
Predicting with Variables Constructed from Temporal Sequences 

 
 

Mehmet Kayaalp Gregory F. Cooper Gilles Clermont 
Center for Biomedical Informatics 

Intelligent Systems Program 
University of Pittsburgh 

Pittsburgh, PA 15213 

Center for Biomedical Informatics 
Intelligent Systems Program 

University of Pittsburgh 
Pittsburgh, PA 15213 

Department of Anesthesiology 
School of Medicine 

University of Pittsburgh 
Pittsburgh, PA 15213 

kayaalp@acm.org gfc@cbmi.upmc.edu clermontg@anes.upmc.edu 
  

 

Abstract 

In this study, we applied the local learning 
paradigm and conditional independence 
assumptions to control the rapid growth of the 
dimensionality introduced by multivariate time 
series. We also combined various univariate 
time series with different stationary 
assumptions in temporal models. These 
techniques are applied to learn simple 
Bayesian networks from temporal data and to 
predict survival probabilities of ICU patients 
on every day of their ICU stay.   

1 INTRODUCTION 

Temporal modeling is important for a variety of 
domains ranging from physical sciences to market 
analysis. For problems that are intrinsically temporal, 
one needs a robust methodology to provide consistent 
and reliable temporal decision support. 

This paper addresses two key questions in stochastic 
process modeling: (1) How can the rapid growth of the 
dimensionality introduced by multivariate time series 
be controlled? (2) How can models with various 
stationarity assumptions be combined? 

The methodology developed and evaluated in this study 
was based on one clinical question: What is an 
intensive care unit (ICU) patient’s chance of survival 
over the next few days, given all of his/her available 
temporal measurements that have indicated the 
physiologic condition of the patient? More specifically, 
the task is to predict probabilities ( )1 2 6, ,...,P P P  of 
survival of a given patient during the following six 
mutually exclusive temporal intervals, respectively: 0–
1, 1–3, 3–7, 7–15, 15–31, and 31–63 days in the future, 
where 0 denotes the current day. These clinical 
predictions may be of interest to a physician at the end 
of each day of ICU stay of the patient. 

In this study, we used a database of physiologic and 
outcome variables collected on 1,449 patients admitted to 
40 different ICUs in May 1995. The database contains 
11,418 records, i.e., on average 7.9 records per patient. 
The temporal granularity of variables is fixed at one day 
since each record contains one day of collected data on 
one patient. The data were originally collected for a 
prospective study to evaluate a newly established 
Sequential Organ Failure Assessment (SOFA) score that 
has been used to assess the incidence and severity of 
organ dysfunction or failure of ICU patients (Vincent and 
others 1998). 

The database contains 25 temporal variables (see Table 
1). The original dataset also contains atemporal data, 
which we did not use in this study, so that we can focus 
on temporal sequences and ensure that changes in 
prediction performance are solely due to the newly 
constructed variables (which we will call patterns) as 
proposed in the presented methodology. 

We discretized patient variables that were continuous in 
the database based on medical knowledge and their 
statistical variances observed in the sample population. 
The third author of this report filled in missing SOFA 
system values by extrapolating the existing values of the 
patient variables based on his medical knowledge and 
judgment. Eighteen percent of values of all other temporal 
variables were still missing, to which we assigned a 
separate categorical value, unknown. Data collection was 
limited to 33 days of ICU stay, since only 9 of 1,449 
patients stayed in the ICU for more than 33 days. 

We define a patient case as the physiologic state of a 
patient on a given day, considering all available temporal 
data collected during ICU stay of the patient up to and 
including that given day. For example, a patient in the 
ICU on day d has cases ( )1 2, ,..., dC C C , where 1i+C  
subsumes iC , and 1,2,..., 1i d= − . We divided the entire 
dataset into 65 percent for training (7,388 cases on 949 
patients), leaving 35 percent for testing (4,030 cases on 
500 patients). We developed patient-specific simple 
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Bayes models that are learned separately for each 
patient case using the statistics of training cases 
(records). We used the area under the receiver operating 
characteristics (ROC) curve to assess model 
performance. 

Table 1: Temporal variables of the SOFA patient 
database. Arities of variables are presented in the third 
column. Arity indicates the number of different values 
that each discrete variable can take. 

Temporal Variable Arity Acronym 
Oxygenation index 4 pO2/fiO2 
Mechanical ventilation  2 rsup 
Platelet count 4 plat 
Bilirubin 3 bili 
Mean arterial pressure 4 pam 
Dopamine dosage 3 dopa 
Dobutamine dosage 3 dobuta 
Epinephrine dosage 3 epin 
Norepinephrine dosage 3 norepi 
Glasgow coma scale 4 gcs 
Blood urea nitrogen 5 urea 
Serum creatinine 5 creat 
Urine output 4 urin 
White blood cell count 4 wbc 
Heart rate 4 hr 
Temperature 4 temp 
Sepsis related surgery 2 su 
Presence of infection  2 infect 
SOFA neurological 6 sofaneuro 
SOFA respiratory 6 sofapulm 
SOFA cardiovascular 6 sofacard 
SOFA hematological 6 sofacoag 
SOFA hepatic 6 sofaliver 
SOFA renal 6 sofarenal 
SOFA total 6 sofatotal 

 

2 BACKGROUND 

In an earlier study using the same database along with 8 
atemporal variables, we predicted patient mortality at 
ICU discharge by creating nonstationary and stationary 
models (Kayaalp, Cooper, and Clermont 2000). The 
model-building process was based on the standard 
supervised-learning paradigm, i.e., learning a global 
model from a training set, where we used a Bayesian 
scoring metric as defined in (Cooper and Herskovits 
1992).  

In this study, we used the local learning paradigm. 
Local learning (a.k.a. lazy or instance-based learning) 
methods let us induce a model using the available data 
of the test case in question. Although parameters are 
learned from the training data, the model is optimized 
specifically to predict the test case in question. Since 

the target model is an approximation on the local (test) 
data, those methods are called local learning algorithms. 

A stochastic process is defined as (strongly) stationary if 
the probability density functions generated by this 
stochastic process are the same for all temporal sequences 
( )1 2, ,...,i i i nt t t+ + + , where 0i ≥  and 0n >  (Jenkins and 
Watts 1968). For a stationary univariate time series of 
length 0n > , Equation (1) holds for all 0i ≥  and any 
temporal displacement constant 0k ≥ . 

 1 2 1 2( , ,..., ) ( , ,..., )i i i n i k i k i n kP x x x P x x x+ + + + + + + + +=  (1) 

In this paper, we represent the values of any temporal 
variable with a lower case letter and a subscripted integer 
denoting the time stamp of the variable value. For 
example, ( )1( ) , ( 1)t tP X t x X t x += + =  will be 

abbreviated as ( )1,t tP x x + , and these expressions denote 
the joint probability of two successive values of variable 
X at times t and 1t + .  

A stationary univariate time series model M  with a 
sequence of 1i +  data points assumes that xt is a 
stochastic function of the sequence 1 2( , ,..., )t t t ix x x− − − , and 
it is conditionally independent of any other factors, given 
the sequence 1 2( , ,..., )t t t ix x x− − −  and the model M ; i.e., 

1 2( | , ,..., , ) ( |t tt t t iP x x x x P x− − − =M  1 2, ,..., , )kt t tx x x− − − M , 
where k i> . In this report, the term “stationarity 
assumption” refers to this conditional independence 
assumption, given a sequence of i successive data points. 
A Markov chain is a special case of this class of models, 
where 1i = . 

Our earlier study showed that nonstationary models 
perform quite well if the applicable sample size is large 
enough (Kayaalp, Cooper, and Clermont 2000). However, 
as time series get longer, the predictive performances of 
nonstationary models decrease rapidly, due to the 
exponentially increasing parameter space.  

In the current study, a set of new binary variables was 
constructed from each unique, univariate time series of a 
length between 1 and 33 time points. Our approach can be 
considered as a type of constructive induction, creating 
new variables from existing ones (Pazzani 1996; 
Bloedorn and Michalski 1998). It can also be seen as a 
sequence processing and matching technique, which has 
been used in a variety of domains including information 
theory (Shannon 1948), bioinformatics (Searls 1993), 
speech recognition, and text processing (Nevill-Manning 
1996). Various methods for representing different 
stationarity assumptions in the context of short-term 
memory1 have also been studied in research on machine 
learning (Ron, Singer, and Tishby 1996), and recurrent 
                                                           

1A memory model is a stochastic function defined by past events. 
It determines the number of data points to be stored, the resolutions of 
those data points and their dependence relations. 



neural networks (Mozer 1993), among others. But in 
this study we go one step further and use sequences of 
various lengths in the same model, combining different 
stationarity assumptions. 

3 METHODS 

One key issue in prediction problems with high 
dimensionality (as in multivariate time series analysis) 
is representation. The approach presented below 
reduces the parameter space by (1) representing 
univariate time series with simpler variables, (2) 
applying the local learning paradigm, and (3) using 
conditional independence assumptions. 

A discrete multivariate parameter space is determined 
by the number of variables and their arities. The 
number of parameters in this parameter space is equal 
to the number of joint probabilities. For time series 
models, the time dimension must be taken into account 
as well. In our database, we have four binary (including 
the outcome variable of interest), five ternary, eight 4-
ary, two 5-ary, and seven 6-ary variables (see Table 1), 
which translates to 4 5 8 2 7 51 152 3 4 5 6 2 10≅ ≅  possible 
atemporal variable-value combinations, which is the 
size of the atemporal parameter space, when no 
independence is assumed. The size of the parameter 
space of a stationary time series with a fixed sequence 
length d is 251d without assuming any independence. 

Our first reduction of the parameter space comes with a 
constructive induction approach using the local learning 
paradigm: Instead of building a single global model and 
applying it to all test cases uniformly, we induced a 
separate, local model for each patient case; the learning 
process can therefore be called patient-specific. We 
built new variables from univariate time series 
observed in each patient case. The newly constructed 
variables are called “patterns.” In this report, a pattern 
is defined as a list of equidistant temporal values of a 
variable. For example, the body temperature of a patient 
who stayed in an ICU for three days may have the 
temperature pattern 1temp =P  (high, high, normal). When 
the list contains a single temporal value, we call it an 
“elementary pattern,” which corresponds to a regular, 
time-stamped variable.  

In this study, we evaluate each pattern P  as a binary 
variable; in a given data stream, it is either present or 
not. For example, patterns (high), (normal), (high, 
high), (high, normal) and (high, high, normal) are 
positive for the above ICU patient example in the 
previous paragraph, whereas patterns (low), (normal, 
high), and (high, high, normal, normal) are negative, 
since they are not observed in the patient data. 

If body temperature is the only patient variable and we 
need to predict the chance of survival of a patient with 

the temperature pattern 1tempP , we should compute 

1( | )tempP C P , where C denotes the survival of the patient. 
Since the length of the value sequence in 1tempP  is 
provided with the patient in question, the probability of 
observing the exact pattern 1( )tempP P  may be estimated on 
the relevant sample of temperature patterns, which is the 
set of temperature value sequences of the same length as 

1tempP , i.e., {(low, low, low), (low, low, normal), (low, 
low, high),…, (high, high, high)}. 

In this study, the length of the sequence in a pattern is 
called aggregation level and denoted as ( )agg P . Given 

1 2( , ,..., )i nx x x=P , ( )iagg n=P . In the above example, 

1( ) 3tempagg =P .  

The frequency statistic of a pattern iP  with the 
aggregation level ( )iagg P  is collected from the sample of 
patterns { }jP  of the same variable with the same level of 

aggregation; i.e., | 1,2,...,{i j j J∈ =P P  ( ) }jagg k∧ =P , 
where k is constant, and J is the number of patterns in 
{ }jP . If it is a univariate temporal pattern, where the arity 

of variable is a, then kJ a= . In the temperature example, 
the cardinality of the pattern set, to which 1tempP  belongs, 
is 33.  

The probability of iP  in an arbitrary univariate sequence 
of length ( )iagg P  can be estimated as  
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where ( )n ⋅  returns the frequency count of its attribute. 
For example, if 1tempP  was observed in 10 patient cases 
and all other temperature patterns with the same 
aggregation level were observed in 90 patient cases, then 

1( ) 0.1tempP =P . 

Joint probability of the pattern iP and outcome variable C 
can be estimated as 
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Using Equations (2) and (3), we can compute conditional 
outcome probability. 
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A database of patterns is built from training patient cases. 
Recall that a patient case on day d contains all data of d 
records; hence, it has d consecutive daily values 



1 2( , ,..., )dx x x  measured for each variable. There are d 
patterns 1 1 2{( ), ( , ),...., ( , ,..., )}d d d dx x x x x x−  for each 
variable associated with this patient case. The pattern 
set of a patient case with v variables and d days of 
history consists of v d×  patterns. By this definition, all 
sequences that do not include the last day’s 
measurement xd are excluded from the pattern set. The 
pattern set along with frequency statistics of all patterns 
in the training data constitutes the pattern database that 
we use to construct patient-specific models.  

Since all patterns are binary, the size of a parameter 
space that is specific to a patient case with v regular 
temporal variables and d days is 2vd. In addition to 25 
temporal variables in our database, there is one binary 
response variable (mortality) in each model; thus, the 
size of a patient-specific parameter space is equal to 
225d+1. This is approximately 225 times reduction of the 
parameter space; recall that the size of the parameter 
space is 251d when data are represented as a stationary 
multivariate time series of length d without assuming 
independence. 

Our second reduction of the parameter space comes 
with the conditional independence assumption: When 
patterns are assumed to be conditionally independent, 
given the binary outcome variable of interest, the size 
of the exponential parameter space is reduced to a 
polynomial 22 vd . For the current database, this 
number is 100d. Notice that, conditional independence 
is assumed between patterns, not between the events2 in 
a pattern. 

The resulting temporal model is a simple Bayes model: 

1 2 1
( | , ,..., ) ( ) ( | )m

m ii
P C P C P C

=
∝ ∏P P P P , where each 

iP  denotes a pattern observed in a given patient case 
and is included in the model, and C represents the 
outcome variable of interest. Although it is a violation 
of conditional independence assumption, in our 
experiments we did not restrict models to the set of 
patterns that are mutually exclusive. 

Given a database of patterns, model selection is reduced 
to a pattern selection (variable selection) process in a 
simple Bayes modeling approach. The following steps 
summarize the pattern selection process that we 
performed in this study: 

1. All patterns in a given test patient case were 
identified.  

2. The probability of each pattern was estimated 
using the frequency statistics that were 

                                                           
2 An event is an observation that is measured at a 

specific time point and represented as a variable value 
in a time series. 

collected from training patient cases and 
represented in the pattern database.  

3. Each pattern along with the outcome variable of 
interest was evaluated separately for its 
predictive significance using the area under the 
ROC curve, which is a measure of the prediction 
performance of a model.  

4. Patterns whose outcome prediction performances 
yielded ROC areas smaller than 50 percent were 
eliminated.  

5. Patterns were rank-ordered and m patterns with 
the highest ROC scores were selected for 
inclusion into the final model, where m is 
determined by a simple validation process 
discussed below. 

Using a small validation set3 of 330 patient cases, we 
searched for m, an optimal number for patterns to include 
in simple Bayes models. 

As described in the Introduction, the models were built to 
predict 1 2 6( , ,..., )P P P  the survival chance of each ICU 
patient at six mutually exclusive temporal intervals of 
their ICU stay. Our preliminary results as evaluated in the 
next section indicate that m the optimal size of the pattern 
set used in these models is equal to 128. m is an upper 
bound only; obviously, all models could not have 128 
patterns, since the number of patterns in each patient case 
can be at maximum 25d, where d is the number of days in 
the ICU.  m can be less than 25d, because patterns whose 
outcome predictive performances yielded ROC areas less 
than 50 percent were excluded from the pattern set during 
the validation process. 

Predictions 1 2 6( , ,..., )P P P  of the final models of each 
patient case were also evaluated with the same ROC 
metric. 

The results were produced on three parallel running 
processes on three 600 MHz Intel Pentium II based Linux 
machines in approximately one day. The experiment 
required 93 MB system memory. 

4 RESULTS 
Our preliminary results indicate that patient-specific 
models with a maximum of 128 patterns perform best, 
yielding areas under the ROC curves between 75 and 80 
percent for all 6 predictions (see Figure 1).  

A single-pattern model evaluated in this study is a 
bivariate Bayesian network, in which the outcome 
variable of interest is dependent on one pattern. We 
compared multi-pattern models with single pattern 
                                                           

3 Validation and test sets are mutually exclusive. 
Patient cases in the validation set are randomly selected 
from the training set. 



models, since the latter is the best representative of a 
bivariate temporal Bayesian network with regular 
temporal variables, and all models that were found in 
our earlier study most predictive of survival of ICU 
patients (Kayaalp, Cooper, and Clermont 2000) were 
also bivariate temporal Bayesian networks with regular 
temporal variables. Recall that a regular temporal 
variable is equivalent to an elementary pattern of that 
variable. 
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Figure 1: Prediction Performances of Single-Pattern vs. 
Multi-Pattern Models. 

Table 2 shows percentage of patterns, each of which 
was found the most significant in a set of predictions. 
The patterns shown in Table 2 cover 85 percent of all 
patterns used in single-pattern models. Recall that the 
last value in every pattern corresponds to a data point 
observed on the last day of the patient case in question. 
Each pattern in Table 2 is presented with the variable 
name of the pattern and a sequence of variable values 

1(..., , )d dx x− , where dx  is the data point observed on 
the last day. Therefore, “rsup (2,2)” refers to the use of 
mechanical ventilation during the last two days of ICU 
stay, value “(1)” associated with SOFA patterns, 
indicates that the functional parameters of the 
associated organ systems are within physiological 
ranges, and “urin (2)” indicates low urine output and 
renal system dysfunction. 

Table 2 shows that use of mechanical ventilation is a 
dominant predictor of the patient survival between days 
2 and 63 following the day when the prediction is 
made. Cardiac system related SOFA score is the most 
dominant on the first day and during the second half of 
the first month following the prediction day. Renal 
system related patterns are significant during the first 
day and the second month following the prediction day. 

Table 2: Percentage of patterns found most significant, 
with largest ROC areas in predictions P1 through P6. The 
first column contains patterns. Numbers in parentheses 
are data sequences that appeared in those patterns. 

 P1 P2 P3 P4 P5 P6 
rsup (2,2) 3 46 47 0 25 37
rsup (1) 1 32 32 7 7 8
rsup (2) 0 10 10 30 5 6
sofacard (1) 50 0 0 55 55 0
urin (2) 11 0 0 0 0 0
sofarenal (1,1) 6 0 0 0 0 29
others 29 13 11 9 9 20
  

We built 22,152 multi-pattern models for 3,692 patient 
test cases by using 8,469 unique patterns. Although only 
18 percent of patterns were uniform sequences such as 
(2, 2,..., 2) , 91 percent of the time only uniform patterns 
were selected into the models. We were expecting that 
predictive patterns would capture worsening conditions of 
decompensating patients, but, instead, patterns indicating 
stability were selected the most. One reason why we 
could not observe many patterns of change may have 
been due to the scoring function that we set in our pattern 
selection process. The current scoring function maximizes 
the area under the ROC curve, which is a function of the 
sensitivity and specificity of the model predictions. In the 
training database, the survival rates of patients decrease 
slowly, from 0.97 to 0.73, while the prediction range gets 
longer. It might be possible to capture patterns of 
decompensating patients by changing the scoring 
function. 

5 CONCLUSIONS 

In this study, we addressed two key issues:  

(1) Clinical prediction problems represented in 
multivariate time series are subject to the curse of 
dimensionality. The local learning paradigm along with 
the constructive induction approach and conditional 
independence assumptions, can reduce the global 
parameter space to a local, smaller parameter space given 
the data of a single patient. Instead of considering all 
combinations of possible time series, we constructed a 
new set of variables only from those patterns that 
appeared in the patient case in question.  

(2) How can time series with various stationarity 
assumptions be combined? By constructing patterns from 
time series with various lengths, hence with different 
stationarity assumptions, and building models using those 
patterns, we could represent and combine different 
dependence relationships observed in univariate event 
sequences. 



In this preliminary study, we limited the focus of 
research to the above stated two points, and tried not to 
include any additional degree of freedom, such as 
search on multivariate pattern space and search on 
unrestricted space of Bayesian network structures. 
When such searches are performed effectively, more 
expressive, predictive patterns, and better model 
structures are likely to be found; however, predictive 
results of the presented method with such extensions 
would then be strongly affected by the degree of the 
effectiveness of the heuristics used in those additional 
search procedures. 

6 FUTURE STUDIES 

In this study, we used only an aggregation technique to 
construct variables from time series patterns. We are 
planning to use some abstraction techniques to combine 
patterns that are similar in nature. Abstraction 
techniques would enable us not only to utilize the 
available sample population more effectively but also to 
include other combinations of time series that we 
excluded in the presented study, without any additional 
burden of computational complexity. 

We also plan to extend our approach to use temporal 
multivariate patterns in hierarchical models and apply 
prequential analysis (Dawid 1984). 
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