y)�D

�

p̂

�;∆
�

(x) 6= 0 and p̂
�;∆

�

(x) 6= sign(`
�

(x))

�

� �:
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A Proof of lemma 4

First, let K = fh1; : : : ; hng, and let

F (�;x) =

1

�

ln

 

N

X

i=1

e

��x

i

!

:

For anyx, by checking derivatives, it can be verified that the
function � 7! F (�;x) is nonincreasing, while the function
� 7! F (�;x) � (lnN)=� is nondecreasing. Therefore, if

0 < �1 � �2 then for any x 2 RN ,

0 � F (�1;x)� F (�2;x) �

�

1

�1

�

1

�2

�

lnN: (12)

Now let

E =

�

4 lnN

i�

: i = 1; : : : ;

�

4 lnN

�

��

:

We show next that for any � � 1, there exists �̂ 2 E such
that

�

�

�

�

1

�

�

1

�̂

�

�

�

�

lnN �

�

4
:

For if � � 4(lnN)=� then let �̂ = 4(lnN)=�. Then

0 �
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�̂

�

1

�

�

lnN �

1

�̂

lnN =

�

4
:

Otherwise, if 1 � � � 4(lnN)=�, then let �̂ = 4(lnN)=(i�)

be the smallest element of E that is no smaller than �. That
is,

4 lnN

(i+ 1)�
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4 lnN

i�

:

Then
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lnN
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4 lnN
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4 lnN

�

lnN
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4
:

Since R̂

�

(K) = F (�; h"̂(h1); : : : ; "̂(hN )i), Eq. (12) and
the argument above imply that for any � � 1, there exists
�̂ 2 E such that

�

�
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�

(K)� R̂

�̂

(K)
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�

�

�

4

and so
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:

Thus,
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where the second inequality uses the union bound combined
with Lemma 1.


