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Abstract

This paper presents a method for using output of

the computer program BUGS to obtain approx-

imate profile likelihood functions of parameters

or functions of parameters in directed graphical

models with incomplete data. The method also

provides a tool to approximate integrated likeli-

hood functions. The prior distributions specified

in BUGS do not have a significant impact on the

profile likelihood functions and we consider the

method as a desirable supplement to BUGS that

enables us to do both Bayesian and likelihood

based analyses in directed graphical models.

1 Introduction

During the last decade Markov chain Monte Carlo

(MCMC) methods have become increasingly popular as

a computational tool for approximating high-dimensional

complex integrals. The methods are based on the ideas

of Metropolis, Rosenbluth, Rosenbluth, Teller & Teller

(1953) and Hastings (1970) and the most common one

is Gibbs sampling (Geman & Geman 1984). The use of

MCMC methods in Bayesian statistics was introduced by

Gelfand & Smith (1990), and pure likelihood based analy-

ses have been considered for exponential families in Geyer

& Thompson (1992) and for the general case in Geyer

(1994). A general discussion on MCMC methods and fur-

ther references are given in Gilks, Richardson & Spiegel-

halter (1996) and a comprehensive tutorial review is given

in Brooks (1998).

Directed graphical models, introduced by Lauritzen,

Dawid, Larsen & Leimer (1990), represent the condi-

tional independence structure of the model through an ap-

propriate factorization of the joint density w.r.t. a graph.

This property can be exploited in MCMC methods, see

e.g. Spiegelhalter (1998), and software for performing sta-

tistical analyses in Bayesian graphical models by means

of MCMC methods is the computer program BUGS

(Bayesian inference Using Gibbs Sampling), see Spiegel-

halter, Thomas, Best & Gilks (1996a).

This paper presents a method for using posterior samples

(here produced in BUGS) to approximate profile likeli-

hood functions of parameters or functions of parameters

in directed graphical models with incomplete data. Profile

likelihood functions might have a misleading behavior as

pointed out in Berger, Liseo & Wolpert (1999). Neverthe-

less, it represents an aspect of the parameter uncertainty

which does not depend on specification of prior distribu-

tions.

2 Directed graphical model

A directed graphical model is defined by a directed acyclic

graph, G = (V;E), and a joint probability distribution of

v = (v

v

)

v2V

that is directed Markov w.r.t. to G. There are

several equivalent ways to define a directed Markov distri-

bution, see e.g. Lauritzen (1996). One way is to assume that

the distribution has density w.r.t. a product measure, and

that the density admits the recursive factorization property

given as

p(v) =

Y

v2V

p(v

v

jv

pa(v)

)

where p(v

v

jv

pa(v)

) is the density of v
v

given v
pa(v)

=

(v

v

)

v2pa(v)

. The term pa(v) denotes the parent vertices

of v in the same meaning as in a genealogical tree. We as-

sume that all the parent-child densities are strictly positive.

Note that the joint model is totally specified by all the local

parent-child distributions.

Traditionally a directed graphical model only includes the

data (observed or missing) as vertices in the graph, and it

does not include quantities like parameters, latent variables

and/or covariates. As in Spiegelhalter (1998) we extend

our model to do that, and assume that V is divided into

four disjoint subset as

V = X [ Y [� [ C



random constant

(single-edged) (double-edged)

observed X : observed data C: covariates

(rectangle)

unobserved Y : missing data/ �: parameters

latent variables

(circle) n ni

Table 1: Different kinds of vertices.

where each subset and corresponding symbol are further

described in Table 1.

The vertices are classified according to random/constant

and observed/unobserved. Concerning the missing data we

assume that they are missing at random (MAR), see Ru-

bin (1976). The parameters and the latent variables are

clearly missing completely at random (MCAR), see Cow-

ell, Dawid, Lauritzen & Spiegelhalter (1999) page 200.

The constant vertices (double-edged) are by nature not al-

lowed to have parents and are so-called founder vertices.

In notation, let an observed random variable be denoted by

x

v

, v 2 X , and a missing data/latent variable by y
v

, v 2 Y .

Let �
v

, v 2 �, be the parameter corresponding to the vertex

v and 

v

, v 2 C, be the covariate corresponding to the

vertex v. For a subset A � V , let x
A

= (x

v

)

v2A

, y
A

=

(y

v

)

v2A

, �
A

= (�

v

)

v2A

and 
A

= (

v

)

v2A

. Furthermore

x = x

X

, y = y

Y

, � = �

�

and  = 
C

.

In Bayesian statistics there is a need to calculate high-

dimensional complex integrals over the posterior distribu-

tion, and MCMC methods is a powerful tool to approx-

imate such complex integrals. BUGS uses a systematic

scheme to produce dependent samples from the posterior

distribution of the unobserved quantities (� and y) given

the observed quantities (x and ) by successively simulat-

ing values from the full conditional distribution of each un-

observed quantity given the current value of all the other

quantities. Each full conditional distribution is proportional

to the product of the local parent-child distributions of the

corresponding Markov blanket expressed as

p(v

v

jv

V nv

) / p(v

v

jv

pa(v)

)

Y

w:v2pa(v)

p(v

w

jv

pa(w)

)

i.e. the local parent-child distributions are necessary and

sufficient in order to produce dependent samples from the

posterior distribution. The posterior sample can be used to

perform inference about the specific parameters of interest.

In this paper we want to perform likelihood inference about

the parameters, �, and we consider them as unobserved

constants in contrast to BUGS where all the quantities are

considered as random variables. It is important to realize

that the constant vertices can be considered as random vari-

ables with a given prior distribution and condition on these.

From the recursive factorization property we get that the

joint density factorizes as

p(x;y;�; ) =

Y
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Due to the conditional independence assumptions specified

by the graph, the elements of � and  are mutually inde-

pendent, and therefore conditioning on � and  we get

p(x;yj�; ) =

Y

v2X[Y

p(z

v

jz

pa(v)

;�

pa(v)

; 

pa(v)

)

where z
v

is either x
v

or y
v

and z
pa(v)

= (x

pa(v)

;y

pa(v)

).

3 Profile likelihood from BUGS output

The likelihood function of � is given as

L(�jx; ) =

Z

p(x;yj�; )dy (1)

Let �
i

, i 2 �, be the specific parameter of interest for

which we want to approximate the profile likelihood func-

tion defined as

^

L(�

i

jx; ) = sup

�

ni

L(�jx; )

where �
ni

= �

�nfig

. We consider two versions of a

method to approximate ^

L(�

i

jx; ) - one where we initially

fix the parameters and one where we sample the parame-

ters.

Version 1: fixed �

We use the same technique as in Geyer & Thompson

(1992). Let �
0

be an arbitrary fixed value of �, and con-

sider

p(xj�; )

p(xj�

0

; )

=

1

�
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where � = p(xj�

0

; ) is a constant. This can also be ex-

pressed as
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where we have used that

p(x;yj�; )
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and h(�) denotes the set of vertices, which are children

of vertices in �. When v is not a child of a parameter the

terms in the fraction cancel.

This likelihood expression is in general computationally

difficult. Therefore draw a sample y(1);y(2); : : : ;y(N)

from an ergodic Markov chain with stationary distribution

p (yjx;�

0

; ). The Ergodic Theorem yields for large N

that the likelihood function can be approximated by

~

L(�jx; )=

�

N

N
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In practice sampling from p(yjx;�

0

; ) can be made in

BUGS by running a Gibbs sampler on the model with �

fixed as �
0

. Note that the quality of the approximation will

be best when � is not too far from �

0

(Geyer 1996). We

suggest choosing �
0

as the posterior mean obtained from

running an initial Gibbs sampler on the model with prior

distributions specified on �.

We compute log

~

L(�jx; ) up to the constant in a grid of

the parameters, where the defining values of the grid is a

certain number of quantiles from the initial run of the Gibbs

sampler. To get an estimate of the profile log-likelihood

function of a specific parameter we maximize it w.r.t. all

other parameters over the grid.

Version 2: variable �

Instead of fixing � initially, it might be an idea to simulate

values of it. Therefore let  be another generic symbol of

�, and consider

Z

p(xj�; )

p(xj ; )

p( jx; )d =

1

�

L(�jx; )

where � = p(xj) is a constant. As in Version 1 this can

be expressed as
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which in general is computationally difficult. Draw a

sample (y

(1)

; 

(1)

); (y

(2)

; 

(2)

); : : : ; (y

(N)

; 

(N)

) from

an ergodic Markov chain with stationary distribution

p(y; jx; ). Then for large N the likelihood function can

be approximated by

~

~
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Note that this approximation might be computationally

dangerous if the stationary distribution has heavy tails.

Then sampling from the tail will cause a few large values

of the ratio to dominate the sum.

Sampling from p(y; jx; ) can be made in BUGS by run-

ning a Gibbs sampler on the model with prior distributions

specified on �. These prior distributions are only intro-

duced as a computational tool - they should not have any

influence on the likelihood results. Profile log-likelihood

approximations are produced by the same procedure as in

Version 1, but now the defining values of the grid are quan-

tiles from the run of the Gibbs sampler in this version.

4 Profile likelihood of a function from

BUGS output

The profile likelihood of a function of the parameters, say

� = g(�), is defined as

^

L(�jx; ) = sup

�2g

�1

(�)

L(�jx; ); � 2 �

where � is the image of the parameter space of � under g.

To approximate ^

L(�jx; ) by our method (e.g. Version 1)

we form the pairs

�

g(�);

~

L(�jx; )

�

; � 2

e

r

where er are the grid points considered earlier. We only

need to calculate g(�), whereas we already have ~

L(�jx; ).

We order these pairs in increasing order w.r.t. � = g(�),

partition this ordering into bins each containing the same

number of pairs. For each bin we find the pair that has

the highest value of ~

L(�jx; ). Let ��
�

be the value of �

where the maximum values in bin � is attained. Combining

these maximum pairs, (g(��
�

);

~

L(�

�

�

jx; )), we obtain an

approximation of the profile likelihood function of g(�). A

similar procedure can be used for Version 2.

5 Integrated likelihood from BUGS output

Due to the sometimes misleading behavior of the profile

likelihood Berger et al. (1999) consider the integrated like-



lihood function defined as

�
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wherew = (y;�
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) and we have used that the elements of

� and  are mutually independent. This expression is iden-

tical to (1) by replacing y with w. Therefore by consider-

ing � n fig also as latent variables, the method can be used

to approximate the integrated likelihood function of �
i

. In

this case we get a 1-dimensional grid and the marginalisa-

tion is done by summation instead of maximalisation.

Another way to approximate the integrated likelihood func-

tion of �
i

is to consider the ratio of the marginal posterior

density to the marginal prior density. This can be seen from

the following calculations
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Remark that the integrated likelihood conforms with a

Bayesian approach - the weight function is a prior density

on �
ni

. This means that the integrated likelihood represents

the parameter uncertainty, but it depends on the specifica-

tion of the prior distribution. MCMC integrated likelihood

has been considered in Andersen (1997).

6 Example

We consider the same model as in Example 2 of Spiegel-

halter, Thomas, Best & Gilks (1996b). The data are taken

from George, Makov & Smith (1993), but were originally

treated in Gaver & O’Muircheartaigh (1987). The example

concerns ten power plant pumps, for which the operation

time, 
i

, and the number of failures, x
i

, are measured. The

data are shown in Table 2.

The model is illustrated by the graph in Figure 1, where

the repetitive structure of the model is represented by large

enclosing boxes. The parent-child distributions are given

as follows for i = 1; 2; : : : ; 10

x

i

j y

i

; 

i

� Po(y

i
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) ; x

i

� 0

y
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j �

1

; �

2

� � (�

1

; �

2

) ; y

i

� 0; �

1

> 0; �

2

> 0

Pump 1 2 3 4 5



i

94.3 15.7 62.9 126 5.24

x

i

5 1 5 14 3

Pump 6 7 8 9 10



i

31.4 1.05 1.05 2.1 10.5

x

i

19 1 1 4 22

Table 2: The operation time, 
i

, and the number of failures,

x

i

, for ten power plant pumps.

pump i

y

i

�

1

�

2



i

x

i

Figure 1: Directed acyclic graph for the model.

where y
i

is the failure rate of pump i, �
1

is the shape pa-

rameter and �

2

is the scale parameter of the gamma distri-

bution. All the parent-child densities are strictly positive.

Note that the vertices are denoted by the name of the corre-

sponding quantity - in contrast to Section 2, where they are

denoted by index.

We need to specify prior distributions on �

1

and �

2

in or-

der to find initial values for Version 1 and to run the Gibbs

Sampler in Version 2. We try different prior distributions to

see whether they have a significant impact on the likelihood

results. As in George et al. (1993) we choose exponential

and gamma distributions for the family of the prior distri-

bution of �
1

and �

2

, respectively. We have tried the prior

distributions stated in Table 3, where Prior 1 has the small-

est variance and Prior 3 has the largest.

We have used BUGS version 0.6 on a UNIX platform to

perform Gibbs sampling, and to check for convergence the

S-PLUS function CODA (Convergence Diagnosis and Out-

put Analysis Software for Gibbs sampling output) version

0.4 (Best, Cowles & Vines 1996) has been used. We have

implemented our own S-PLUS functions to approximate

the log-likelihood functions and the results are produced

in S-PLUS version 5.1 on a UNIX platform.

Prior 1 Prior 2 Prior 3

�

1

Exp(10) Exp(1:0) Exp(0:01)

�

2

�(0:1; 1:0) �(0:01; 0:1) �(0:001; 0:001)

Table 3: Prior distributions on �
1

and �
2

.



After a burn-in we simulate samples of size N = 5:000.

We calculate the approximations in 200 � 200 grids and

maximize over the grids in order to obtain approximate

profile log-likelihood functions. We have one approxima-

tion for each combination of version and prior distribution,

see Figure 2. The log-likelihood functions are standard-

ized such that they have maximum value 0 and are plotted

between �4 and 0.
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Figure 2: MCMC profile log-likelihood of �
1

and �

2

for

each version of the method and prior distribution.

Generally the approximations are the same, but the approx-

imations for Prior 1 are cut off close to the maxima. This

is caused by the grid being quantiles of the posterior dis-

tribution, which is strongly influenced by the very small

variance of Prior 1. But keep in mind that these prior

distributions are only chosen for illustrative purposes - in

practice one would never choose a prior distribution with

such a small variance as Prior 1. Even though Prior 3 has

a very large variance the method does not have any dif-

ficulties identifying the profile log-likelihood approxima-

tions for this prior distribution. Finally the approximations

differ slightly in the right-hand tails, which might be an

effect of the sampling not being concentrated here. We

conclude that neither the prior distribution nor the version

of the method have a significant impact on the profile log-

likelihood approximations.

In this particular model it is possible to find an exact ex-

pression of the log-likelihood function, so for comparison

reasons we calculate this in the same grid as above and

maximize it w.r.t. to �

1

and �

2

, respectively. This does

not give us the exact profile log-likelihood, but we do get

an impression of the function which might be a little bit

smaller than the true profile log-likelihood. We also ap-

proximate the integrated log-likelihood functions of �
1

and

�

2

by the procedures described in Section 5. All these func-

tions gives us an over-all impression of the parameter un-

certainty, and the results for Version 1 Prior 2 are shown in

Figure 3.
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Figure 3: Exact profile log-likelihood, MCMC pro-

file log-likelihood, MCMC integrated log-likelihood and

log(posterior/prior) of �
1

and �
2

for Version 1 Prior 2.
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Figure 4: MCMC and exact profile log-likelihood of �
1

=�

2

for Version 1 Prior 2.

The exact profile log-likelihood and the MCMC approx-

imation are indistinguishable and we deduce that our

method generally gives good approximations of the profile

log-likelihood function. Furthermore it does not depend on

the prior distributions, in contrast to the Bayesian entities.

As described in Section 4 the method can also be used

to approximate the profile log-likelihoods of a function of

the parameters. Therefore we approximate the profile log-

likelihood function of �
1

=�

2

, the mean failure rate. We

have performed the same procedure for the exact likeli-

hood surface to get an impression of the exact profile log-

likelihood function of �
1

=�

2

. The results are illustrated

in Figure 4 for Version 1 Prior 2. Again we see that the

method performs a good approximation.



7 Discussion

The method described represents ways of approximating

the profile likelihood function of parameters or functions

of parameters in complex directed graphical models with

incomplete data. The parent-child distributions of the pa-

rameter’s children are all needed to compute the approxi-

mation. It does not require much additional programming

and computationally it is not heavy. It exploits the already

existing software, BUGS, and the prior distributions spec-

ified there do not have a significant impact on the profile

likelihood results.

The method is a hybrid between Bayesian and likelihood

inference in the sense that the prior information we might

have on the parameters is used to compute a credible re-

gion for the parameters and then we approximate the pro-

file likelihood in this region. Thus the prior information

is not neglected, but the likelihood results do not depend

significantly on them in contrast to Bayesian entities like

posterior distribution and integrated log-likelihood.

In many cases it may not be satisfactory to base a scientific

analysis solely on a pure Bayesian analysis and it is desir-

able also to be able to do plain likelihood inference to see

how much influence the prior distributions have. Therefore

we consider the method as a complementary tool to BUGS.
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