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Abstract Classifying objects according to their prox-
imity is the fundamental task of pattern recognition
and arises as a classification problem or discriminant
analysis in experimental sciences. Here we consider a
particular point of view on discriminant analysis from
a dissimilarity data table. We develop a new approach,
inspired from the Gaussian model in discriminant anal-
ysis, which defines a set a decision rules from simple
statistics on the dissimilarity matrix between obser-
vations. This matrix can be only sparse dealing with
huge databases. Numerical experiments on artificial
and real data (proteins classification) show interesting
behaviour compared to a KNN classifier, (i) equivalent
error rate, (ii) dramatically lower CPU times and (iii)
more robustness with sparse dissimilarity structure up
to 40% of actual dissimilarity measures.

1 Introduction

Most of classification approaches concern situations
where an observation is described by its coordinates in
metric space. But, for many applications such vector
description is not available, and only pairwise dissimi-
larity data are provided. Such applications are usual in
psychology, biology, genetic, signal processing... As far
as we know, only two approaches dealing with the clas-
sification problem in this context have been proposed.
The first one is based on the “K Nearest Neighbors”
(KNN) method [3] which is a rather slow method and
non suited to non-spherical class shapes but efficient
with non-connected classes. The second one trans-
forms the problem to a metric one using Multidimen-
sional Scaling techniques [4], [2]. But, this approach
can introduce important distortion in the Euclidian
representation of the observations and the estimation
of the intrinsic dimension of the Euclidian space is a
difficult open problem.

Our motivation is to propose alternative classification
techniques from dissimilarity tables whose advantages
are rapidity, data driven versatility and adaptation to

incomplete dissimilarity data. All these features are
discussed in the following.

The set of proposed decision rules starts from the sim-
plest case which is equivalent to the linear discriminant
analysis. A pseudo Euclidian distances is defined using
averages estimated for each class wy, from the dissimi-
larity matrix. Moreover, and this is one of the original-
ities of this proposal, non linearity is introduced by the
way of the class variances on this same set of dissimi-
larities. This quantity takes into account the ”shape”
and the intrinsic dimension of the classes in a global
way or in a local way. This leads to a quadratic-like
classifier based on a pseudo Mahalanobis distance.

In the following, we present the justification of the
proposed method, the decision rules, the practical im-
plementation of the learning algorithms, and finally
some experimental results.

2 Statistics on Distance Data

Let us consider a set Xof N objects, linked by pair-
wise distance values gathered in a N x N matrix
D = (d(i,j),i,j € X). Acting as if the matrix D
defines Euclidian distances between the objects, we
define for e € X

TP = 5 3 (e, (1)

This quantity can be regarded as the inertia of X with
respect to e. The pseudo-centre o of X is defined as

o = argmin,¢ yd(e)? (2)

and the inertia I of X is defined as I = d(0)?. Now, if
D defines an Euclidian distance matrix, we have from
Huygens theorem

d(e)? = d*(o,e) + I, (3)
and, moreover, it can be seen that

1 2. -
I'=op Z d” (i, 7). (4)
i,jEX
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Figure 1: Spatial evolution of (a) var(d(e)?), (b) D%,(E,O), (c) Cv(d(e)?).
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Figure 2: Spatial evolution of D?V[, according to (a) the model 1 a = 0.78, (b) the model 2 f = 5.56, and (c) the

model 3 a = 1.18, § = 21.64.

Thus, in the Euclidian setting, there is no need to com-
pute the pseudo-centre o, to get d?(o, e) for any object
e. A first proposed decision rule (Section 3.1) is then
naturally derived.

The empirical variance

1 N
N Y (d(e,i) — d(e)?) ()
icXx

is more complex, depending on high order X moments.
Nevertheless, this quantity takes globally into account
the “shape” and the intrinsic dimension of X'. Let us
illustrate this behaviour on X', a simple 2D Gaussian
distribution (fig. 1).

For observations e lying in the direction of the main
X orientation, var(d(e)?) are greater than for observa-
tions lying in the opposite direction (fig. 1a). In order
to take into account the “shape” of the set X’ like in
the Mahalanobis distance Dys(e,0) (fig. 1b), we use
the variation coefficient (fig. 1c), defined as :

2y _ (d(e)* — 1)
CV(d(C) ) - Var(d(e)z) - (6)
The similar behaviour of these two quantities

D?,(e,0),Cv(d(e)?) can be refined by the following fit-
ting equations. We have defined three fitting models
(two with one parameter and one with two parame-

ters)
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Figure 3: Fitting between the Mahalanobis distance
and the variation coefficient the model 3.

on a 2D Gaussian distribution, and Figure 3 illustrates
the fitting quality according to the model 3. The fit-
ting parameters a and [ are set by minimizing the
mean squared error. For this example, the residual
mean squared error is respectively 0.257, 0.116 and
0.081, for respectively the model 1, 2, and 3. Exten-
sive simulations on Gaussian distributions from 2 to 10



dimensions and various “shapes” lead to the following
remarks:

e Fitting with two parameters is better than fitting
with one parameter.

e Models 2 and 3 are better than model 1.

e The parameters («,() depend strongly on the
“shape” (covariance matrix) and the Euclidian di-
mension of the data.

Thus, to take into account a particular “shape”, and
the intrinsic dimension of a class, the proposed de-
cision rules will use these Malahanobis-like estimators
by these “modified” variation coefficients (Section 3.2).
The procedure to estimate the learning parameters «
and f is described in Section 4.

3 Decision rules

Two kinds of decision rules have been designed. The
first one is based on the mean distances, and the sec-
ond one on the variation coefficients. The justification
of these decision rules comes from analogies with Gaus-
sian classifiers assuming that the dissimilarity mea-
sures are in fact Euclidian distance measures. Other-
wise, the decision rules are simply applied from statis-
tics on disimilarity values (means, variances, variation
coefficients), but the exact relationships with inertia
and centres are no longer valid.

3.1 Decision rules based on the mean values

Considering (1), the simplest rule to classify a new
object e is

class(e) = argmin, (di(e)? — Ij,), (10)

where I}, is the pseudo-inertia of class k, and di(e)? is
the mean value of the dissimilarities (1) restricted to
class k. Applied on Euclidian distance data, this rule
is exactly equivalent to a linear classifier (fig. 4a). It
can be enhanced by taking into account the volume of
each class by the way of the pseudo-inertia I}, such as
(fig 4b) :

dk (6)2 — Ik

— ) (11)

class(e) = argmin,,(

3.2 Decision rules based on the variation
coefficients

The last refinement of the decision rule is to take into
account the “shape” of each class k using the variation
coefficient Cv(dj(e)? in the following way

class(e) = argmin, (Cv(dy(e)?). (12)

The boundaries obtained with this rule (fig. 4c) are
compared with those obtained with a simple quadratic
classifier (fig. 4d). This rule uses the variation coef-
ficients defined by (6) without any additional fitting
parameter. We present in the next section a fast and
optimal learning procedure to both estimate the fit-
ting parameters (o, Sk ), and classify the observations.
This learning strategy allows to take into account the
database structures. So, it is a more powerful imple-
mentation than the simple rule (12) which corresponds
to (ax = B = 1) for all k.

4 Learning Procedure

The learning procedure is explained for the two models
with one parameter for which it is optimal. An other
procedure for the model 3 with two parameters can be
easily derived by nesting the previous ones. But this
resulting procedure is only sub-optimal.

Without Global Local
adaptation | adaptation | adaptation
Model 1 a=1 a # 1 and g
ap = a*,Vk
Model 2 B=1 B=1 B

Table 1: Principle of the local and global adaptation

As usual, two cases are considered for the data-driven
estimation of parameters « and 3 : a global estimation
for all the classes and a local estimation for each class.
Table 1 summarizes those different possibilities. The
parameters are estimated relatively to each other, from
a reference value, fixed to 1. In all the cases, the pa-
rameters optimize the cross-validated recognition rate.

%

4.1 Global adaptation

Let us consider the model 1. Starting from o = 1
for all the observations, a will be set to the value a*
maximizing the recognition rate estimated by cross-
validation. For the model 2, since § is a proportional-
ity factor on the variation coefficient, the global adap-
tation of its value does not make sense.

Let us notice wy(e), the true class k of an observation
e belonging to the learning data set, and cl;(e), the
class [ selected from the decision rule.

The initial step is a(e) = 1, whatever the observations.
For each observation e, the class cl;(e) is selected ac-
cording to the decision rule (12) with Cv estimated by
(7). If the selected class (1) is not equal to the true
class (k), the parameter a(e) must be modified to cor-
rect this misclassification, that is to ensure that
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Figure 4: Examples of boundaries obtained with (a) equation 10, (b) equation 11, (c) equation 12, (d) a quadratic

classifier.

Cv(di(e)?) > Cv(di(e)?)

(di(e)®* = I)* (di(e)? — Ii)*

P8l (@ @@~ e (g, @)@

(13)
Then to well-classify the observation e, the parameter
a(e) must be set to this new value :

(di(€)®—Ix)*
logl Gt 17!

var(dg(e)2)q °
log Var((dlf((e))z)) ]

ale) = (14)

At the end of the procedure, a set of possible values for
the parameter « is obtained. The cardinal of this set
is the number of misclassified observations. It is easily
proven that the optimal value a* belongs to this set:
a* is then selected by maximizing the cross-validated
recognition rate over this finite set.

4.2 Local adaptation

For the local adaptation, since the parameters are op-
timized relatively to each others, G — 1 parameters are
adapted, G being the number of classes. The refer-
ence value is set to one for the first class, for example.
If G = 2, only one parameter is to be estimated (as,
or (3): this leads to the basic learning procedure. If
G > 2, the learning procedure is recursive, decompos-
ing the multi-class problem as a sequence of two-class
problems.

4.2.1 Learning for a two-class problem

The local adaptation allows to take into account differ-
ent local structures for each class. Here, the parameter
for the second class will be set relatively to the first
class. Let us consider the two classes w; and ws. For
the class wy, the parameter is fixed and set to one.
For the second class, the initial value of the parame-
ter is also set to one. This value is only modified for
misclassified observations. Two cases occur which are
summarized in Table 2. For example, for case 1 with
model 1, the inequality between the variation coeffi-
cients to well-classify the observation e is

True | Selected | Action | Model 1 | Model 2
class class
Case 1 1 2 Cvs /| as(e) \( | B2(e) &
Case 1 2 1 Cvs \( | az(e) /| Ba(e) \¢

Table 2: Parameter modification on misclassified ob-
servations

Cv(da(e)?) > Cv(dy(e)?)

(d2(e)? — I)?
Og[[var(dz(e)z)]‘”(@)] Og[

(di(e)? — 1)
var(d; (e)?)

I (15

To verify this inequality, the parameter as(e) must be
set to :

as(e) =
log[(d2(e)2 —12)*] —log[(d1(e)? =11 )] +log[Var(di(e)?)]
log[Var(da(e)?)]

(16)

For model 2, with a similar approach, the parameter
B=2(e) for the misclassified observations must be such
that

log[f2(e)] = log[Cvi (e)] — log[Cua(e)]

The final step of the procedure consists of selecting the
best value among this set of candidates, maximizing
the cross-validated recognition rate. The optimality
of this procedure is illustrated in Figure 6.

(17)

4.2.2 Learning for a multi-class problem
(G >2)

These procedures can be easily extended to the general
case, for a multi-class problem (G > 2). This extension
is realized recursively from the procedure restricted to
a two-class problem.

Let us notice AXjs..., the learning set restricted to the
classes wy, wo, ... wg. Let us consider the class w; as
the reference, a; (or (1) is constant and set to one.
Starting from initial values set to one, the G — 1 pa-
rameters, from s (or f2) to ag (or B¢) are recursively
optimized according to a G — 1 steps procedure. At




each step k, af (or B%) is set, maximizing the cross-
validated recognition rate on Xis...(g41)-

Let us consider the step k on Xy5..(r41). Only two
following misclassification cases are considered?2 :

e cl(e) =k+ 1 and w(e) # cl(e). Then a4 must
be decreased relatively to ay.) according to (16)
(or increase Bg1 relatively to (3, according to

(17)),

e w(e) =k + 1 and w(e) # cl(e). Then ayq; must
be increased relatively to a, () according to (16)
(or decrease By relatively to f,(.) according to

(17)).

The other misclassification cases are ignored since they
do not concern class wy1. This step k is completed by
the selection of the optimal parameter maximizing the
cross-validated recognition rate on Xy.(xy1). This
procedure is running up to the step G — 1. The G —
1 parameters are optimal maximizing the recognition
rate on X. Actually, the recognition rate 7 is the sum
of elementary recognition rate on each class : 7 =
Z/?:l 7(k). And, each parameter o, (or 3;) optimizes
the partial sum Z?:l 7(j), with ay (or 1) = 1.

5 Experimental Results

To illustrate the decision rules based on variation coef-
ficients, experiments have been realized on a database
of 449 observations, This distance data set has been
designed with protein sequences from Bacillus subtilis
extracted from the SWISSPROT databank release 38
(see [1]). Those proteins were classified into 2 cat-
egories according to their “subcellular location” key-
word: 151 cytoplasmic proteins and 298 integral men-
brane proteins. The amino-acid usage of each protein
(i.e. the frequency of each of the 20 amino-acid) was
computed and give rise to the distance table at hand.

Five decision algorithms have been benchmarked in
this context. Three decision rules are based on vari-
ation coefficients : simple CV (12), CV through the
model 1 (7) and 2 (8) with a local adaptation. The
two other algorithms are the KNN and the 1NN clas-
sifier. The recognition rate is estimated by an “Half
Sampling” learning procedure. The database is split
into 2 parts. In a first step, the learning parame-
ters (ae for CV-Modl, B2 for CV-Mod2, and K for
KNN) are optimized by cross validation with the first
part of the database. These parameter values are then
used, for validation, to classify the second part of the
database. This leads to a first recognition rate 7,2. In
a second step, the role of the two database parts are
inverted and a second recognition rate 7,1 is also pro-
cessed for validation with the part 1. The final rate

(Ths) is the average of these two estimates. Table 3 and
Figure 5 summarize the mean behaviour on 10 exper-
iments (10 random partitions into two parts). With
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Figure 5: Half sampling procedure : Recognition rate
(mean, standard deviation) on 10 partitions

this database, the recognition rates are high for the
five methods. Nevetheless, differences appear between
the algorithms :

e As expected, algorithms with a data driven learn-
ing parameter give better results.

e Decision rules based on adaptive variation coeffi-
cients give better recognition rates (higher mean,
reduced standard deviation).

e The dependence between the optimal parameters
and a data partition is smaller with the “ CV
rules” than with the “A'NN rule” (reduced devi-
ation between 7; and 7,). Then a better general-
ization can be expected with such “CV methods”.

Figure 6 illustrates this optimal learning procedure by
the variation of the recognition rate versus the fitting
parameter. On this figure, the different possible val-
ues for each misclassified observation are marked by
crosses and the selected optimal value by a circle. In
this interval, for regularly sampled parameter values
(dot), the recognition rate are always lower than the
maximum cross-validated recognition rate.

Concerning the processing time, with predifined pa-
rameters, the“CV algorithms” are in average 20 times
faster than the “K'NN” one. The processing time for
the learning step depend on the number of misclassi-
fied observations. For this example, the learning time
is in average 10 times longer than the test time on the
finite dataset.

Dealing with incomplete dissimilarity table, the “CV
algorithms” have nice behaviour. The principle is the
same but the statistics are only set on the known dis-
similarities. Numerical experiments not reported here



Algorithm CV-Mod 1 | CV-Mod2 KNN CV | INN
Learning parameter on part 1 | a» =1.01 | S =1.18 | K =84 - -
Learning on part 1 771 (%) 94.1 94.1 93.7 - -
Validation on part 2 7,2 (%) 92.8 92.8 91.9 914 | 91.5
Learning parameter on part 2 | ax =1.01 | o =129 | K =74 - -
Learning on part 2 72 (%) 93.2 93.2 93.5 - -
Validation on part 1 7,1 (%) 92.9 92.9 92.4 92.6 | 91.8
Final rate 7,5 = 2302 (%) 92.8 92.9 92.1 92 | 91.6
Deviation 7, — 7, (%) 0.82 0.80 1.47 - -

Table 3: Recognition rates on the proteins database on 10 random partitions.
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Figure 6: Result of a learning step : Recognition rate vs the fitting parameter for the model 1 (a) and the model

2 (b). See text for more details.

show that the recognition rate is robust to the sparse
dissimilarity structure up to 40% of unknown dissimi-
larities.

6 Conclusions

The development of “data mining” techniques en-
hances the great need to have multiple classification
tools adapted to various data structures. The dis-
similarity tables are one of these structures. In this
domain, we have presented a new sensible classifica-
tion framework inspired from the Euclidian Gaussian
model. The proposed set of decision rules is an alter-
native to the well-known “ANN” rule. The charac-
teristics of these decision rules are simplicity, rapidity
(recursive implementation, few adaptive parameters),
robustness to the size of the dataset (based on first
and second order statistics on dissimilarity values),
data driven versatility (adaptive parameters to learn
the “shape” and the intrinsic dimension of each class),
adaptation to incomplete dissimilarity data (statistics
only on known values). This last property is very im-
portant for applications dealing with huge databases,
since the dissimilarity table is a quadratic data struc-
ture.

A simple illustrative example for a protein classifi-

cation problem shows already a very interesting be-
haviour compared to the “ANN” rule. Extensive ex-
periments with more complex data must be performed
to completely validate this new concept of classifica-
tion from dissimilarity tables.
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