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Abstract

By representing images and image prototypes
by linear subspaces spanned by “tangent vec-
tors” (derivatives of an image with respect
to translation, rotation, etc.), impressive in-
variance to known types of uniform distortion
can be built into feedforward discriminators.
We describe a new probability model that
can jointly cluster data and learn mixtures of
nonuniform, smooth deformation fields. Our
fields are based on low-frequency wavelets, so
they use very few parameters to model a wide
range of smooth deformations (unlike, e.g.,
factor analysis, which uses a large number of
parameters to model deformations). We give
results on handwritten digit recognition and
face recognition.

1 Introduction

Many computer vision and image processing tasks ben-
efit from invariances to spatial deformations in the im-
age. Examples include handwritten character recogni-
tion, face recognition and motion estimation in video
sequences. When the input images are subjected to
possibly large transformations from a known finite
set of transformations (e.g., translations in images),
it is possible to model the transformations using a
discrete latent variable and perform transformation-
invariant clustering and dimensionality reduction us-
ing EM (Frey and Jojic 1999a; Jojic and Frey 2000).
Although this method produces excellent results on
practical problems, the amount of computation grows
linearly with the total number of possible transforma-
tions in the input.

In many cases, we can assume the deformations are
small, e.g., due to dense temporal sampling of a video
sequence, from blurring the input, or because of well-
behaved handwriters. Suppose (δx, δy) is a deforma-
tion field (a vector field that specifies where to shift
pixel intensity), where (δxi, δyi) is the 2-D real vector

associated with pixel i. Given a vector of pixel inten-
sities f for an image, and assuming the deformation
vectors are small, we can approximate the deformed
image by

f̃ = f +
∂f

∂x
◦ δx +

∂f

∂y
◦ δy, (1)

where ◦ is element-wise product and ∂f/∂x is a gradi-
ent image computed by shifting the original image to
the right a small amount and then subtracting off the
original image. Suppose δy = 0 and δx = α1, where
α is a scalar. Then, (1) shifts the image to the right
by an amount proportional to α. Fig. 1 shows some
more complex examples of deformations computed in
this way.

Simard et al. (1992, 1993) considered a deformation
field that is a linear combination of the uniform fields
for translation, rotation, scaling and shearing plus the
nonuniform field for line thickness. When the defor-
mation field is parameterized by a scalar α (e.g., x-
translation), ∂f

∂x
◦ δx + ∂f

∂y
◦ δy can be viewed as the

gradient of f with respect to α. Since the above ap-
proximation holds for small α, this gradient is tangent
to the true 1-D deformation manifold of f .

By processing the input from coarse to fine resolution,
this tangent-based construction of a deformation field
has also be used to model large deformations in an ap-
proximate manner (Vasconcelos and Lippman 1998).

The tangent approximation can also be included in
generative models, including linear factor analyzer
models (Hinton et al., 1997) and nonlinear generative
models (Jojic and Frey 2000).

Another approach to modeling small deformations is
to jointly cluster the data and learn a locally linear
deformation model for each cluster, e.g., using EM in
a factor analyzer (Ghahramani and Hinton 1997). An
advantage of this approach over the tangent approach
is that the types of deformation need not be specified
beforehand. So, unknown, nonuniform types of defor-
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Figure 1: (a) An image of a hand-written digit. (b) A smooth, non-uniform deformation field. (c) The resulting deformed
image. (d) Rotation and translation deformation fields. (e) Examples of deformed images produced by learned distributions
over wavelet-based fields.

mation can be learned. However, a large amount of
data is needed to accurately model the deformations,
and learning is susceptible to local optima that con-
fuse deformed data from one cluster with data from
another cluster. (Some factors tend to “erase” parts
of the image and “draw” new parts, instead of just
perturbing the image.)

We describe a new probability model that can jointly
cluster data and learn mixtures of nonuniform, smooth
deformation fields. In contrast to the tangent ap-
proach, where the deformation field is a linear combi-
nation of prespecified uniform deformation fields (such
as translation), in our model the deformation field is a
linear combination of low-frequency wavelets. A mix-
ture model of these wavelet coefficients is learned from
the data, so our model can capture multiple types of
nonuniform, smooth image deformations. In contrast
to factor analysis, using a low-frequency wavelet basis
allows our model to use significantly fewer parameters
to represent a wide range of realistic deformations. For
example, our model is much less likely to use a defor-
mation field to “erase” part of an image and “draw”
a new part, since the necessary field is usually not
smooth.

In contrast with usual probabilistic deformation mod-
els, our generative model also incorporates the idea of
“symmetric tangent distance” (Simard et al, 1993) by
including deformations of the observed image. This
leads to the idea of maximizing the likelihood of
matching an observed image, instead of the likelihood
of generating the observed image. However, under eas-
ily satisfiable conditions, the model reduces to the pure
generative model. This symmetry allows the linear
model for deformations to hold for larger transforma-

tions, as the prototype image and the observed image
are both deformed to achieve a match.

Finally, our model is also related to the idea of sep-
arating style and content (Tenenbaum and Freeman,
1997), as the deformation linearization also leads to
bilinear models that can be learned by exact EM.

2 Smooth, wavelet-based deformation

fields

We ensure the deformation field (δx, δy) is smooth by
constructing it from low-frequency wavelets,

δx = Rax, δy = Ray, (2)

where the columns of R contain low-frequency wavelet

basis vectors, and a =

[

ax

ay

]

are the deformation co-

efficients. We use a number of deformation coefficients
that is a small fraction of the number of pixels in the
image. (In contrast, each factor in factor analysis has
a number of coefficients that is equal to the number of
pixels.)

An advantage of wavelets is their space/frequency lo-
calization. The global trends in the image can be
captured in the low-frequency coefficients while at the
same time, the deformations localized in smaller re-
gions of the image can be expressed by more spatially
localized wavelets.

The deformed image can be expressed as

f̃ = f + (Gxf) ◦ (Rax) + (Gyf) ◦ (Ray), (3)

where the derivatives in (1) are approximated by
sparse matrices Gx and Gy that operate on f to com-
pute finite differences.



(3) is bilinear in the deformation coefficients a and
the original image f , i.e., it is linear in f given a and
it is linear in a given f . To rewrite the element-wise
product as a matrix product, we convert either the
vector Gf or the vector Ra to a diagonal matrix using
the diag() function:

f̃ = f + D(f)a, (4)

where D(f) = [diag(Gxf)R diag(Gyf)R]

f̃ = T(a)f , (5)

where T(a) = [I + diag(Rax)Gx + diag(Ray)Gy] .

The first equation shows by applying a simple pseudo
inverse, we can estimate the coefficients of the image
deformation that transforms f into f̃ : a = D(f)−1(f̃ −
f). This low-dimensional vector of coefficients mini-
mizes the distance ||f − f̃ ||. Under easily satisfied con-
ditions on the differencing matrices Gx and Gy, T(a)
in (5) can be made invertible regardless of the image
f , so that f = T(a)−1f̃ .

Given a test image g, we could match f to g by com-
puting the deformation coefficients, a = D(f)−1(g−f),
that minimize ||f − g||. However, more extreme defor-
mations can be successfully matched by deforming g
as well:

g̃ = g + (Gxg) ◦ (Rbx) + (Gyg) ◦ (Rby), (6)

where b are the deformation coefficients for g. The
difference between the two deformed images is

f̃ − g̃ = f − g + [D(f) − D(g)]

[

a
b

]

. (7)

Again, minimizing ||f̃ − g̃|| is a simple quadratic opti-
mization with respect to the deformation coefficients
a, b. To favor some deformation fields over others, we
can include a cost term that depends on the deforma-
tion coefficients.

Finally, a versatile image distance can be defined as:

d(f ,g)= min
a,b

{

(f̃ − g̃)′Ψ−1(f̃ − g̃) + [a′ b′]Γ−1

[

a
b

]}

(8)
Matrix Ψ is a diagonal matrix whose non-zero ele-
ments contain variances of appropriate pixels. This
distance allows different pixels to have different impor-
tance. For example, if we are matching two images of
a tree in the wind, the deformation coefficients should
be capable of aligning the trunk and large branches,
while the variability in the appearance of the leaves
would be captured in Ψ. Γ captures the covariance
structure of the wavelet coefficients of the allowed de-
formations. This distance can be used in the same
applications as tangent distance, but being Bayesians
(Patrice excluded!), we proceed with a probabilistic
model.

a b

Figure 2: (a) A Bayes net for deformable image matching.
(b) A generative version of the net conditioned on e = 0.

3 Bayes net for deformable image

matching

In Fig. 2a we show a Bayes net that can be used to
compute the likelihood that the input image matches
the images modeled by the network. For classification,
we learn one of these networks for each class of data.

The generative matching process begins by clamping
the test image g. Then, an image cluster index c is
drawn from P (c) and given c, a latent image f is drawn
from a Gaussian, N (f ;µc,Φc). In this paper, we as-
sume Φc = 0, so p(f |c) = δ(f − µc). This allows us
to use exact EM to learn the parameters of the model.
We are investigating techniques which would allow us
to learn Φc as well.

Next, a deformation type index ℓ is picked according
to P (ℓ|c). This index determines the covariance Γl of
the deformation coefficients for both the latent image
f and the test image g:

p(

[

a
b

]

|ℓ) = N (

[

a
b

]

;0,Γℓ). (9)

Γℓ could be a diagonal matrix with larger elements
corresponding to lower-frequency basis functions, to
capture a wide range of smooth non-uniform defor-
mations. However, Γℓ could also capture correlations
among deformations in different parts of the image.
The deformation coefficients for the latent image a and
for the observed image b should be strongly correlated,
so we model the joint distribution instead of modeling
a and b separately.

Once the deformation coefficients a, b have been gen-
erated, the deformed latent image f̃ and the deformed
test image g̃ are produced from f and g according to
(3) and (6). Using the functions D() and T() intro-
duced above, we have

p(f̃ |f ,a) = δ(f̃ − f − D(f)a) = δ(f̃ − T(a)f), (10)

p(g̃|g,b) = δ(g̃ − g − D(g)b) = δ(g̃ − T(b)g). (11)

As an illustration of the generative process up to this



point, in Fig. 1 we show several images produced by
randomly selecting 8 deformation coefficients from a
unit-covariance Gaussian and applying the resulting
deformation field to an image.

The last random variable in the model is an error im-
age e (called a “reference signal” in control theory),
which is formed by adding a small amount of diagonal
Gaussian noise to the difference between the deformed
images f̃ and g̃:

p(e|f̃ , g̃, c) = N (e; f̃ − g̃,Ψc). (12)

For good model parameters, it is likely that one of
the cluster means can be slightly deformed to match
a slightly deformed observed image. However, due to
the constrained nature of these deformations, an exact
match may not be achievable. Thus, to allow an ex-
act match, the model helps the image difference with a
small amount of non-uniform, cluster dependent noise.
Ψc is diagonal and the non-zero elements contain the
pixel variances. A natural place to include cluster de-
pendence is in fact in the cluster noise Φc. Since we
have chosen to collapse this noise model to zero, it is
helpful to add cluster dependence into Ψc.

This model can now be used to evaluate how likely it is
to achieve a zero error image e by randomly selecting
hidden variables conditioned on their parents in the
fashion described above. If the model has the right
cluster means, right noise levels and the right variabil-
ity in the deformation coefficients, then the likelihood
p(e = 0|g) will be high. Thus, this likelihood can be
used for classification of images when the parameters
of the models for different classes are known. Also,
we can use the EM algorithm to estimate the param-
eters of the model that will maximize this likelihood
for all observed images gt in a training data set (see
the Appendix).

By conditioning on e = 0, we can transform the net-
work into the generative network shown in Fig. 2b.1

After collapsing the deterministic nodes in the net-
work, the joint distribution conditioned on the input
g is

p(c, l,a,b, e|g) = Pc,lN (

[

a
b

]

; 0,Γℓ)·

· N (e;µc + D(µc)a − g − D(g)b,Ψc) (13)

By integrating out the deformation
coefficients we obtain p(c, ℓ, e|g) =
Pc,ℓN

(

e;µc − g, [Ψ−1

c − Ψ−1

c McΩc,ℓM
′
cΨ

−1

c ]−1
)

,

where Mc =
[

D(µc) − D(g)
]

and

Ωc,ℓ = (Γ−1

ℓ + M′
cΨ

−1

c Mc)
−1. This density function

1To do so in a straightforward fashion, we assume that
|T(b)| = 1.

can be normalized over c, ℓ to obtain P (c, ℓ|e,g).
The likelihood can be computed by summing over the
class and transformation indices:

p(e|g) = (14)
∑

c,l

Pc,lN
(

e;µc − g, [Ψ−1

c − Ψ−1

c McΩc,ℓM
′
cΨ

−1

c ]−1
)

By using this likelihood instead of the distance mea-
sure in (8), we are integrating over all possible de-
formations instead of finding the optimal deformation
(which is given by (19) in the Appendix).

4 Experiments

We tested our algorithm on 20x28 greyscale im-
ages of people with different facial expressions and
8x8 greyscale images of handwritten digits from the
CEDAR CDROM (Hull, 1994).

Deformable image matching. In Fig. 3a we es-
timate the optimal deformation fields necessary to
match two images of a face of the same person but
with different facial expression. We set the Ψ matrix
to identity and we set Γ by hand to allow a couple
of pixels of deformations. See Section 2 for nomen-
clature. In short, the two images f and g are shown
left and right and the estimated flow fields that bring
them together are shown next to each of them. In the
middle are the deformed versions of the two images
that together with the motion fields illustrate that the
estimated deformations act to stretch the face on the
right and make the face on the left smile, thus ending
in similar images.

Comparison with the mixture of diagonal Gaus-
sians (MDG). To compare our method with other
generative models, we used a training set of 2000 im-
ages to learn 10 digit models using the EM algorithm
and tested the algorithms on a test set of 1000 digit
images. MDG needs 10-20 classes per digit to achieve
the optimal error rate of only about 8% (Frey and Jo-
jic 1999a) on the handwritten digit recognition task.
Note that our network reduces to MDG when Γℓ is set
to zero. To demonstrate the effectiveness of adding
a deformation model to MDG, we trained our model
with 15 classes per digit and only a single transfor-
mation model (L = 1) for all digits, with a total of
64 deformation coefficients (8 for each dimension in
the latent and the observed images). In Fig. 3b we
show one of the learned cluster means, the compo-
nents in the corresponding deformation matrix D and
the learned covariance matrix Γ. Γ shows anticorrela-
tion among the deformation coefficients for the latent
and the observed image, as the network usually applies
opposite deformations on these two images to achieve
the match. However, there is also strong correlation
between bx and by and less correlation between ax
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Figure 3: Estimating the image deformation due to a change in facial expression and a subset of the learned parameters for
the model of handwritten digits

and ay as the network uses mostly a rotational ad-
justment on the input image, while the latent image is
more freely deformed (Fig. 1e). Our model achieved
the error rate of 3.6%. Even if we keep only the di-
agonal elements in Γ, the model achieves a 5% error
rate.

Comparison with factor analysis. In factor anal-
ysis (FA) or in a mixture of factor analyzers (MFA),
the deformation matrix D is called factor loading ma-
trix and is not tied to the mean µc as in our model
(Fig. 3b). The factor covariance matrix is set to the
identity matrix, as the extra freedom in the choice of
the factor variances can be captured in the factor load-
ing matrix. So, while FA/MFA try to capture the vari-
ability in the data by learning the components in the
factor loading matrix and keeping the distribution over
the factors fixed, our model does the opposite by tying
the factor loading matrix to the mean image and learn-
ing the distribution over the factors (deformation coef-
ficients). By doing this, we we are able to expand other
images using the same deformation model. This al-
lows us to share the deformation model across clusters
and also to deform the input images. The compara-
ble error rate in classification of handwritten digits for
FA/MFA (3.3%) and our model (3.6%) indicates that
most of the variability in images of handwriten dig-
its can be captured by modeling smooth, non-uniform
deformations without allowing full FA learning.

5 Conclusions

Our deformable image matching network could be used
for a variety of computer vision tasks such as optical
flow estimation, deformation invariant recognition and
modeling correlations in deformations. For example,
our learning algorithm could learn to jointly deform
the mouth and eyes when modeling facial expressions.
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Appendix: EM for deformable image matching network

To fit the network to a set of training data, we assume that the error images for the training cases are zero and
estimate the maximum likelihood parameters using EM (Dempster et al. 1977). In deriving the M-step, both
forms of the deformation equations (4) and (5) are useful, depending on which parameters are being optimized.
Using 〈〉 to denote an average over the training set, the update equations are:

Pc,ℓ =〈P (c, ℓ|et = 0,gt)〉 (15)

µ̂c =〈
∑

ℓ

P (c, ℓ|et = 0,gt)E[T(a)′Ψ−1

c T(a)|c, ℓ, et = 0,gt]〉
−1

· 〈
∑

ℓ

P (c, ℓ|et = 0,gt)E[T(a)′Ψ−1

c T(b)gt|c, ℓ, et = 0,gt]〉, (16)

Γ̂ℓ =

〈

∑

c P (c, ℓ|et = 0,gt)E

{[

a
b

]

[a′ b′]

∣

∣

∣

∣

c, ℓ, et = 0,gt

}〉

〈
∑

c P (c, ℓ|et = 0,gt)〉
(17)

Ψ̂c =diag

(

〈
∑

ℓ P (c, l|et = 0,gt)E[(f̃ − g̃t) ◦ (f̃ − g̃t)|c, l, et = 0,gt]〉

〈
∑

ℓ P (c, l|et = 0,gt)〉

)

(18)

The expectations needed to evaluate the above update equations are given by:

Ωc,ℓ = cov

{[

a
b

] ∣

∣

∣

∣

c, ℓ, et = 0,gt

}

=(Γ−1

ℓ + M′
cΨ

−1

c Mc)
−1

γc,ℓ = E

{[

a
b

] ∣

∣

∣

∣

c, l, et = 0,gt

}

=Ω−1

c,ℓM
′
cΨ

−1

c (µc − gt) (19)

E

{[

a
b

]

[a′ b′]

∣

∣

∣

∣

c, ℓ, et = 0,gt

}

=Ωc,ℓ + γc,ℓγ
′
c,ℓ (20)

E[(f̃ − g̃t) ◦ (f̃ − g̃t)|c, l, et = 0,gt] =
(

µc − gt + Mcγc,ℓ

)

◦
(

µc − gt + Mcγc,ℓ

)

+ diag(Mc(Ωc,ℓ)M
′
c)

Expectations in (16) are computed using

T(a)′Ψ−1

c T(a) = Ψ−1

c +
∑

d∈{x,y}

G′
ddiag(Rad)Ψ

−1

c (21)

+
∑

d∈{x,y}

Ψ−1

c diag(Rad)Gd +
∑

d1,d2∈{x,y}

G′
d1

Ψ−1

c diag(Rad1
a′

d2
R′)Gd2

T(a)′Ψ−1

c T(b)gt = Ψ−1

c gt +
∑

d∈{x,y}

G′
ddiag(Rad)Ψ

−1

c gt (22)

+
∑

d∈{x,y}

Ψ−1

c diag(Rbd)Gdgt +
∑

d1,d2∈{x,y}

G′
d1

Ψ−1

c diag(Rad1
b′

d2
R′)Gd2

gt.

Then, the expectations E[a] and E[b] are the two halves of the vector γc,ℓ, while E[ad1
a′

d2
] and E[ad1

b′
d2

], for
d1, d2 ∈ {x, y}, are square blocks of the matrix in (20).


