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Abstract

In this paper, a dual perturb and combine

algorithm is proposed which consists in pro-

ducing the perturbed predictions at the pre-

diction stage using only one model. To this

end, the attribute vector of a test case is per-

turbed several times by an additive random

noise, the model is applied to each of these

perturbed vectors and the resulting predic-

tions are aggregated. An analytical version

of this algorithm is described in the context

of decision tree induction. From experiments

on several datasets, it appears that this sim-

ple algorithm yields signi�cant improvements

on several problems, sometimes comparable

to those obtained with bagging. When com-

bined with decision tree bagging, this algo-

rithm also improves accuracy in many prob-

lems.

1 INTRODUCTION

The bias/variance tradeo� is a well-known problem in

machine learning. Bias relates to the systematic er-

ror component, whereas variance relates to the vari-

ability resulting from the randomness of the learning

sample. Both contribute to prediction errors. There

exist di�erent means to reduce the variance of a ma-

chine learning method and hence increase the accu-

racy of the model. Besides regularization and com-

plexity control (e.g. pruning) which also a�ect bias,

a more drastic method is model averaging. Model av-

eraging consists in aggregating the predictions made

by several models. Most of the time, these models

are obtained by perturbing the learning set in several

ways (bagging (Breiman, 1994), boosting (Freund &

Schapire, 1995), by randomization of outputs of learn-

ing cases (Breiman, 2000)...), but also by perturbing

�

Research Fellow, FNRS

the model (option trees (Buntine, 1992), randomiza-

tion (Dietterich, 2000)...). Breiman (1996) has pro-

posed the label P&C (for Perturb and Combine) to

designate this group of methods.

Bagging (Breiman, 1994) for example consists in draw-

ing a certain number of bootstrap samples from the

original learning set, build a model from each of them

and then aggregate the predictions provided by these

models on a new test case to yield the �nal prediction.

Bagging has been shown to reduce very strongly vari-

ance while in most cases leaving unchanged the bias

of the method and so is mostly e�ective in conjunc-

tion with unstable predictors like decision trees which

present high variance. Actually, focusing on classi�-

cation, bagging works by smoothing the classi�cation

frontier. A set of perturbed predictions on a particu-

lar point of the input space is obtained by perturbing

the learning set. Averaging these predictions gives a

smoothed prediction which is more stable (less vari-

able, and hence less often wrong) than isolated predic-

tions. Although very e�ective, this process assumes to

construct and to save a set of models and thus is very

time and memory consuming.

In this paper, we propose a new technique to stabi-

lize the predictions made by a model. Unlike bagging,

our algorithm makes use of only one model and de-

lays at the prediction stage the generation of multi-

ple predictions which are averaged. Thus, one of the

main advantages of our method is that it preserves

the interpretability and the computational e�ciency

of the initial learning method. This technique shows

to consistently improve predictive accuracy of decision

trees and, in several problems, yields competitive re-

sults with respect to those obtained by bagging. Fur-

thermore, its generality makes it possible to combine it

with bagging where it appears to give also signi�cant

improvement. The general algorithm and an analyt-

ical version of it in the context of decision trees are

presented in Section 2. In the same section, we pro-

pose an interpretation of the algorithm and a discus-



sion about the determination of its single parameter.

Experiments are summarized in Section 3. Section 4

concludes and discusses future work.

2 DUAL P&C

The dual idea of perturb and combine is to delay the

generation of perturbed predictions at the prediction

stage (e.g. when testing) by using di�erent modi�ed

versions of a test case with the same model. Based on

this idea, we propose in this paper a new way to use

a model. A certain number of perturbed versions of

the attribute vector of the tested object are produced.

The model (induced from the original learning set) is

applied to these vectors resulting in a set of predictions

which are aggregated to obtain the �nal prediction.

Like model averaging, dual P&C aims at reducing the

prediction variance by averaging di�erent predictions.

However, unlike model averaging, this method requires

only one model and hence is much more e�cient from

the computational point of view.

Obviously, dual P&C is a wrapper technique which,

like bagging, boosting, meta-cost : : : , may be applied

to any machine learning technique.

2.1 GENERAL ALGORITHM

In this paper, we will restrict ourself to numerical at-

tributes and to classi�cation problems (although the

idea could also be applied to regression and/or to sym-

bolic attributes). To perturb an object, we naturally

propose to add to each numerical attribute value a

zero-mean Gaussian noise. Let us denote by f

LS

(:)

a model extracted from a learning set LS and by

x = (x

1

; x

2

; : : : ; x

m

) the attribute vector of an object.

The prediction given by our method for this object will

be:

aggr

n

i=1

f

LS

(x+ �

i

); (1)

where aggr is an aggregation operator and �

i

are real-

izations of a random vector � = (�

1

; �

2

; : : : ; �

m

), where

�

i

are independent random variables distributed ac-

cording to a Gaussian law �

i

� N(0; �

i

:�

i

), with �

i

the standard deviation of the attribute x

i

in the learn-

ing set and �

i

the noise level on this attribute. In this

paper, we use the same level of noise, �, for all the

attributes. Possible aggregation operators are similar

to those proposed for model averaging in the context

of classi�cation, i.e. majority vote or maximum aver-

age conditional class probability if the model provides

probability estimates.

2.2 ANALYTICAL DUAL P&C IN THE

CONTEXT OF DECISION TREES

Tests on numerical attributes at decision tree nodes

usually are of the following form:

X

i

< x

th

; (2)

where X

i

is an attribute and x

th

is a discretization

threshold for this attribute. So, in the context of deci-

sion tree induction with numerical attributes, adding

Gaussian noise to the attribute vector is more or less

equivalent to adding Gaussian noise to the discretiza-

tion thresholds (strictly equivalent if there is no more

than one test on the same attribute along each branch

of the tree). Hence for decision trees, dual P&C is very

similar to traditional P&C restricted to randomizing

discretization thresholds.

This observation allows us also to compute the asymp-

totic value of the prediction corresponding to an in�-

nite number of random propagations (n ! 1 in eqn.

(1)). Indeed, assuming a Gaussian noise on the thresh-

old, we can compute the probability of a perturbed

new case going to each successor of a test node. For

instance, if x

i

is the value of the attribute X

i

for this

new case, the probability of the test (2) to be true is

computed by:

P (x

i

+ �

i

< x

th

) = P (Z <

x

th

� x

i

�

i

�

i

); (3)

where Z is a N(0; 1) random variable. Further, we can

also compute the probability that a new case reaches

a particular leaf of the tree. Indeed, denoting by L

j

a leaf of the tree and by T

1

,T

2

,...,T

N

j

the tests along

the path connecting the root node to this leaf, the

probability that a case x reaches this leaf is

P (x! L

j

) = P (T

1

^ T

2

^ : : : ^ T

N

j

jx): (4)

Since the noise variables �

i

are independent, this yields

the product:

P (x! L

j

) = P (T

1

jx)P (T

2

jx) � � �P (T

N

j

jx); (5)

where the P (T

i

jx) are computed according to (3). This

yields a probability distribution on the leaves of the

tree and hence the �nal prediction by aggregating the

predictions at each leaf taking into account this dis-

tribution. In what follows, we will make predictions

according to the average of class conditional probabil-

ity estimates. So the probability of class C for a case

x will be estimated by:

^

P (Cjx) =

X

j

P (x! L

j

):

^

P (CjL

j

); (6)

where

^

P (CjL

j

) is the class C probability estimate at

the leaf L

j

.
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Figure 1: Example Leaves Distribution Computation

For each test node, the probability expressed in (3) can

be estimated from elementary table look-up. On the

other hand, the computation of

^

P (Cjx) can be done ef-

�ciently using a forward-backward propagation scheme

(see Figure 1) : in the forward pass information about

a case is sent from the root node to the leaves starting

with a probability of 1.0 at the root and multiplying

this probability by the probabilities associated to the

arcs which are traversed; in the backward pass infor-

mation is sent back towards the root with test-nodes

aggregating information received from their successors.

The complexity of this algorithm (which recursively

factorizes eqn. (6)) is thus proportional to the tree

complexity. Because pruned tree sizes are generally

rather small, this is very e�cient in practice.

2.3 INTERPRETATION

A decision tree cuts the input space into regions where,

ideally, the output variable would be constant. When

tests based on numerical attributes consist in compar-

ing attribute values to thresholds, each such region cor-

responds to a hyper-rectangle. Splitting thus aims at

re�ning an initially rough partition into a �ner one by

splitting its component regions. Recursive partitioning

has several drawbacks (see Friedman (1996)) : there

are more errors near the region boundaries because of

the discontinuity of the approximation, regions depend

only on a few directions of the input space because of

the fast decrease of learning set samples when going

down in the tree, and the parameters of the cuttings

are subject to high variance. Dual P&C is a simple way

to partially overcome some of these disadvantages.

Like classical P&C methods, dual P&C transforms a

discontinuous classi�cation frontier into a more con-

tinuous one by averaging. Actually, the classi�cation

even becomes continuous when using analytical dual

Single DT - error rate : 3.7%
Dual P&C, noise level=0.28 - error rate 1.45%
Dual P&C, noise level=1.5 - error rate 4.6%

°

°

°

°

°

°
°

°

°

°°
°

° °

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°°

°

°°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°
°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°

°
°

°

°

°

°

°

° °

°

°

°
°

°

°

°

°

°
°

°

°

°

°

°

°

° ° °

°

°

°

°

°
°

°

°

°

°

°

°

°

°

°
°

°°

°°°
°

°

°

°

°

°

°

° °

°

°

°

°

°

°

°

°
°

°

°

°

°

°
°

°

°

°

°

°

°

°

°
°

°

•

•

•

•

•

•

•
•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• ••

•

•

•

• ••

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

••

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

• ••

•

•

•

•

•

• •

•

•

•

•

•

••

•

•

• •

•

•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

0.0 0.25 0.5 0.75 1.
X1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X2

Figure 2: DT Boundaries with Di�erent Noise Levels

P&C with decision trees (a small perturbation of the

attribute vector leads to a small perturbation of the

conditional class probability estimates). The classi�-

cation at a particular point of the input space now

depends on the training subsets of all non-zero proba-

bility leafs corresponding to this point. The strength

with which each subset in
uences this classi�cation de-

pends on the distance of the point to the region fron-

tier. So dual P&C with decision trees should reduce

error rates near the classi�cation boundaries.

Recursive partitioning depends on the choice of at-

tribute and discretization thresholds at each node of

the tree. These choices have been shown to be highly

unstable, which puts decision tree induction among the

machine learning methods which present the highest

variance. Especially, variance on discretization thresh-

olds for numerical attributes has been shown to be a

very important source of DT variance in Geurts and

Wehenkel (2000). Dual P&C may be considered as a

way to take into account the uncertainty on discretiza-

tion thresholds (or equivalently the uncertainty on at-

tribute values) and thus will only be able to reduce DT

variance coming from this latter source. So it should

work well especially on problems where this is the main

source of variance. However, unlike dual P&C, clas-

sical P&C methods can take into account all kind of

variance sources, and, in particular, the variance on

the attribute selection at DT nodes. So, with dual

P&C, we do not expect as good results as those ob-

tained with model averaging since our algorithm can

not take into account all variance sources.

2.4 BIAS/VARIANCE AND

DETERMINATION OF THE NOISE

LEVEL

Before discussing the way to choose an appropriate

noise level, let us see on a simple example what is the

e�ect of dual P&C with di�erent values of the noise

level. Suppose we want to separate empty circles from
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Figure 4: Bias and Variance of Probability Estimates

full circles on Figure 2. This �gure shows the parti-

tioning done by a simple tree and what this partition-

ing becomes when using dual P&C of the same tree

with an optimal noise level of � = 0:28 and with a

higher noise level of � = 1:5. The smoothing ability of

dual P&C is pretty clear from this �gure and also the

over-smoothing when increasing too much �.

The e�ect of the noise level on this small example may

also be approached by a study of bias and variance.

To this end, we used the bias and variance decompo-

sition of the mean error rate proposed by Kohavi and

Wolpert (1996) as it is very close to the well-known de-

composition in regression. The decomposition of the

mean error is as follows:

E

LS

feg = E

x

f�

2

x

+ bias

2

x

+ var

x

g; (7)

where

�

2

x

=

1

2

(1�

m

X

i=1

P (C

i

jx)

2

); (8)

bias

2

x

=

1

2

m

X

i=1

[P (C

i

jx)� P

LS

(C

i

jx)]

2

; (9)

var

x

=

1

2

(1�

m

X

i=1

P

LS

(C

i

jx)

2

): (10)

P (C

i

jx) is the true probability of the class C

i

at the

point x and P

LS

(C

i

jx) is the probability that a model

induced from a random learning set outputs the class

C

i

for a test case x.

In our illustrative problem, there is no residual uncer-

tainty (�

2

x

= 0), so the mean error rate is exactly the

sum of the bias and variance terms. Bias and variance

are estimated from a database of 20000 cases using the

following experimentation protocol: The database is

split into two sets, a pool of 18000 cases and a test

set of 2000 cases. 50 decision trees are built from

50 learning sets of size 500 randomly drawn from the

pool. Then bias, variance and error rate are estimated

by means of these 50 models for each test case using

increasing values of �. Figure 3 shows the result of

this experiment. To complement this information, we

also give the (�a la) regression bias and variance of the

class conditional probability estimates. Class proba-

bility variance is computed by:

var

^

P

= E

x

f

1

m

m

X

i=1

V ar

LS

(

^

P (C

i

jx))g; (11)

while we de�ne the class probability bias by:

bias

2

^

P

= E

x

f

1

m

m

X

i=1

(E

LS

f

^

P (C

i

jx)g � P (C

i

jx))

2

g:

(12)

Figure 4 shows these values estimated according to the

same protocol. Curves of Figures 3 and 4 are repre-

sentative of what we have observed on other datasets.

As announced in section 2.3, small values of � reduce

variance (both classi�cation variance and class prob-

ability variance). In addition, we observe also a de-

crease of the bias term (9), thus resulting in an overall

decrease of error rates. When � further increases, both

(9) and (10) reach a minimum (at � = 0:25), and start

increasing again. On the other hand, variance of class

probability estimates (11) is monotonically decreasing

with increasing �. This can be explained by looking

at equation (6). When we increase �, probabilities

P (x! L

j

) and hence

^

P (Cjx) becomes more and more

independent of the object and so the bias increases.

Asymptotically, we have P (x ! L

j

) = (0:5)

N

j

, where

N

j

is the depth of the leaf L

j

. Hence,

^

P (Cjx) becomes

an average of the classi�cation over all the leaves. Be-

cause of the exact class balance in this problem, it be-

comes very close to a uniform distribution, which leads

to an increase of class probability bias (12). So, even

very small variance of the estimates

^

P (Cjx) can lead

to a high variability of the majority class from one tree

to another. This explains the increase of classi�cation

variance with the noise level.

This study shows that there exists an optimal value of

the noise level. Many experiments on several datasets

(not reported here for the sake of brevity) show that

the optimal value of � is highly dependent of the in-

duced model and learning task and also not related



Table 2: Error Rates (%) � Standard Deviations

Data set DT + dual P&C � Bagging + dual P&C �

Omib 9:34 � 0:56 5:03 � 0:99 0:61 � 0:17 5:81 � 0:55 3:22 � 0:48 0:53 � 0:15

Waveform 24:61 � 1:64 17:54 � 1:17 0:76 � 0:17 18:21 � 0:89 15:18 � 0:84 1:09 � 0:35

two-norm 19:08 � 0:95 9:76 � 1:59 1:08 � 0:25 6:36 � 0:84 3:26 � 0:53 0:99 � 0:24

VST 12:19 � 1:49 11:28 � 0:69 0:35 � 0:20 9:74 � 0:60 9:75 � 0:55 0:50 � 0:22

Dig44 18:49 � 0:88 13:56 � 1:18 0:65 � 0:09 12:40 � 0:38 9:47 � 0:35 0:62 � 0:11

Letter 25:32 � 0:98 23:17 � 0:80 0:34 � 0:05 16:26 � 1:27 14:49 � 0:67 0:29 � 0:06

Segment 4:30 � 0:44 4:25 � 0:47 0:04 � 0:03 2:52 � 0:24 2:84 � 0:51 0:05 � 0:04

Satellite 15:57 � 0:66 14:10 � 0:46 0:17 � 0:05 11:46 � 0:50 11:27 � 0:28 0:13 � 0:05

Pendigits 8:95 � 0:75 7:13 � 0:74 0:25 � 0:08 5:42 � 0:42 4:58 � 0:39 0:26 � 0:07

Table 1: Data Set Summaries

Data set Atts Class GS size PS size TS size

Omib 6 2 2000 1000 1000

Waveform 21 3 3000 1000 1000

two-norm 20 2 1000 1000 2000

VST 136 2 2430 815 798

Dig44 16 10 3000 1000 2000

Letter 16 26 3000 1000 1000

Segment 19 7 1000 500 810

Satellite 36 6 3000 1435 2000

Pendigits 16 10 5000 2494 3498

to the learning set size. So, one possible way to deter-

mine its value is to devote a validation set to this task.

As the curve of error rate is typically convex with only

one minimum (like Figure 3), a simple minimization

method (like the golden section search algorithm) will

be appropriate to determine �.

3 EXPERIMENTATION

Below, we experiment with the analytical version

of dual P&C in the context of decision tree induc-

tion. Experiments are conducted on nine quite large

datasets summarized in Table 1. All attributes are nu-

merical. All of these datasets are available at the UCI

repository (Blake &Merz, 1998) except for \omib" and

\vst", two electrical power systems related datasets of

our own, and two-norm, an arti�cial problem described

in Breiman (1996).

Each dataset is �rst randomly split into two parts: a

learning set LS and a test set TS. The test sets are

kept �xed and used to determine the error rates of

all models. Then each LS, is further partitioned into

two sets: a growing set, GS, used to induce a decision

tree and a pruning set, PS, used to prune it and to

determine the value of �. This latter step is repeated

10 times for each data set, and for each method ten

models are determined using these 10 di�erent GS=PS

splits.

The second column of Table 2 gives average TS er-

ror rates of 10 DTs built (and pruned) from the 10

random splits of LS. The third and fourth columns

show average error rates and values of � when using

dual P&C, using the same 10 DTs and determining

the noise level for each DT from its PS. Dual P&C is

also compared with 25-fold bagged trees induced from

GS and pruned in a combined fashion using PS (see

Geurts (2000) for a description of the pruning algo-

rithm). The error (�fth column) is averaged over the

same ten random splits of LS as for single DTs. As a

last experiment, we have also tried dual P&C in con-

junction with the bagged models. Average error rates

and values of � (determined from PS) are given in the

last two columns of the same table.

Single DT. From this table, it appears that dual

P&C is able to reduce very signi�cantly error rates on

several problems. The dependency of the noise level

to a particular problem is clear from this experiment.

On two problems (omib and waveform), this simple al-

gorithm gives better results than bagging of 25 trees.

However, as expected, improvement is most of the time

lower than the improvement of bagging. The only data

set on which there is no signi�cant increase is the \seg-

ment" data set where the method yields an optimal

value of � close to zero.

Bagging. More surprisingly, dual P&C combined

with bagging is still able to improve accuracy signif-

icantly on several problems. Only on the \vst" and

\segment" databases does it slightly deteriorate accu-

racy, and these are also the two databases where dual

P&C of single trees was least e�ective. Generally, the

e�ects of dual P&C on bagged and un-bagged trees

are strongly correlated : on problems where dual P&C

works well with a given value of � for single trees, the

same value of � works also well with bagged trees.

This further improvement may be related to the ability

of our algorithm to transform a discontinuous frontier

into a really continuous one while decision frontiers

of bagging, even if smoother, remain discontinuous.

However, further investigation is required to �nd a

more de�nite explanation of the complementary fea-

tures of the two approaches.

Computational e�ciency. With respect to clas-

sical decision trees, there is an overhead during the



learning stage for the determination of the optimal

value of �. Practically, this overhead corresponds to

several tests of the DT with di�erent noise levels on

the pruning set. In our experiment, the number of such

tests was limited to a maximum of 15. However, since

the propagation algorithm is fast, this stage is not so

time-consuming. In the context of bagging, however,

the number of propagation tests is multiplied by the

number of trees and because bagged trees tend to be

signi�cantly more complex than single trees the over-

head of tuning may become more limitative. But, since

the optimal value of � for a single tree is very close to

the optimal of value of � in the context of bagging,

one possible way to circumvent this problem is to de-

termine � on a single (and simple) tree rather than

on the ensemble of complex bagged trees. The exact

impact of this simpli�cation on accuracy has still to

be evaluated.

4 CONCLUSION AND FUTURE

WORK

This paper has proposed a new wrapper technique

which consists in smoothing model output at the pre-

diction stage by randomly perturbing attribute values

and aggregating the corresponding randomized predic-

tions, thus yielding softer decision boundaries. An an-

alytical version of this algorithm has been developed

in combination with (bagged and unbagged) decision

tree models and has been evaluated on a variety of 9

datasets. On single DTs the dual P&C approach yields

signi�cant improvements on all but one of these prob-

lems, sometimes comparable to those obtained with

bagging. When combined with bagging, it further im-

proves accuracy in 6 of the 9 problems and leaves error

rates essentially unchanged in 3 of them.

Future work will be in the following directions:

� determination of the optimal noise levels. It

would be nice to �nd a way to learn the noise

level from the learning set. Also, maybe we could

get better results by using di�erent noise levels for

di�erent attributes.

� deeper study of when and why dual P&C works.

� adaptation of the method to symbolic attributes.

To randomize categorical inputs, we can use simi-

lar methods than the one used in Breiman (2000)

to randomize classi�cation outputs of learning

cases.

� evaluation of the method in the context of regres-

sion. We may also expect signi�cant improve-

ments because of the output smoothing ability of

our algorithm.

� experimentation of dual P&C with di�erent mod-

els. Can dual P&C improve accuracy of other

model types (neural nets for example) and if so,

is it possible to derive an analytical algorithm in

combination with these models ?

� proper use of this method in combination with

bagging and boosting. Preliminary results show

that dual P&C is also able to improve boosting.

Interesting questions in this context concern the

number of ensemble terms which are really neces-

sary when using dual P&C.
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