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Abstrat Classifying objets aording to their prox-

imity is the fundamental task of pattern reognition

and arises as a lassi�ation problem or disriminant

analysis in experimental sienes. Here we onsider a

partiular point of view on disriminant analysis from

a dissimilarity data table. We develop a new approah,

inspired from the Gaussian model in disriminant anal-

ysis, whih de�nes a set a deision rules from simple

statistis on the dissimilarity matrix between obser-

vations. This matrix an be only sparse dealing with

huge databases. Numerial experiments on arti�ial

and real data (proteins lassi�ation) show interesting

behaviour ompared to aKNN lassi�er, (i) equivalent

error rate, (ii) dramatially lower CPU times and (iii)

more robustness with sparse dissimilarity struture up

to 40% of atual dissimilarity measures.

1 Introdution

Most of lassi�ation approahes onern situations

where an observation is desribed by its oordinates in

metri spae. But, for many appliations suh vetor

desription is not available, and only pairwise dissimi-

larity data are provided. Suh appliations are usual in

psyhology, biology, geneti, signal proessing... As far

as we know, only two approahes dealing with the las-

si�ation problem in this ontext have been proposed.

The �rst one is based on the \K Nearest Neighbors"

(KNN) method [3℄ whih is a rather slow method and

non suited to non-spherial lass shapes but eÆient

with non-onneted lasses. The seond one trans-

forms the problem to a metri one using Multidimen-

sional Saling tehniques [4℄, [2℄. But, this approah

an introdue important distortion in the Eulidian

representation of the observations and the estimation

of the intrinsi dimension of the Eulidian spae is a

diÆult open problem.

Our motivation is to propose alternative lassi�ation

tehniques from dissimilarity tables whose advantages

are rapidity, data driven versatility and adaptation to

inomplete dissimilarity data. All these features are

disussed in the following.

The set of proposed deision rules starts from the sim-

plest ase whih is equivalent to the linear disriminant

analysis. A pseudo Eulidian distanes is de�ned using

averages estimated for eah lass !

k

from the dissimi-

larity matrix. Moreover, and this is one of the original-

ities of this proposal, non linearity is introdued by the

way of the lass varianes on this same set of dissimi-

larities. This quantity takes into aount the "shape"

and the intrinsi dimension of the lasses in a global

way or in a loal way. This leads to a quadrati-like

lassi�er based on a pseudo Mahalanobis distane.

In the following, we present the justi�ation of the

proposed method, the deision rules, the pratial im-

plementation of the learning algorithms, and �nally

some experimental results.

2 Statistis on Distane Data

Let us onsider a set Xof N objets, linked by pair-

wise distane values gathered in a N � N matrix

D = (d(i; j); i; j 2 X ). Ating as if the matrix D

de�nes Eulidian distanes between the objets, we

de�ne for e 2 X

d(e)

2

=

1

N

X

i2X

d

2

(e; i): (1)

This quantity an be regarded as the inertia of X with

respet to e. The pseudo-entre o of X is de�ned as

o = argmin

e2X

d(e)

2

(2)

and the inertia I of X is de�ned as I = d(o)

2

. Now, if

D de�nes an Eulidian distane matrix, we have from

Huygens theorem

d(e)

2

= d

2

(o; e) + I; (3)

and, moreover, it an be seen that

I =

1

2N

2

X

i;j2X

d

2

(i; j): (4)
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, aording to (a) the model 1 � = 0:78, (b) the model 2 � = 5:56, and () the

model 3 � = 1:18, � = 21:64.

Thus, in the Eulidian setting, there is no need to om-

pute the pseudo-entre o, to get d

2

(o; e) for any objet

e. A �rst proposed deision rule (Setion 3.1) is then

naturally derived.

The empirial variane

var(d(e)

2

) =

1

N

X

i2X

(d

2

(e; i)� d(e)

2

)

2

(5)

is more omplex, depending on high order X moments.

Nevertheless, this quantity takes globally into aount

the \shape" and the intrinsi dimension of X . Let us

illustrate this behaviour on X , a simple 2D Gaussian

distribution (�g. 1).

For observations e lying in the diretion of the main

X orientation, var(d(e)

2

) are greater than for observa-

tions lying in the opposite diretion (�g. 1a). In order

to take into aount the \shape" of the set X like in

the Mahalanobis distane D

M

(e; o) (�g. 1b), we use

the variation oeÆient (�g. 1), de�ned as :

Cv(d(e)

2

) =

(d(e)

2

� I)

2

var(d(e)

2

)

: (6)

The similar behaviour of these two quantities

D

2

M

(e; o);Cv(d(e)

2

) an be re�ned by the following �t-

ting equations. We have de�ned three �tting models

(two with one parameter and one with two parame-

ters) :

1 :

^

D

2

M

(e; o) =

(d(e)

2

� I)

2

[var(d(e)

2

)℄

�

; (7)

2 :

^

D

2

M

(e; o) = � �

(d(e)

2

� I)

2

var(d(e)

2

)

; (8)

3 :

^

D

2

M

(e; o) =

� � (d(e)

2

� I)

2

[var(d(e)

2

)℄

�

: (9)

Figure 2 illustrates the behaviour of the three models
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Figure 3: Fitting between the Mahalanobis distane

and the variation oeÆient the model 3.

on a 2D Gaussian distribution, and Figure 3 illustrates

the �tting quality aording to the model 3. The �t-

ting parameters � and � are set by minimizing the

mean squared error. For this example, the residual

mean squared error is respetively 0:257, 0:116 and

0:081, for respetively the model 1, 2, and 3. Exten-

sive simulations on Gaussian distributions from 2 to 10



dimensions and various \shapes" lead to the following

remarks:

� Fitting with two parameters is better than �tting

with one parameter.

� Models 2 and 3 are better than model 1.

� The parameters (�; �) depend strongly on the

\shape" (ovariane matrix) and the Eulidian di-

mension of the data.

Thus, to take into aount a partiular \shape", and

the intrinsi dimension of a lass, the proposed de-

ision rules will use these Malahanobis-like estimators

by these \modi�ed" variation oeÆients (Setion 3.2).

The proedure to estimate the learning parameters �

and � is desribed in Setion 4.

3 Deision rules

Two kinds of deision rules have been designed. The

�rst one is based on the mean distanes, and the se-

ond one on the variation oeÆients. The justi�ation

of these deision rules omes from analogies with Gaus-

sian lassi�ers assuming that the dissimilarity mea-

sures are in fat Eulidian distane measures. Other-

wise, the deision rules are simply applied from statis-

tis on disimilarity values (means, varianes, variation

oeÆients), but the exat relationships with inertia

and entres are no longer valid.

3.1 Deision rules based on the mean values

Considering (1), the simplest rule to lassify a new

objet e is

lass(e) = argmin

k

(d

k

(e)

2

� I

k

); (10)

where I

k

is the pseudo-inertia of lass k, and d

k

(e)

2

is

the mean value of the dissimilarities (1) restrited to

lass k. Applied on Eulidian distane data, this rule

is exatly equivalent to a linear lassi�er (�g. 4a). It

an be enhaned by taking into aount the volume of

eah lass by the way of the pseudo-inertia I

k

, suh as

(�g 4b) :

lass(e) = argmin

k

(

d

k

(e)

2

� I

k

I

k

): (11)

3.2 Deision rules based on the variation

oeÆients

The last re�nement of the deision rule is to take into

aount the \shape" of eah lass k using the variation

oeÆient Cv(d

k

(e)

2

in the following way

lass(e) = argmin

k

(Cv(d

k

(e)

2

): (12)

The boundaries obtained with this rule (�g. 4) are

ompared with those obtained with a simple quadrati

lassi�er (�g. 4d). This rule uses the variation oef-

�ients de�ned by (6) without any additional �tting

parameter. We present in the next setion a fast and

optimal learning proedure to both estimate the �t-

ting parameters (�

k

; �

k

), and lassify the observations.

This learning strategy allows to take into aount the

database strutures. So, it is a more powerful imple-

mentation than the simple rule (12) whih orresponds

to (�

k

= �

k

= 1) for all k.

4 Learning Proedure

The learning proedure is explained for the two models

with one parameter for whih it is optimal. An other

proedure for the model 3 with two parameters an be

easily derived by nesting the previous ones. But this

resulting proedure is only sub-optimal.

Without Global Loal

adaptation adaptation adaptation

Model 1 � = 1 � 6= 1 and �

k

�

k

= �

�

; 8k

Model 2 � = 1 � = 1 �

k

Table 1: Priniple of the loal and global adaptation

As usual, two ases are onsidered for the data-driven

estimation of parameters � and � : a global estimation

for all the lasses and a loal estimation for eah lass.

Table 1 summarizes those di�erent possibilities. The

parameters are estimated relatively to eah other, from

a referene value, �xed to 1. In all the ases, the pa-

rameters optimize the ross-validated reognition rate.

%

4.1 Global adaptation

Let us onsider the model 1. Starting from � = 1

for all the observations, � will be set to the value �

�

maximizing the reognition rate estimated by ross-

validation. For the model 2, sine � is a proportional-

ity fator on the variation oeÆient, the global adap-

tation of its value does not make sense.

Let us notie !

k

(e), the true lass k of an observation

e belonging to the learning data set, and l

l

(e), the

lass l seleted from the deision rule.

The initial step is �(e) = 1, whatever the observations.

For eah observation e, the lass l

l

(e) is seleted a-

ording to the deision rule (12) with Cv estimated by

(7). If the seleted lass (l) is not equal to the true

lass (k), the parameter �(e) must be modi�ed to or-

ret this mislassi�ation, that is to ensure that
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Figure 4: Examples of boundaries obtained with (a) equation 10, (b) equation 11, () equation 12, (d) a quadrati

lassi�er.

Cv(d

l

(e)

2

) > Cv(d

k

(e)

2

)

log[

(d

l

(e)

2

� I

l

)

2

[var(d

l

(e)

2

)℄

�(e)

℄ > log[

(d

k

(e)

2

� I

k

)

2

[var(d

k

(e)

2

)℄

�(e)

℄ (13)

Then to well-lassify the observation e, the parameter

�(e) must be set to this new value :

�(e) =

log[

(d

k

(e)

2

�I

k

)

2

(d

l

(e)

2

�I

l

)

2

℄

log[

var(d

k

(e)

2

)

var(d

l

(e)

2

)

℄

: (14)

At the end of the proedure, a set of possible values for

the parameter � is obtained. The ardinal of this set

is the number of mislassi�ed observations. It is easily

proven that the optimal value �

�

belongs to this set:

�

�

is then seleted by maximizing the ross-validated

reognition rate over this �nite set.

4.2 Loal adaptation

For the loal adaptation, sine the parameters are op-

timized relatively to eah others, G�1 parameters are

adapted, G being the number of lasses. The refer-

ene value is set to one for the �rst lass, for example.

If G = 2, only one parameter is to be estimated (�

2

,

or �

2

): this leads to the basi learning proedure. If

G > 2, the learning proedure is reursive, deompos-

ing the multi-lass problem as a sequene of two-lass

problems.

4.2.1 Learning for a two-lass problem

The loal adaptation allows to take into aount di�er-

ent loal strutures for eah lass. Here, the parameter

for the seond lass will be set relatively to the �rst

lass. Let us onsider the two lasses !

1

and !

2

. For

the lass !

1

, the parameter is �xed and set to one.

For the seond lass, the initial value of the parame-

ter is also set to one. This value is only modi�ed for

mislassi�ed observations. Two ases our whih are

summarized in Table 2. For example, for ase 1 with

model 1, the inequality between the variation oeÆ-

ients to well-lassify the observation e is

True Seleted Ation Model 1 Model 2

lass lass

Case 1 1 2 Cv

2

% �

2

(e)& �

2

(e)%

Case 1 2 1 Cv

2

& �

2

(e)% �

2

(e)&

Table 2: Parameter modi�ation on mislassi�ed ob-

servations

Cv(d

2

(e)

2

) > Cv(d

1

(e)

2

)

log[

(d

2

(e)

2

� I

2

)

2

[var(d

2

(e)

2

)℄

�

2

(e)

℄ > log[

(d

1

(e)

2

� I

1

)

2

var(d

1

(e)

2

)

℄ (15)

To verify this inequality, the parameter �

2

(e) must be

set to :

�

2

(e) =

log[(d

2

(e)

2

�I

2

)

2

℄�log[(d

1

(e)

2

�I

1

)

2

℄+log[var(d

1

(e)

2

)℄

log[var(d

2

(e)

2

)℄

(16)

For model 2, with a similar approah, the parameter

�

2

(e) for the mislassi�ed observations must be suh

that

log[�

2

(e)℄ = log[Cv

1

(e)℄� log[Cv

2

(e)℄ (17)

The �nal step of the proedure onsists of seleting the

best value among this set of andidates, maximizing

the ross-validated reognition rate. The optimality

of this proedure is illustrated in Figure 6.

4.2.2 Learning for a multi-lass problem

(G > 2)

These proedures an be easily extended to the general

ase, for a multi-lass problem (G > 2). This extension

is realized reursively from the proedure restrited to

a two-lass problem.

Let us notie X

12���k

, the learning set restrited to the

lasses !

1

, !

2

, : : : !

k

. Let us onsider the lass !

1

as

the referene, �

1

(or �

1

) is onstant and set to one.

Starting from initial values set to one, the G � 1 pa-

rameters, from �

2

(or �

2

) to �

G

(or �

G

) are reursively

optimized aording to a G � 1 steps proedure. At



eah step k, �

�

k

(or �

�

k

) is set, maximizing the ross-

validated reognition rate on X

12���(k+1)

.

Let us onsider the step k on X

12���(k+1)

. Only two

following mislassi�ation ases are onsidered2 :

� l(e) = k + 1 and w(e) 6= l(e). Then �

k+1

must

be dereased relatively to �

!(e)

aording to (16)

(or inrease �

k+1

relatively to �

!(e)

aording to

(17)),

� w(e) = k + 1 and w(e) 6= l(e). Then �

k+1

must

be inreased relatively to �

!(e)

aording to (16)

(or derease �

k+1

relatively to �

!(e)

aording to

(17)).

The other mislassi�ation ases are ignored sine they

do not onern lass !

k+1

. This step k is ompleted by

the seletion of the optimal parameter maximizing the

ross-validated reognition rate on X

12���(k+1)

. This

proedure is running up to the step G � 1. The G �

1 parameters are optimal maximizing the reognition

rate on X . Atually, the reognition rate � is the sum

of elementary reognition rate on eah lass : � =

P

G

k=1

�(k). And, eah parameter �

�

k

(or �

�

k

) optimizes

the partial sum

P

k

j=1

�(j), with �

1

(or �

1

) = 1.

5 Experimental Results

To illustrate the deision rules based on variation oef-

�ients, experiments have been realized on a database

of 449 observations, This distane data set has been

designed with protein sequenes from Baillus subtilis

extrated from the SWISSPROT databank release 38

(see [1℄). Those proteins were lassi�ed into 2 at-

egories aording to their \subellular loation" key-

word: 151 ytoplasmi proteins and 298 integral men-

brane proteins. The amino-aid usage of eah protein

(i.e. the frequeny of eah of the 20 amino-aid) was

omputed and give rise to the distane table at hand.

Five deision algorithms have been benhmarked in

this ontext. Three deision rules are based on vari-

ation oeÆients : simple CV (12), CV through the

model 1 (7) and 2 (8) with a loal adaptation. The

two other algorithms are the KNN and the 1NN las-

si�er. The reognition rate is estimated by an \Half

Sampling" learning proedure. The database is split

into 2 parts. In a �rst step, the learning parame-

ters (�

2

for CV-Mod1, �

2

for CV-Mod2, and K for

KNN) are optimized by ross validation with the �rst

part of the database. These parameter values are then

used, for validation, to lassify the seond part of the

database. This leads to a �rst reognition rate �

v2

. In

a seond step, the role of the two database parts are

inverted and a seond reognition rate �

v1

is also pro-

essed for validation with the part 1. The �nal rate

(�

hs

) is the average of these two estimates. Table 3 and

Figure 5 summarize the mean behaviour on 10 exper-

iments (10 random partitions into two parts). With

Cv−Mod1 Cv−Mod2   KNN     Cv    1NN  
90.5

91

91.5

92

92.5

93

93.5

R
e
c
o
g
n
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n
 r

a
te

Figure 5: Half sampling proedure : Reognition rate

(mean, standard deviation) on 10 partitions

this database, the reognition rates are high for the

�ve methods. Nevetheless, di�erenes appear between

the algorithms :

� As expeted, algorithms with a data driven learn-

ing parameter give better results.

� Deision rules based on adaptive variation oeÆ-

ients give better reognition rates (higher mean,

redued standard deviation).

� The dependene between the optimal parameters

and a data partition is smaller with the \ CV

rules" than with the \KNN rule" (redued devi-

ation between �

l

and �

v

). Then a better general-

ization an be expeted with suh \CV methods".

Figure 6 illustrates this optimal learning proedure by

the variation of the reognition rate versus the �tting

parameter. On this �gure, the di�erent possible val-

ues for eah mislassi�ed observation are marked by

rosses and the seleted optimal value by a irle. In

this interval, for regularly sampled parameter values

(dot), the reognition rate are always lower than the

maximum ross-validated reognition rate.

Conerning the proessing time, with predi�ned pa-

rameters, the\CV algorithms" are in average 20 times

faster than the \KNN" one. The proessing time for

the learning step depend on the number of mislassi-

�ed observations. For this example, the learning time

is in average 10 times longer than the test time on the

�nite dataset.

Dealing with inomplete dissimilarity table, the \CV

algorithms" have nie behaviour. The priniple is the

same but the statistis are only set on the known dis-

similarities. Numerial experiments not reported here



Algorithm CV-Mod 1 CV-Mod2 KNN CV 1NN

Learning parameter on part 1 �

2

= 1:01 �

2

= 1:18 K = 8:4 - -

Learning on part 1 �

l1

(%) 94.1 94.1 93.7 - -

Validation on part 2 �

v2

(%) 92.8 92.8 91.9 91.4 91.5

Learning parameter on part 2 �

2

= 1:01 �

2

= 1:29 K = 7:4 - -

Learning on part 2 �

l2

(%) 93.2 93.2 93.5 - -

Validation on part 1 �

v1

(%) 92.9 92.9 92.4 92.6 91.8

Final rate �

hs

=

�

v1

+�

v2

2

(%) 92.8 92.9 92.1 92 91.6

Deviation �

l

� �

v

(%) 0.82 0.80 1.47 - -

Table 3: Reognition rates on the proteins database on 10 random partitions.
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Figure 6: Result of a learning step : Reognition rate vs the �tting parameter for the model 1 (a) and the model

2 (b). See text for more details.

show that the reognition rate is robust to the sparse

dissimilarity struture up to 40% of unknown dissimi-

larities.

6 Conlusions

The development of \data mining" tehniques en-

hanes the great need to have multiple lassi�ation

tools adapted to various data strutures. The dis-

similarity tables are one of these strutures. In this

domain, we have presented a new sensible lassi�a-

tion framework inspired from the Eulidian Gaussian

model. The proposed set of deision rules is an alter-

native to the well-known \KNN" rule. The hara-

teristis of these deision rules are simpliity, rapidity

(reursive implementation, few adaptive parameters),

robustness to the size of the dataset (based on �rst

and seond order statistis on dissimilarity values),

data driven versatility (adaptive parameters to learn

the \shape" and the intrinsi dimension of eah lass),

adaptation to inomplete dissimilarity data (statistis

only on known values). This last property is very im-

portant for appliations dealing with huge databases,

sine the dissimilarity table is a quadrati data stru-

ture.

A simple illustrative example for a protein lassi�-

ation problem shows already a very interesting be-

haviour ompared to the \KNN" rule. Extensive ex-

periments with more omplex data must be performed

to ompletely validate this new onept of lassi�a-

tion from dissimilarity tables.
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