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Abstra
t Classifying obje
ts a

ording to their prox-

imity is the fundamental task of pattern re
ognition

and arises as a 
lassi�
ation problem or dis
riminant

analysis in experimental s
ien
es. Here we 
onsider a

parti
ular point of view on dis
riminant analysis from

a dissimilarity data table. We develop a new approa
h,

inspired from the Gaussian model in dis
riminant anal-

ysis, whi
h de�nes a set a de
ision rules from simple

statisti
s on the dissimilarity matrix between obser-

vations. This matrix 
an be only sparse dealing with

huge databases. Numeri
al experiments on arti�
ial

and real data (proteins 
lassi�
ation) show interesting

behaviour 
ompared to aKNN 
lassi�er, (i) equivalent

error rate, (ii) dramati
ally lower CPU times and (iii)

more robustness with sparse dissimilarity stru
ture up

to 40% of a
tual dissimilarity measures.

1 Introdu
tion

Most of 
lassi�
ation approa
hes 
on
ern situations

where an observation is des
ribed by its 
oordinates in

metri
 spa
e. But, for many appli
ations su
h ve
tor

des
ription is not available, and only pairwise dissimi-

larity data are provided. Su
h appli
ations are usual in

psy
hology, biology, geneti
, signal pro
essing... As far

as we know, only two approa
hes dealing with the 
las-

si�
ation problem in this 
ontext have been proposed.

The �rst one is based on the \K Nearest Neighbors"

(KNN) method [3℄ whi
h is a rather slow method and

non suited to non-spheri
al 
lass shapes but eÆ
ient

with non-
onne
ted 
lasses. The se
ond one trans-

forms the problem to a metri
 one using Multidimen-

sional S
aling te
hniques [4℄, [2℄. But, this approa
h


an introdu
e important distortion in the Eu
lidian

representation of the observations and the estimation

of the intrinsi
 dimension of the Eu
lidian spa
e is a

diÆ
ult open problem.

Our motivation is to propose alternative 
lassi�
ation

te
hniques from dissimilarity tables whose advantages

are rapidity, data driven versatility and adaptation to

in
omplete dissimilarity data. All these features are

dis
ussed in the following.

The set of proposed de
ision rules starts from the sim-

plest 
ase whi
h is equivalent to the linear dis
riminant

analysis. A pseudo Eu
lidian distan
es is de�ned using

averages estimated for ea
h 
lass !

k

from the dissimi-

larity matrix. Moreover, and this is one of the original-

ities of this proposal, non linearity is introdu
ed by the

way of the 
lass varian
es on this same set of dissimi-

larities. This quantity takes into a

ount the "shape"

and the intrinsi
 dimension of the 
lasses in a global

way or in a lo
al way. This leads to a quadrati
-like


lassi�er based on a pseudo Mahalanobis distan
e.

In the following, we present the justi�
ation of the

proposed method, the de
ision rules, the pra
ti
al im-

plementation of the learning algorithms, and �nally

some experimental results.

2 Statisti
s on Distan
e Data

Let us 
onsider a set Xof N obje
ts, linked by pair-

wise distan
e values gathered in a N � N matrix

D = (d(i; j); i; j 2 X ). A
ting as if the matrix D

de�nes Eu
lidian distan
es between the obje
ts, we

de�ne for e 2 X

d(e)

2

=

1

N

X

i2X

d

2

(e; i): (1)

This quantity 
an be regarded as the inertia of X with

respe
t to e. The pseudo-
entre o of X is de�ned as

o = argmin

e2X

d(e)

2

(2)

and the inertia I of X is de�ned as I = d(o)

2

. Now, if

D de�nes an Eu
lidian distan
e matrix, we have from

Huygens theorem

d(e)

2

= d

2

(o; e) + I; (3)

and, moreover, it 
an be seen that

I =

1

2N

2

X

i;j2X

d

2

(i; j): (4)
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Figure 2: Spatial evolution of

^

D

2

M

, a

ording to (a) the model 1 � = 0:78, (b) the model 2 � = 5:56, and (
) the

model 3 � = 1:18, � = 21:64.

Thus, in the Eu
lidian setting, there is no need to 
om-

pute the pseudo-
entre o, to get d

2

(o; e) for any obje
t

e. A �rst proposed de
ision rule (Se
tion 3.1) is then

naturally derived.

The empiri
al varian
e

var(d(e)

2

) =

1

N

X

i2X

(d

2

(e; i)� d(e)

2

)

2

(5)

is more 
omplex, depending on high order X moments.

Nevertheless, this quantity takes globally into a

ount

the \shape" and the intrinsi
 dimension of X . Let us

illustrate this behaviour on X , a simple 2D Gaussian

distribution (�g. 1).

For observations e lying in the dire
tion of the main

X orientation, var(d(e)

2

) are greater than for observa-

tions lying in the opposite dire
tion (�g. 1a). In order

to take into a

ount the \shape" of the set X like in

the Mahalanobis distan
e D

M

(e; o) (�g. 1b), we use

the variation 
oeÆ
ient (�g. 1
), de�ned as :

Cv(d(e)

2

) =

(d(e)

2

� I)

2

var(d(e)

2

)

: (6)

The similar behaviour of these two quantities

D

2

M

(e; o);Cv(d(e)

2

) 
an be re�ned by the following �t-

ting equations. We have de�ned three �tting models

(two with one parameter and one with two parame-

ters) :

1 :

^

D

2

M

(e; o) =

(d(e)

2

� I)

2

[var(d(e)

2

)℄

�

; (7)

2 :

^

D

2

M

(e; o) = � �

(d(e)

2

� I)

2

var(d(e)

2

)

; (8)

3 :

^

D

2

M

(e; o) =

� � (d(e)

2

� I)

2

[var(d(e)

2

)℄

�

: (9)

Figure 2 illustrates the behaviour of the three models
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Figure 3: Fitting between the Mahalanobis distan
e

and the variation 
oeÆ
ient the model 3.

on a 2D Gaussian distribution, and Figure 3 illustrates

the �tting quality a

ording to the model 3. The �t-

ting parameters � and � are set by minimizing the

mean squared error. For this example, the residual

mean squared error is respe
tively 0:257, 0:116 and

0:081, for respe
tively the model 1, 2, and 3. Exten-

sive simulations on Gaussian distributions from 2 to 10



dimensions and various \shapes" lead to the following

remarks:

� Fitting with two parameters is better than �tting

with one parameter.

� Models 2 and 3 are better than model 1.

� The parameters (�; �) depend strongly on the

\shape" (
ovarian
e matrix) and the Eu
lidian di-

mension of the data.

Thus, to take into a

ount a parti
ular \shape", and

the intrinsi
 dimension of a 
lass, the proposed de-


ision rules will use these Malahanobis-like estimators

by these \modi�ed" variation 
oeÆ
ients (Se
tion 3.2).

The pro
edure to estimate the learning parameters �

and � is des
ribed in Se
tion 4.

3 De
ision rules

Two kinds of de
ision rules have been designed. The

�rst one is based on the mean distan
es, and the se
-

ond one on the variation 
oeÆ
ients. The justi�
ation

of these de
ision rules 
omes from analogies with Gaus-

sian 
lassi�ers assuming that the dissimilarity mea-

sures are in fa
t Eu
lidian distan
e measures. Other-

wise, the de
ision rules are simply applied from statis-

ti
s on disimilarity values (means, varian
es, variation


oeÆ
ients), but the exa
t relationships with inertia

and 
entres are no longer valid.

3.1 De
ision rules based on the mean values

Considering (1), the simplest rule to 
lassify a new

obje
t e is


lass(e) = argmin

k

(d

k

(e)

2

� I

k

); (10)

where I

k

is the pseudo-inertia of 
lass k, and d

k

(e)

2

is

the mean value of the dissimilarities (1) restri
ted to


lass k. Applied on Eu
lidian distan
e data, this rule

is exa
tly equivalent to a linear 
lassi�er (�g. 4a). It


an be enhan
ed by taking into a

ount the volume of

ea
h 
lass by the way of the pseudo-inertia I

k

, su
h as

(�g 4b) :


lass(e) = argmin

k

(

d

k

(e)

2

� I

k

I

k

): (11)

3.2 De
ision rules based on the variation


oeÆ
ients

The last re�nement of the de
ision rule is to take into

a

ount the \shape" of ea
h 
lass k using the variation


oeÆ
ient Cv(d

k

(e)

2

in the following way


lass(e) = argmin

k

(Cv(d

k

(e)

2

): (12)

The boundaries obtained with this rule (�g. 4
) are


ompared with those obtained with a simple quadrati



lassi�er (�g. 4d). This rule uses the variation 
oef-

�
ients de�ned by (6) without any additional �tting

parameter. We present in the next se
tion a fast and

optimal learning pro
edure to both estimate the �t-

ting parameters (�

k

; �

k

), and 
lassify the observations.

This learning strategy allows to take into a

ount the

database stru
tures. So, it is a more powerful imple-

mentation than the simple rule (12) whi
h 
orresponds

to (�

k

= �

k

= 1) for all k.

4 Learning Pro
edure

The learning pro
edure is explained for the two models

with one parameter for whi
h it is optimal. An other

pro
edure for the model 3 with two parameters 
an be

easily derived by nesting the previous ones. But this

resulting pro
edure is only sub-optimal.

Without Global Lo
al

adaptation adaptation adaptation

Model 1 � = 1 � 6= 1 and �

k

�

k

= �

�

; 8k

Model 2 � = 1 � = 1 �

k

Table 1: Prin
iple of the lo
al and global adaptation

As usual, two 
ases are 
onsidered for the data-driven

estimation of parameters � and � : a global estimation

for all the 
lasses and a lo
al estimation for ea
h 
lass.

Table 1 summarizes those di�erent possibilities. The

parameters are estimated relatively to ea
h other, from

a referen
e value, �xed to 1. In all the 
ases, the pa-

rameters optimize the 
ross-validated re
ognition rate.

%

4.1 Global adaptation

Let us 
onsider the model 1. Starting from � = 1

for all the observations, � will be set to the value �

�

maximizing the re
ognition rate estimated by 
ross-

validation. For the model 2, sin
e � is a proportional-

ity fa
tor on the variation 
oeÆ
ient, the global adap-

tation of its value does not make sense.

Let us noti
e !

k

(e), the true 
lass k of an observation

e belonging to the learning data set, and 
l

l

(e), the


lass l sele
ted from the de
ision rule.

The initial step is �(e) = 1, whatever the observations.

For ea
h observation e, the 
lass 
l

l

(e) is sele
ted a
-


ording to the de
ision rule (12) with Cv estimated by

(7). If the sele
ted 
lass (l) is not equal to the true


lass (k), the parameter �(e) must be modi�ed to 
or-

re
t this mis
lassi�
ation, that is to ensure that
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Figure 4: Examples of boundaries obtained with (a) equation 10, (b) equation 11, (
) equation 12, (d) a quadrati



lassi�er.

Cv(d

l

(e)

2

) > Cv(d

k

(e)

2

)

log[

(d

l

(e)

2

� I

l

)

2

[var(d

l

(e)

2

)℄

�(e)

℄ > log[

(d

k

(e)

2

� I

k

)

2

[var(d

k

(e)

2

)℄

�(e)

℄ (13)

Then to well-
lassify the observation e, the parameter

�(e) must be set to this new value :

�(e) =

log[

(d

k

(e)

2

�I

k

)

2

(d

l

(e)

2

�I

l

)

2

℄

log[

var(d

k

(e)

2

)

var(d

l

(e)

2

)

℄

: (14)

At the end of the pro
edure, a set of possible values for

the parameter � is obtained. The 
ardinal of this set

is the number of mis
lassi�ed observations. It is easily

proven that the optimal value �

�

belongs to this set:

�

�

is then sele
ted by maximizing the 
ross-validated

re
ognition rate over this �nite set.

4.2 Lo
al adaptation

For the lo
al adaptation, sin
e the parameters are op-

timized relatively to ea
h others, G�1 parameters are

adapted, G being the number of 
lasses. The refer-

en
e value is set to one for the �rst 
lass, for example.

If G = 2, only one parameter is to be estimated (�

2

,

or �

2

): this leads to the basi
 learning pro
edure. If

G > 2, the learning pro
edure is re
ursive, de
ompos-

ing the multi-
lass problem as a sequen
e of two-
lass

problems.

4.2.1 Learning for a two-
lass problem

The lo
al adaptation allows to take into a

ount di�er-

ent lo
al stru
tures for ea
h 
lass. Here, the parameter

for the se
ond 
lass will be set relatively to the �rst


lass. Let us 
onsider the two 
lasses !

1

and !

2

. For

the 
lass !

1

, the parameter is �xed and set to one.

For the se
ond 
lass, the initial value of the parame-

ter is also set to one. This value is only modi�ed for

mis
lassi�ed observations. Two 
ases o

ur whi
h are

summarized in Table 2. For example, for 
ase 1 with

model 1, the inequality between the variation 
oeÆ-


ients to well-
lassify the observation e is

True Sele
ted A
tion Model 1 Model 2


lass 
lass

Case 1 1 2 Cv

2

% �

2

(e)& �

2

(e)%

Case 1 2 1 Cv

2

& �

2

(e)% �

2

(e)&

Table 2: Parameter modi�
ation on mis
lassi�ed ob-

servations

Cv(d

2

(e)

2

) > Cv(d

1

(e)

2

)

log[

(d

2

(e)

2

� I

2

)

2

[var(d

2

(e)

2

)℄

�

2

(e)

℄ > log[

(d

1

(e)

2

� I

1

)

2

var(d

1

(e)

2

)

℄ (15)

To verify this inequality, the parameter �

2

(e) must be

set to :

�

2

(e) =

log[(d

2

(e)

2

�I

2

)

2

℄�log[(d

1

(e)

2

�I

1

)

2

℄+log[var(d

1

(e)

2

)℄

log[var(d

2

(e)

2

)℄

(16)

For model 2, with a similar approa
h, the parameter

�

2

(e) for the mis
lassi�ed observations must be su
h

that

log[�

2

(e)℄ = log[Cv

1

(e)℄� log[Cv

2

(e)℄ (17)

The �nal step of the pro
edure 
onsists of sele
ting the

best value among this set of 
andidates, maximizing

the 
ross-validated re
ognition rate. The optimality

of this pro
edure is illustrated in Figure 6.

4.2.2 Learning for a multi-
lass problem

(G > 2)

These pro
edures 
an be easily extended to the general


ase, for a multi-
lass problem (G > 2). This extension

is realized re
ursively from the pro
edure restri
ted to

a two-
lass problem.

Let us noti
e X

12���k

, the learning set restri
ted to the


lasses !

1

, !

2

, : : : !

k

. Let us 
onsider the 
lass !

1

as

the referen
e, �

1

(or �

1

) is 
onstant and set to one.

Starting from initial values set to one, the G � 1 pa-

rameters, from �

2

(or �

2

) to �

G

(or �

G

) are re
ursively

optimized a

ording to a G � 1 steps pro
edure. At



ea
h step k, �

�

k

(or �

�

k

) is set, maximizing the 
ross-

validated re
ognition rate on X

12���(k+1)

.

Let us 
onsider the step k on X

12���(k+1)

. Only two

following mis
lassi�
ation 
ases are 
onsidered2 :

� 
l(e) = k + 1 and w(e) 6= 
l(e). Then �

k+1

must

be de
reased relatively to �

!(e)

a

ording to (16)

(or in
rease �

k+1

relatively to �

!(e)

a

ording to

(17)),

� w(e) = k + 1 and w(e) 6= 
l(e). Then �

k+1

must

be in
reased relatively to �

!(e)

a

ording to (16)

(or de
rease �

k+1

relatively to �

!(e)

a

ording to

(17)).

The other mis
lassi�
ation 
ases are ignored sin
e they

do not 
on
ern 
lass !

k+1

. This step k is 
ompleted by

the sele
tion of the optimal parameter maximizing the


ross-validated re
ognition rate on X

12���(k+1)

. This

pro
edure is running up to the step G � 1. The G �

1 parameters are optimal maximizing the re
ognition

rate on X . A
tually, the re
ognition rate � is the sum

of elementary re
ognition rate on ea
h 
lass : � =

P

G

k=1

�(k). And, ea
h parameter �

�

k

(or �

�

k

) optimizes

the partial sum

P

k

j=1

�(j), with �

1

(or �

1

) = 1.

5 Experimental Results

To illustrate the de
ision rules based on variation 
oef-

�
ients, experiments have been realized on a database

of 449 observations, This distan
e data set has been

designed with protein sequen
es from Ba
illus subtilis

extra
ted from the SWISSPROT databank release 38

(see [1℄). Those proteins were 
lassi�ed into 2 
at-

egories a

ording to their \sub
ellular lo
ation" key-

word: 151 
ytoplasmi
 proteins and 298 integral men-

brane proteins. The amino-a
id usage of ea
h protein

(i.e. the frequen
y of ea
h of the 20 amino-a
id) was


omputed and give rise to the distan
e table at hand.

Five de
ision algorithms have been ben
hmarked in

this 
ontext. Three de
ision rules are based on vari-

ation 
oeÆ
ients : simple CV (12), CV through the

model 1 (7) and 2 (8) with a lo
al adaptation. The

two other algorithms are the KNN and the 1NN 
las-

si�er. The re
ognition rate is estimated by an \Half

Sampling" learning pro
edure. The database is split

into 2 parts. In a �rst step, the learning parame-

ters (�

2

for CV-Mod1, �

2

for CV-Mod2, and K for

KNN) are optimized by 
ross validation with the �rst

part of the database. These parameter values are then

used, for validation, to 
lassify the se
ond part of the

database. This leads to a �rst re
ognition rate �

v2

. In

a se
ond step, the role of the two database parts are

inverted and a se
ond re
ognition rate �

v1

is also pro-


essed for validation with the part 1. The �nal rate

(�

hs

) is the average of these two estimates. Table 3 and

Figure 5 summarize the mean behaviour on 10 exper-

iments (10 random partitions into two parts). With

Cv−Mod1 Cv−Mod2   KNN     Cv    1NN  
90.5

91

91.5

92

92.5

93

93.5

R
e
c
o
g
n
it
io

n
 r

a
te

Figure 5: Half sampling pro
edure : Re
ognition rate

(mean, standard deviation) on 10 partitions

this database, the re
ognition rates are high for the

�ve methods. Nevetheless, di�eren
es appear between

the algorithms :

� As expe
ted, algorithms with a data driven learn-

ing parameter give better results.

� De
ision rules based on adaptive variation 
oeÆ-


ients give better re
ognition rates (higher mean,

redu
ed standard deviation).

� The dependen
e between the optimal parameters

and a data partition is smaller with the \ CV

rules" than with the \KNN rule" (redu
ed devi-

ation between �

l

and �

v

). Then a better general-

ization 
an be expe
ted with su
h \CV methods".

Figure 6 illustrates this optimal learning pro
edure by

the variation of the re
ognition rate versus the �tting

parameter. On this �gure, the di�erent possible val-

ues for ea
h mis
lassi�ed observation are marked by


rosses and the sele
ted optimal value by a 
ir
le. In

this interval, for regularly sampled parameter values

(dot), the re
ognition rate are always lower than the

maximum 
ross-validated re
ognition rate.

Con
erning the pro
essing time, with predi�ned pa-

rameters, the\CV algorithms" are in average 20 times

faster than the \KNN" one. The pro
essing time for

the learning step depend on the number of mis
lassi-

�ed observations. For this example, the learning time

is in average 10 times longer than the test time on the

�nite dataset.

Dealing with in
omplete dissimilarity table, the \CV

algorithms" have ni
e behaviour. The prin
iple is the

same but the statisti
s are only set on the known dis-

similarities. Numeri
al experiments not reported here



Algorithm CV-Mod 1 CV-Mod2 KNN CV 1NN

Learning parameter on part 1 �

2

= 1:01 �

2

= 1:18 K = 8:4 - -

Learning on part 1 �

l1

(%) 94.1 94.1 93.7 - -

Validation on part 2 �

v2

(%) 92.8 92.8 91.9 91.4 91.5

Learning parameter on part 2 �

2

= 1:01 �

2

= 1:29 K = 7:4 - -

Learning on part 2 �

l2

(%) 93.2 93.2 93.5 - -

Validation on part 1 �

v1

(%) 92.9 92.9 92.4 92.6 91.8

Final rate �

hs

=

�

v1

+�

v2

2

(%) 92.8 92.9 92.1 92 91.6

Deviation �

l

� �

v

(%) 0.82 0.80 1.47 - -

Table 3: Re
ognition rates on the proteins database on 10 random partitions.
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Figure 6: Result of a learning step : Re
ognition rate vs the �tting parameter for the model 1 (a) and the model

2 (b). See text for more details.

show that the re
ognition rate is robust to the sparse

dissimilarity stru
ture up to 40% of unknown dissimi-

larities.

6 Con
lusions

The development of \data mining" te
hniques en-

han
es the great need to have multiple 
lassi�
ation

tools adapted to various data stru
tures. The dis-

similarity tables are one of these stru
tures. In this

domain, we have presented a new sensible 
lassi�
a-

tion framework inspired from the Eu
lidian Gaussian

model. The proposed set of de
ision rules is an alter-

native to the well-known \KNN" rule. The 
hara
-

teristi
s of these de
ision rules are simpli
ity, rapidity

(re
ursive implementation, few adaptive parameters),

robustness to the size of the dataset (based on �rst

and se
ond order statisti
s on dissimilarity values),

data driven versatility (adaptive parameters to learn

the \shape" and the intrinsi
 dimension of ea
h 
lass),

adaptation to in
omplete dissimilarity data (statisti
s

only on known values). This last property is very im-

portant for appli
ations dealing with huge databases,

sin
e the dissimilarity table is a quadrati
 data stru
-

ture.

A simple illustrative example for a protein 
lassi�-


ation problem shows already a very interesting be-

haviour 
ompared to the \KNN" rule. Extensive ex-

periments with more 
omplex data must be performed

to 
ompletely validate this new 
on
ept of 
lassi�
a-

tion from dissimilarity tables.
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