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1 Introduction

Boosting algorithms are often observed to be resis-

tant to over�tting, to a degree that one may wonder

whether it is harmless to run the algorithms forever,

and whether regularization in on way or another is un-

necessary [see, e.g., Schapire (1999); Friedman, Hastie

and Tibshirani (1999); Grove and Schuurmans (1998);

Mason, Baxter, Bartlett and Frean (1999)]. One may

also wonder whether it is possible to adapt the boost-

ing ideas to regression, and whether or not it is possible

to avoid the need of regularization by just adopting the

boosting device.

In this paper we present examples where `boosting for-

ever' leads to suboptimal predictions; while some reg-

ularization method, on the other hand, can achieve

asymptotic optimality, at least in theory. We con-

jecture that this can be true in more general situa-

tions, and for some other regularization methods as

well. Therefore the emerging literature on regularized

variants of boosting is not unnecessary, but should be

encouraged instead. The results of this paper are ob-

tained from an analogy between some boosting algo-

rithms that are used in regression and classi�cation.

2 Framework for Boosting Regression

and Classi�cation

In statistical learning, we are faced with an observed

data set S = (X

i

; Y

i

)

n

1

, where X

n

1

are predictors,

which are assumed here to lie in [0; 1] and take distinct

values, (only) for convenience. We allow the responses

Y

n

1

to be random for potential noises of the data. It is

noted that in the machine learning literature the Y

i

's

are usually �xed and the X

i

's are random; while in

statistics the Y

i

's are invariably random, and the X

i

's

can be sometimes �xed and chosen by the researcher

who collects the data. We call n the sample size. The

Y

i

's are real for regression problems and are f0; 1g val-

ued in the classi�cation problem, where a useful trans-

form Z

i

= 2Y

i

� 1 valued in f�1;+1g is often used.

In learning, we usually have a hypothesis space of

real regression functions H

r

or a hypothesis space of

f�1g valued classi�cation functions H

c

to �t the data.

Here, a hypothesis space H

r;c

is a set of functions

f : [0; 1] 7! < or f : [0; 1] 7! f�1g, respectively. A

relatively simple hypothesis space, called the base hy-

pothesis space or base system H

r;c

, can be made more

complex by linear combinations of t members as the

t-combined system or t-combined hypothesis space de-

noted as lin

t

(H

r;c

). Formally, lin

t

(H) = f

P

t

1

�

s

f

s

:

(�

s

; f

s

) 2 <�Hg. A regression space H

r

is said to in-

duce a classi�er space H

c

, if H

c

= sgn(H

r

) = fsgn(f) :

f 2 H

r

g.

In boosting, a cost function C(F jS) is used, which de-

pends on the sample S and is a functional of F , where

F 2 lin

t

(H

r;c

) for some t. A boosting algorithm acting

on a base system H

r;c

minimizes C(F jS) with respect

to F sequentially and adaptively in a way similar to

the following.

1. Let

^

F

0

= 0.

2. For all t = 1; 2; :::,

a. Let �̂

t

^

f

t

= argmin

�f2<�H

r;c

C(

^

F

t�1

+�f jS).

b. Let

^

F

t

=

^

F

t�1

+ �̂

t

^

f

t

.

For the regression case or the classi�cation case, re-

spectively, at step (or time) t,

^

F

t

(x) or sgn(

^

F

t

(x)) form

the prediction for a future response Y or Z when the

predictor takes value x, 8x 2 [0; 1].

This framework of boosting with a general cost func-

tion is similar to the ones used in Friedman et al.

(1999) and Mason et al. (1999). Some examples we

will consider include LSBoost:Reg, the least squares

boosting algorithm for regression, where a square

cost C(F jS) = n

�1

P

n

i=1

fY

i

� F (X

i

)g

2

is used; and

AdaBoost, the adaptive boosting algorithm for classi-

�cation by Freund and Schapire (1997), where an ex-

ponential cost C(F jS) = n

�1

P

n

i=1

e

�Z

i

F (X

i

)

is used.



It is noted that LSBoost.Reg is essentially the same as

the matching pursuit (MP) algorithm of Mallat and

Zhang (1993) used in signal processing for sequential

combination of waveforms, which is later recognized by

Friedman et al. (1999) as an analog of AdaBoost for

least squares regression. We will utilize this analogy

in studying some theoretical properties of AdaBoost.

Properties for LSBoost.Reg are often easier to derive

due to the use of the square cost, which can be in-

structive for the study of AdaBoost. Other approaches

of regression boosting include methods that involve

discretization [see, for example, Freund and Schapire

(1997); Ridgeway, Madigan and Richardson (1999)].

3 Orthogonal Boosting for Regression

First let us consider some very simple examples. Con-

sider �xed predictors X

n

1

chosen at a set of mutually

distinct design points x

n

1

. E.g., in the typical set up of

nonparametric regression, x

n

1

= fi=ng

n

i=1

. In particu-

lar, we will �rst consider LSBoost.Reg operating on an

orthogonal base hypothesis space H

r

= f�

1

; �

2

; :::; �

n

g,

where the functions form an orthonormal basis of <

n

when evaluated at the design points x

n

1

. Without con-

fusion, we will use the functions to denote the vec-

tors evaluated at the design points, as �

1

= �

1

(x

n

1

),

�

2

= �

2

(x

n

1

), and so on. Then we have h�

k

; �

j

i = �

kj

(using the Kronecker's �). Here the inner product for

two n� 1 vectors a = a

n

1

and b = b

n

1

are de�ned to be

ha; bi = n

�1

P

n

i=1

a

i

b

i

and the norm jjajj = ha; ai.

The t-step boosted prediction of this system is ex-

actly solvable. It basically retains the t largest sample

Fourier coe�cients. Let y = y

n

1

be the vector of ob-

served responses. Then the sample Fourier coe�cients

are de�ned as

~

�

s

= h�

s

; yi, s = 1; : : : ; n. Denote

~

�

^

j

t

as the tth largest (in magnitude) of these n sample

Fourier coe�cients, so that

~

�

2

^

j

t

=

~

�

2

(t)

, the t-th largest

of f

~

�

2

j

g

n

1

, and

~

�

2

^

j

1

>

~

�

2

^

j

2

> : : : >

~

�

2

^

j

n

. Assume there is

not tie (this will happen with probability one if y is

continuous).

It is straightforward to show that

Proposition 1 (Expression of the Boosted Predic-

tion). For t � n,

^

F

t

=

P

t

k=1

~

�

^

j

k

�

^

j

k

�

P

t

k=1

hy; �

^

j

k

i�

^

j

k

, where

~

�

2

^

j

1

>

~

�

2

^

j

2

> : : : >

~

�

2

^

j

n

. The

prediction then stabilizes from that time on, i.e.,

^

F

t

=

^

F

n

for all t > n.

How good is this prediction? Let us consider the fol-

lowing �xed-predictor regression problem y

i

= �(x

i

)+

�

i

, i = 1; : : : ; n, �

i

iid

� N(0; �

2

). To measure the good-

ness of a prediction

^

F (�), we de�ne the prediction er-

ror for new responses as L = n

�1

P

n

i=1

Efy

new

i

�

^

F (x

i

)g

2

� Ejjy

new

�

^

F jj

2

. Note that L = L

�

+R(

^

F ; �)

where L

�

= �

2

is the prediction error of the opti-

mal prediction � pretending that the mean function is

known, and R(

^

F ; �) = n

�1

P

n

i=1

Ef

^

F (x

i

)��(x

i

)g

2

�

Ejj

^

F ��jj

2

is the l

2

estimation risk. A good prediction

should have R! 0 or L! L

�

as n increases, which is

sometimes said to be risk consistent.

What happens to the prediction when letting the

boosting algorithm run forever? In that case, the pre-

diction becomes stabilized to be

^

F

n

. By the complete-

ness of the basisH

r

, we get

^

F

n

(x

n

1

) = y

n

1

. I.e., the lim-

iting prediction uses the observations themselves! It is

immediate to conclude that L = 2�

2

and the amount

of over�t L� L

�

= �

2

6! 0 however large the sample

size n is. The `boosting-forever' predictor therefore is

suboptimal asymptotically. So in this case `boosting-

forever' without regularization over�ts for the purpose

nonparametric regression.

In this case we have a very special base hypothesis

space that has a �nite number of hypotheses which are

mutually orthogonal. What happens to more general

hypothesis spaces? Will `boost-forever' be suboptimal

also?

4 More General Base Hypothesis

Spaces for Regression

Now consider a general base hypothesis space H

r

,

which may be nonorthogonal and may contain an un-

countable number of hypotheses. Consider the typ-

ical situation of nonparametric regression with �xed

x

n

1

as before. Based on the concepts developed in

matching pursuit, let us de�ne a measure of capacity

asp(H

r

; x

n

1

) called the (regression) angular span:

asp(H

r

; x

n

1

) = inf

�2<

n

; jj�jj=1

sup

f2H

r

;jjf jj>0

h�; f=jjf jji

2

:

[For example for the orthogonal base space in the pre-

vious section, we have asp(H

r

; x

n

1

) = 1=n.] Then as

a special case of Jiang (1999, Proposition 2), we have

the following result.

Proposition 2

(Prediction Error for Regression Boosting). Suppose

asp(H

r

) > 0 for the base hypothesis space H

r

used

in LSBoost.reg. Consider the prediction error for the

prediction

^

F

t

obtained from t rounds of LSBoost.Reg:

L

t

= Ejjy

new

�

^

F

t

jj

2

. Then we have

�

�

�

p

L

t

�

p

2�

2

�

�

�

�

v

u

u

t

n

�1

n

X

i=1

f�(x

j

)

2

+ �

2

g expf�asp(H

r

)t=2g: (1)



If asp(H

r

) > 0, the bounds of the proposition are

nontrivial and suggest that running the unmodi�ed

LSBoost.Reg forever will still let the prediction error

converge to the suboptimal limit 2�

2

, and the amount

of over�t will be �

2

.

It is noted that most of the commonly used base hy-

pothesis spaces do have a nonzero angular span. This

is due to the following lemma that combines Lemmas

1 and 2 of Jiang (1999).

Lemma 1 (Approximation and Angular Span). Sup-

pose the closure of H

r

contains the set of all sign func-

tions. More formally, suppose H

r

contains, for any

real number a, a sequence of functions ff

(i);a

g

1

i=1

such

that f

(i);a

converges to the function sgn(x � a) at all

points x 6= a. Then, for any set of distinct design

points x

n

1

, we have asp(H

r

; x

n

1

) > 0.

Remark 1 The condition of this last lemma is satis-

�ed by many base hypothesis spaces. They include all

base systems that contain a family of `shifted' cumu-

lative distributing functions (cdf) f2Ff(���)=�g�1 :

� > 0; � 2 <g. Examples include the case when F

is the logistic cdf, when the q-combined system is the

usual neural nets with q (tanh) nodes; the case when

F is the Gaussian cdf; the `stumps' base system with

a Heaviside cdf; the base system of mixtures of two

experts [Jacobs, Jordan, Nowlan and Hinton (1991)];

and any more complicated base systems that include

these base systems as submodels | for example the

base system of a neural net, or the base system of a

CART tree [Breiman et al. (1984)]. By the conse-

quences of the previous results, we see that all these

base systems, even the ones as simple as the `stumps',

will unavoidably lead to suboptimal predictions when

boosted forever, due to the nonzero angular span. The

exponential decay suggests that a typical time used to

approach the limit may be of order 1=asp

c

(H), which

is of order n for the case of orthogonal base systems.

Similar results also exist for the classi�cation case.

5 Boosting Forever in Classi�cation

Consider a general classi�cation base hypothesis space

H

c

and consider a situation with �xed x

n

1

and indepen-

dent random binary responses y

n

1

that have mean �

n

1

.

Analogous to the regression case, we de�ne a measure

of capacity asp

c

(H

c

; x

n

1

) called the (classi�cation) an-

gular span:

asp

c

(H

c

;x

n

1

) = inf

w

n

1

2P

n

;z

n

1

2f�1g

n

sup

f2H

c

�

�

�

�

�

�

n

X

j=1

w

j

z

j

f(x

j

)

�

�

�

�

�

�

:

where P

n

= fw

n

1

: w

j

� 0;

P

n

1

w

j

= 1g. [For example,

for the `stumps' H

c

= fs � sgn

a

: s 2 f�1g; a 2 <g,

where sgn

a

(x) = 2Ifx � ag � 1, we have 2=n �

asp

c

(H

c

) � 1=n for any set of n mutually distinct de-

sign points.]

Then as a special case of Jiang (1999, Proposition 5),

we have the following result.

Proposition 3 (Prediction Error for Classi�cation

Boosting). Denote asp

c

(H

c

) as the angular span of

the base hypothesis space used in AdaBoost. Suppose

asp

c

(H

c

) > 0. Consider the prediction error L

t

for the

prediction

^

Y

t

� (1+sgn�

^

F

t

)=2 obtained from t rounds

of AdaBoost: L

t

� n

�1

E

P

n

i=1

f

^

Y

t

(x

i

) � y

new

i

g

2

=

n

�1

P

n

i=1

Pf

^

Y

t

(x

i

) 6= y

new

i

g. Then we have

L

t

� L

1

+A and

p

L

t

�

p

L

1

�

p

A. (2)

Here

A = expf�asp

c

(H

c

)

2

t=2g;

L

1

= n

�1

n

X

j=1

2�

j

(1� �

j

) � L

�

+R;

where L

�

= n

�1

P

n

i=1

min(�

i

; 1 � �

i

) is the (opti-

mal standard) Bayes error, and R = n

�1

P

n

i=1

2j�

i

�

1=2jmin(�

i

; 1� �

i

) measures the di�erence L

1

�L

�

.

If asp

c

(H

c

) > 0, the bounds of the proposition are

nontrivial and suggest that running the unmodi�ed

AdaBoost forever will still let the prediction error

converge to the suboptimal limit L

1

(the `nearest

neighbor' error), with the amount of over�t R 2

[0; min(0:125; L

�

)].

It is noted that most of the commonly used base sys-

tems do have a nonzero asp

c

, even very simple ones

such as the stumps. This is due to the following propo-

sition [Jiang (1999), Proposition 3].

Proposition 4 (Approximation and Angular Span).

H

c

= sgn(H

r

) and H

r

can approximate any sign func-

tion (see Lemma 1) imply that asp

c

(H

c

; x

n

1

) > 0 for

any set of (mutually distinct) design points x

n

1

.

(That is, the classi�cation a-span is nonzero if the clas-

si�er space H

c

is induced by a regression space H

r

which can approximate any sign function.)

Due to Remark 1 and Proposition 4, most of the com-

monly used base systems do have nonzero asp

c

, and

Proposition 3 above suggests that running the un-

modi�ed AdaBoost forever will still let the predic-

tion error converge to the suboptimal limit L

1

(the

`nearest neighbor' error), with the amount of over-

�t R 2 [0; min(0:125; L

�

)]. Comparing to the case

of regression boosting, one di�erence here is that the

amount of over�t cannot be arbitrarily large and is



small for data with a low noise level L

�

. Another

di�erence is that it may take longer to approach the

over�tting limit here than in the regression case. The

exponential decay suggests that a typical time used to

approach the limit may be of order 1=asp

c

(H

c

)

2

, which

is of order n

2

when stumps are used in boosting.

The worst amount of over�t occurs when the proba-

bility �

i

's are 0:25 or 0:75. In this case the Bayes er-

ror L

�

is 0:25, while the `boost-forever' approach has

prediction error converging to L

1

= 0:375. The di�er-

ence does not disappear as the sample size n increases.

Therefore boosting forever will lead to a suboptimal

prediction for noisy data.

These results are only for �xed x. What happens to

more general cases with random x?

a. In fact, with random continuous predictors on

[0; 1], in a case of boosting the decision stumps

or CART systems, the boosted solutions are eas-

ily found to be nonunique. One typical way to

ensure a unique solution is to limit the cuts of

the step functions to be located at the mid-data

points. Jiang (2000) shows that in this case Ad-

aBoost will also generate the nearest neighbor rule

for all time t � 2n

2

log(n+ 1). Therefore similar

over�tting behavior can occur for noisy data.

b. The current method does not provide a general

result for the most realistic case with high dimen-

sional random continuous predictors. It is only in

this case, where it is possible that the prediction

error of AdaBoost continuous to decrease after a

perfect �t on the training sample. It is important

to note that the results of this paper cannot explain

this observed mystery. In most of the cases con-

sidered in this paper, the prediction error stabilizes

simultaneously with the training error. The best

explanations so far for this mystery seem to be the

margin approach by Schapire et al. (1998) and the

top approach by Breiman (1997), which are still

semi-empirical in nature. It is, however, plausi-

ble to conjecture that even in the case of higher

dimensional data running AdaBoost forever can

still lead to a suboptimal prediction which does

not perform much better than the nearest neigh-

bor rule. Recent empirical studies also con�rm

that even for high dimensional sparse data Ad-

aBoost may deteriorate after running for a very

long time [E.g., Grove and Schuurmans (1998);

Mason, Baxter, Bartlett and Frean (1999); Fried-

man et al. (1999)].

It is therefore foreseeable that some kind of regulariza-

tion may improve the performance in noisy situations.

Below we will show some examples where regulariza-

tion of some kind can be provably bene�cial, at least

theoretically. We �rst consider the regression case with

orthogonal hypotheses | this is a pleasant situation

where many analytic results can be derived which can

be instructive.

6 Regularization in the Orthogonal

Boosting for Regression

Regarding the discussions in the previous sections, we

see that it may not be desirable to let the unmodi�ed

boosting algorithm run forever, because it can over-

�t. Therefore regularization in one form or another

may not be unnecessary. An interesting question is:

how low can the boosted prediction error be through-

out the process of boosting? Also: how can we �nd

the best number of steps that achieves the lowest pre-

diction error? What are some regularization methods

to prevent over�tting? To gain some experience with

these questions, we will consider the very easy regres-

sion boosting system in Section 3 and establish the

relation and utilize the extensive results of orthogonal

series regression and minimax theory.

Consider the nonparametric regression set-up as in

Section 3. Note that �(x

i

) = Ey

i

can be expanded

in the orthonormal basis H

r

= f�

1

; : : : ; �

n

g as � =

P

n

j=1

�

j

�

j

(where h�

j

; �

k

i = �

jk

), where � = �(x

n

1

),

�

j

= �

j

(x

n

1

), �

j

= h�

j

; �i. Call the �

j

's as the Fourier

coe�cients of �. Recall that the sample Fourier co-

e�cients were de�ned as

~

�

t

= h�

t

; yi where y = y

n

1

.

Then y =

P

n

j=1

h�

j

; yi�

j

and jjyjj

2

=

P

n

j=1

h�

j

; yi

2

.

As before, de�ne

~

�

^

j

t

2 f

~

�

n

1

g so that

~

�

2

^

j

t

=

~

�

2

(t)

, the t-th

largest of f

~

�

2

j

g

n

1

, and

~

�

2

^

j

1

>

~

�

2

^

j

2

> : : : >

~

�

2

^

j

n

. Assume

there is not tie (this will happen with probability one

if y is continuous).

Consider LSBoost.Reg applied to H

r

. Now change the

notation

^

F

t

to be �̂

t

for the boosted prediction at stage

t, since it is also an estimator of the mean response

�. Let

^

J

t

= f

^

j

1

; : : : ;

^

j

t

g, then the expression of the

boosted prediction in Section 3 can be expressed as

�̂

t

=

P

j2

^

J

t

~

�

j

�

j

=

P

n

j=1

~

�

j

�

j

I [j 2

^

J

t

]. We are inter-

ested in studying the l

2

risk R(�̂

t

; �) = Ejj�̂

t

� �jj

2

,

which measures the goodness of �̂

t

as an estimator of

�, and also measures the `amount of over�t' L

t

�L

�

of

�̂

t

, as a prediction of future responses when comparing

to the optimal standard L

�

(or �

2

).

We �rst consider a `parametric'-family of signals. Sup-

pose that there are a �nite number of �

j

's being

nonzero. I.e., let J = fj : j�

j

j > 0; j = 1; : : : ; ng

and jJ j denote its cardinality; we suppose that jJ j =

J < n and is independent of n. Call the corresponding



family of �'s (� =

P

n

i=1

�

j

�

j

) the J-sparse family of

signalsM

J

. Also de�ne the familyM

J

m

= [

J

m

J=0

M

J

of

signals with at most J

m

nonzero Fourier coe�cients,

called the J

m

-maximal sparse family. Then we can

prove the following two propositions, which indicate

that one of the boosted �ts is asymptotically (for large

n) minimax-optimal for the family M

J

m

of signals.

[The second proposition follows from the results in

Efromovich (1999, Sec. 7.1).]

Proposition 5 (Risk Upperbound with Sparse Sig-

nals).

sup

�2M

J

m

R(�̂

jJ j

; �) =

�

J

m

n

�

�

2

f1 + o

n

(1)g; and

sup

�2M

J

m

inf

t2f0;:::;ng

R(�̂

t

; �) =

�

J

m

n

�

�

2

f1+o

n

(1)g.

Proposition 6 (Minimax Lowerbound with Sparse

Signals).

inf

�̂

sup

�2M

J

m

R(�̂; �) =

�

J

m

n

�

�

2

f1 + o

n

(1)g.

Next, we relate the boosted �ts to the �ts obtained

from hard thresholding, and derive risk bounds for ar-

bitrary signals. We �rst note that one of the boosted

estimator �̂

t

's beats any hard thresholding estima-

tor �̂

h

(�) =

P

n

j=1

~

�

j

�

j

I [j

~

�

j

j > �], and in partic-

ular it beats the universal hard thresholding with

� = �

p

2 logn=n. (Assume that the noise variance

�

2

is known for now.) This is because, for all � � 0,

�̂

h

(�) =

P

n

j=1

~

�

j

�

j

I [j 2

^

J

t

] = �̂

t

if �

2

2 [

~

�

2

(t+1)

;

~

�

2

(t)

),

where 0 �

~

�

2

(n+1)

<

~

�

2

(n)

=

~

�

2

^

j

n

<

~

�

2

(n�1)

=

~

�

2

^

j

n�1

<

: : : <

~

�

2

(1)

=

~

�

2

^

j

1

<

~

�

2

(0)

� 1;

^

J

0

= femptyg,

^

J

t

= f

^

j

1

; : : : ;

^

j

t

g for t = 1; : : : ; n. Therefore, for any

� > 0, we have �̂

h

(�) 2 f�̂

t

: t = 0; 1; :::; ng, and

Proposition 7 (Boosting vs Hard Thresholding).

inf

t2f0;:::;ng

R(�̂

t

; �) � Rf�̂

h

(�); �g, 8 � > 0, 8 �, 8

R(�; �).

Take, now, � = �

p

2 logn=n, and apply Theorem 4 or

Corollary 1 of Donoho and Johnstone (1994), we get

Proposition 8 (Risk Bounds with Arbitrary Signals).

(i) For all � 2 <

n

, we have

inf

t2f0;:::;ng

R(�̂

t

; �)

�

2

=n+

P

n

i=1

min(h�

i

; �i

2

; �

2

=n)

= 2 lognf1+o

n

(1)g;

(ii)

inf

all �̂

sup

all �

R(�̂; �)

�

2

=n+

P

n

i=1

min(h�

i

; �i

2

; �

2

=n)

= 2 lognf1 + o

n

(1)g:

They are minimax results for guarding against all

possible �, not just the `sparse' ones; together with

a result that `one of the boosted estimator' achieves

asymptotic minimax optimality.

Now the question is: which �̂

t

to use? Note that it

is not wise to let the boosting algorithm run forever,

since �̂

t

= y for all t � n, and R(y; �) = jjy � �jj

2

=

�

2

6! 0. Therefore �̂

1

is not even risk consistent, for

any �.

Which �̂

t

is a good one to choose? For sparse signals,

we'd like �̂

t

= �̂

jJ j

, but usually we do not know what

jJ j, the number of nonzero Fourier coe�cients, is. One

idea is to use the thresholding techniques to kill all

~

�

j

,

j 62 J . By the normal extremal theory, we can use the

familiar universal threshold � = �

p

2 logn=n. Then

with probability tending to one, we have j

~

�

j

j > � if

and only if j 2 J . If we threshold the coe�cients

during the boosting process and keep only those with

magnitudes exceeding �, then at the tth step we get

a thresholded estimator �̂

t

(�) =

P

j2

^

J

t

~

�

j

�

j

I [j

~

�

j

j > �].

Then

Proposition 9 (Risk Upperbound when Boosting with

Universal Threshold). For t � t

1

�

P

n

i=1

I [j

~

�

j

j > �],

�̂

t

(�) = �̂

t

1

(�) =

P

j2

^

J

t

~

�

j

�

j

I [j

~

�

j

j > �] = �̂

h

(�), and

R(�̂

t

(�); �)

�

2

=n+

P

n

i=1

min(h�

i

; �i

2

; �

2

=n)

= 2 lognf1+o

n

(1)g;

achieving asymptotic minimax optimality.

In practice, one can simply use �̂

t

(�) for t being so

large that jjy � �̂

t

(�)jj

2

becomes stable.

Remark 2 (Estimating �). See Vidakovic (1999, Sec.

6.6.2).

Usually signal-to-noise ratio (SNR) is very small for

~

�

^

j

t

's with t > n=2. then we can let the estimator

of � be �̂ =

q

(n=2� 1)

�1

P

n

t=n=2+1

(

~

�

^

j

t

�

�

~

�

(n=2;n]

)

2

;

where the appropriate integer part is taken for n=2;

�

~

�

(n=2;n]

represents the average of

~

�

^

j

t

's for the second

half of t's;

~

�

2

^

j

t

=

~

�

2

(t)

;

~

�

s

= hy; �

s

i is a sample Fourier

coe�cient.

In summary we have shown the following for this sys-

tem of orthogonal hypotheses used in LSBoost.Reg:

1. The boosted prediction at any time is exactly

solvable and basically retains the largest sample

Fourier coe�cients. The prediction reaches the

over�tting limit at a �nite time equal to the sam-

ple size.

2. For a `sparse family' of signals (mean responses)

having at most a �nite number of nonzero Fourier

coe�cients, the boosted prediction at some time



is asymptotically minimax in reducing the predic-

tion error in this family. In other words, no mea-

surable estimator can beat all boosted predictions

simultaneously for all sparse signals.

3. The boosted prediction at some time is `risk con-

sistent', in the sense that the l

2

risk or the mean

square error from the actual mean response con-

verges to zero for large sample size, for sparse

signals. The lowest prediction error converges at

the parametric rate. On the other hand, the `un-

boosted' prediction or the `boost-forever' predic-

tion are not `risk consistent' in general.

4. For more general signals that may not be `sparse',

we note that there is a boosted prediction at some

time which is at least as good as an orthogonal se-

ries estimator with any hard thresholding. As a

corollary, and utilizing the results of Donoho and

Johnstone (1994), we then see that the boosted

prediction at some time is asymptotically mini-

max in reducing the prediction error in the family

of all possible signals. In other words, no measur-

able estimator can beat all boosted predictions

simultaneously for all signals.

The main point of the above results is that for this

exactly solvable boosting system one boosting prediction

at some time is essentially optimal (in the sense of

asymptotic minimax) among all possible estimators.

In practice, the boosted prediction at an optimal time

can be e�ectively found by applying hard thresholding.

Such an algorithm can be run forever without over�t-

ting, by using a suitably chosen threshold (the predic-

tion will stabilize after a certain time):

5. If the threshold is chosen to be the univer-

sal threshold [see, e.g., Donoho and Johnstone

(1994)], then the boosted prediction after a cer-

tain time becomes the same as the orthogonal

series estimator with the universal hard thresh-

olding. Consequently, the resulting prediction is

asymptotically (minimax-)optimal among all pos-

sible predictions when protecting against all pos-

sible signals.

The bottom line is that there are cases where it is prov-

able that `boosting forever' is not desirable and that

regularization is still necessary and bene�cial for re-

gression boosting. What about the classi�cation case?

Is it possible to show the existence of some regular-

ization method, at least in theory, which will lead to

an improvement over the nearest neighbor-type perfor-

mance that can be achieved by `AdaBoost-forever'?

7 Quantization for AdaBoost

For general sparse data with random predictors on

[0; 1]

d

, say, at least theoretically it is possible to `quan-

tize' the data to make them `crowded' as a method

of regularization and prevent over�tting in the large

time limit of AdaBoost. The quantization involves

grouping together the nearby data points in a cell of

volume h

d

to use a common predictor value or de-

sign point �

k

, say. The large time prediction obtained

by boosting over�ts less since the limiting rule can

be shown to be similar to the `histogram rule', which

uses the majority of the labels (or responses) at a de-

sign point as the prediction, which becomes less noisy

when more labels / responses fall on the same de-

sign point. Let m = 1=h

d

which we assume to be

an integer for convenience, and let [0; 1]

d

= [

m

k=1

A

k

1

being partitioned into m cells A

m

1

, and let �

k

2 A

k

be any design point that represents the cell. De�ne

N(�jk) =

P

n

i=1

I [x

i

2 A

k

; z

i

= �1], as the number of

positive (or respectively, negative) observations falling

in A

k

. In the quantized version, Adaboost now uses

the new quantized data set (�

k(i)

; z

i

)

n

i=1

, where �

k(i)

is

the design point for the cell that contains x

i

. Also, at

the tth step of AdaBoost, the t-combined �t

^

F

t

(x) is

now quantized to be

^

F

t

(�

k

), if x 2 A

k

, say. Then we

let

^

Z

t

= sgn �

^

F

t

be the corresponding prediction.

Proposition 10 (`Quantization' vs Histogram Rule).

Suppose asp

c

(H

c

; �

m

1

) > 0 for the base hypothesis

space H

c

used in AdaBoost. Then we have the fol-

lowing results for the quantized AdaBoost:

(i). For any x in any nonempty cell A

k

[where

N(+jk) +N(�jk) > 0], we have

lim

t!1

^

F

t

(x) =

1

2

log

�

N(+jk)

N(�jk)

�

;

which is proportional to the sample estimate of the

log odds in A

k

.

(ii). For any x in any `unbalanced' cell A

k

with

an unequal number of positive and negative labels

[where N(+jk) 6= N(�jk)], we have

lim

t!1

^

Z

t

(x) = sgnfN(+jk)�N(�jk)g;

which gives the histogram majority rule.

(iii). For any x in any `unbalanced' cell A

k

, the lim-

iting prediction is realized at a �nite time; that

is, there exists a �nite time � such that

^

Z

t

(x) =

lim

s!1

^

Z

s

(x) for all t � � .

De�ne the prediction error (with expectation also run-

ning over the random predictor X) as L

t

� EfY

new

�



^

Y

t

(X)g

2

= PfZ

new

6=

^

Z

t

(X)g, for the step-t predic-

tion from the quantized AdaBoost. Suppose P (Z =

1jx) is a smooth function of x with bounded deriva-

tives. Then when h � n

�1=(d+2)

, the limiting predic-

tion error is bounded by

lim

t!1

L

t

� L

�

� (constant) � n

�1=(d+2)

f1 + o

n

(1)g;

by adapting the known results on quantization [see,

e.g., Devroye et al. (1996), Chapter 27]. This leads

to a `consistent' large time prediction that performs

close to the Bayes rule for large sample sizes. The

result holds for high dimensional sparse data and the

O(n

�1=(d+2)

)-rate of convergence of the large time pre-

diction error is actually minimax optimal, i.e., no other

prediction can be uniformly superior over this family

of smooth signals [see, e.g., Yang (1999)].

The point is that with this regularization treatment,

boosting forever leads to a di�erence L

1

� L

�

that

decreases to zero for large sample size n, and the rate

of decrease is optimal over this family of smooth sig-

nals. So asymptotically there will be no over�t. On

the other hand, the prediction error obtained from run-

ning the unmodi�ed AdaBoost forever is often compa-

rable to the nearest neighbor rule, as we commented

in earlier sections, which are suboptimal in the sense

that the amount of over�t L

1

�L

�

generally does not

decrease to zero for any n.

Therefore we established the existence of an example

where regularization of AdaBoost leads to provable

asymptotic improvement, at least theoretically. We

are not recommending the quantization method as a

practical regularization tool. Again, the point is that

even though AdaBoost seems to be resistant to over-

�tting, running it forever without regularization can

still lead to a suboptimal solution; there is still room

for improvement achievable by regularization. We sus-

pect that superior performance of some other regu-

larized versions of boosting may also be established

as compared to the unmodi�ed one, which may even

be empirically supported as well|see, e.g., empirical

work with shrinkage and randomization [e.g., Fried-

man (1999a, b)]; complexity penalty [e.g., Mason et

al., (1999)]; bagged versions of boosting [e.g., Breiman

(1996), (1999); Br�uhlmann and Yu (2000)].

8 Brief Conclusions

Despite their resistance to over�tting, it is often un-

desirable to run boosting algorithms forever without

any kind of regularization| this could lead to asymp-

totically suboptimal predictions. There is still room

for improvement achievable by regularization, at least

asymptotically.

New studies on regularization of boosting are not un-

necessary, and should be encouraged instead, whether

they use the method of stopping at an optimal time, or

randomization, or shrinkage, or thresholding, or quan-

tization, or complexity penalty.

Lastly, there have been e�orts in the literature on �nd-

ing analogs of boosting in regression. They are prob-

ably motivated by the good performance of AdaBoost

in classi�cation and these e�orts can certainly be fruit-

ful. However, we suspect that one still cannot hope to

avoid regularization in one way or another in regres-

sion, by just adopting the boosting device| regular-

ization probably is more important and necessary in

regression.
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