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Abstract

In this paper we study prequential model

selection criteria in supervised learning do-

mains. The main problem with this approach

is the fact that the criterion is sensitive to

the ordering the data is processed with. We

discuss several approaches for addressing the

ordering problem, and compare empirically

their performance in real-world supervised

model selection tasks. The empirical results

demonstrate that with the prequential ap-

proach it is quite easy to �nd predictive mod-

els that are signi�cantly more accurate clas-

si�ers than the models found by the stan-

dard unsupervised marginal likelihood crite-

rion. The results also suggest that averaging

over random orderings may be a more sensi-

ble strategy for solving the ordering problem

than trying to �nd the ordering optimizing

the prequential model selection criterion.

1 Introduction

In this paper we are concerned with the problem of

de�ning practical model selection criteria for learning

predictive models from sample data | in other words

we wish to �nd computationally feasible scoring func-

tions that can be used for distinguishing accurate pre-

dictive models from poor models in machine learning

contexts. It should be noted that as we de�ne the qual-

ity of a model in terms of predictive accuracy, this def-

inition is dependent on how we measure the accuracy

of a predictive distribution, i.e., on the loss function

used. In the unsupervised setting the loss function is

de�ned in terms of a joint distribution on the domain

variables. In contrast to this, in the following we con-

sider supervised situations where the domain variables

can be partitioned into two separate sets, and we know

a priori that all future prediction tasks involve predict-

ing the values of variables in the second set, given the

values of variables in the �rst set. In particular, in this

paper we focus on a special case of such problems, the

classi�cation problem, where the second set consists of

a single (class) variable.

The standard Bayesian approach for solving the model

selection problem is to view the possible models as

values of a random variable, and to choose the model

maximizing the posterior probability, given the sam-

ple data. Assuming all the models to be equally prob-

able a priori, this leads to choosing the model maxi-

mizing the marginal likelihood or the evidence of the

data. However, as discussed in [13], the maximal ev-

idence model represents well the joint distribution of

the domain variables, and is hence a solution for un-

supervised model selection tasks. Nevertheless, this

approach is frequently used also for supervised model

selection tasks, such as the classi�cation problem at

hand. This issue is discussed in more detail in Sec-

tion 2.

In our earlier work [15] we demonstrated empirically

that marginal likelihood can be in practice a poor

model selection criterion for classi�cation domains,

and that model selection criteria based on prequen-

tial (predictive sequential) approaches [5, 6, 7, 19] or

cross-validation [23, 9] lead to more accurate predic-

tive models. In this paper we extend and elaborate our

previous work in two ways. First, instead of constrain-

ing ourselves to simple variants of the Naive Bayes

model, here we change the model family to consist of

more complex �nite mixture models, where the joint

probability distribution is obtained by a weighted sum

of component distributions. The second extension con-

cerns the use of the prequential approach in supervised

model selection. Namely, we assume that there is no

natural ordering in the data, but wish to treat the data

as an unordered list. However, as already pointed out

in [15], in this case the value of the prequential model

selection criterion depends on the order of which the

data is processed. In Section 3 we discuss several ap-



proaches for addressing the ordering problem.

The empirical results obtained support the observa-

tions reported in [15], and demonstrate similar behav-

ior with the mixture models as with the Naive Bayes

model: supervised model selection criteria clearly out-

perform the unsupervised marginal likelihood criterion

also in this case. The results also suggest that the

greedy heuristic suggested in [19, 20] for handling the

ordering problem, or the simple variants considered

here, do not yield satisfactory results in practice, but

more e�cient solutions are needed. In this set of ex-

periments, better results were obtained by averaging

the prequential criterion over a number of random or-

derings. The results are summarized in Section 4.

2 The Supervised Model Selection

Problem

Let D = x

N

denote the training data, a matrix

of N vectors each consisting values of n random

variables X

1

; : : : ; X

n

. For simplicity, in the sequel

we will assume the random variables X

i

to be dis-

crete. By a model M we mean here a paramet-

ric model form so that each parameterized instance

(M; �) of the model produces a probability distribu-

tion P (X

1

; : : : ; X

n

jM; �) on the space of possible data

vectors x. Although it is intuitively appealing (and in

many cases conceptually convenient) to think of the

data D as a random sample from some \true" but un-

known probability distribution, it should be pointed

out that the model selection problem can also be for-

malized without such an assumption, as demonstrated

in, e.g., [5, 20, 18].

Given a set F = fM

1

; : : : ;M

m

g of possible models,

and a data sample D, in the (unsupervised) model

selection problem, the task is to choose a modelM 2 F

so that the resulting predictive distribution

P (X

1

; : : : ; X

n

jD;M)

=

Z

P (X

1

; : : : ; X

n

jD;M; �)P (�jD;M)d� (1)

yields more accurate predictions in the future than any

of the predictive distributions de�ned by the other

models. Consequently, in this paper we do not con-

sider the problem of choosing the model parameters,

but use in each case the predictive distribution (1),

and assume that the modelsM are such that this type

of marginalization can be done in closed form. We also

do not address here the important problem of how to

�nd good sets of models, but concentrate on model

validation, and assume the set F to be given.

In the Bayesian approach, the model selection prob-

lem is typically solved by regarding F as a random

variable (with possible values M

1

; : : : ;M

m

), and by

choosing the model maximizing the posterior proba-

bility P (M

i

jD). Assuming all the models to be equally

probable a priori, this leads to choosing the modelM

�

maximizing the marginal likelihood or the evidence of

the data D:

M

�

= argmax

M

P (M jD) = argmax

M

P (DjM)

= argmax

M

Z

P (DjM; �)P (�jM)d�: (2)

We see that the marginal likelihood measure depends

on the prior distribution P (�jM) de�ned on the model

parameters. This prior can either be regarded as a

formalization of our prior domain knowledge, in which

case we are faced with the question of compatibility

and consistency between di�erent priors [12, 3], or only

as a technical parameter representing no such infor-

mation. In the latter case, it can be shown that a

certain prior known as Je�reys' prior [14, 1] can be

given strong theoretical justi�cation from the predic-

tive performance point of view with respect to the so

called minimax loss formulation [21, 10]. Some em-

pirical results concerning the e�ect of Je�reys' prior

on predictive accuracy can be found in [16, 17, 11].

In the remainder of this paper we do not address the

important problem of choosing the prior distributions,

but simply use uniform non-informative priors for the

model parameters � as well as for the models M .

In the supervised classi�cation framework considered

in this paper, the goal in the model selection is to

choose from F the model M which yields the most

accurate classi�cations with respect to the loss func-

tion used, and the classi�cation predictive distribution

P (V ju;M), where V denotes the class variable, the

value of which is to be predicted, and u denotes the

values of the other variables, which are assumed to be

given. It is now important to realize that although

the joint probability distribution P (v;ujM) can be

used for producing the required classi�cation proba-

bility distribution by marginalization,

P (vju;M) =

P (v;ujM)

P (ujM)

=

P (v;ujM)

P

v

0

P (v

0

;ujM)

;

the model M producing the most accurate predictive

distribution in the joint probability estimation sense

does not necessarily have to produce the most accu-

rate classi�cation probability distribution, unless the

joint distribution P (v;ujM) represents the \true" do-

main probability distribution exactly. As we can safely

say that in reality this assumption is never true, we

can conjecture that proper supervised model selection

criteria may favor di�erent models than unsupervised

model selection criteria.



3 Supervised Prequential Model

Selection

As discussed in [15, 13], there are many alternative

approaches for constructing theoretically valid model

selection criteria for the supervised framework dis-

cussed in the previous section. In the following we

concentrate on prequential approaches where the model

selection criteria are typically computed predictively

and sequentially (\prequentially"). Theoretical frame-

works for prequential model selection can be found

in [5, 6, 7, 19, 20, 24]. It is noteworthy that although

these frameworks are motivated by various di�erent

considerations, all the suggested approaches lead to

quite similar results if the predictive accuracy is mea-

sured by using the logarithmic loss function.

As prequential model selection principles are usually

described in the unsupervised model selection domain,

the approach has to be modi�ed accordingly for our su-

pervised classi�cation case. In [15] we followed the sug-

gestion given in [6], based on the observation that the

marginal likelihood can be factorized into two prod-

ucts as follows:

P (DjM) = P (v

N

;u

N

jM)

=

N

Y

i=1

P (v

i

; u

i

jv

i�1

;u

i�1

;M)

=

N

Y

i=1

P (v

i

jv

i�1

;u

i

;M)

N

Y

i=1

P (u

i

jv

i�1

;u

i�1

;M): (3)

Of these two products, the �rst one was called the

partial (marginal) likelihood in [4] and conditional node

monitor in [22].

We now see that if we use the partial marginal like-

lihood as a basis for a prequential scoring function,

this results in a sequential process where at time i, the

classi�cation predictive distribution

P (V

i

jv

i�1

;u

i

;M) = P (V

i

jv

i�1

;u

i�1

; u

i

;M) (4)

is computed by using the information preceding v

i

in

the matrix D (assuming that the values of V are stored

in the last column of D). Consequently, assuming the

logarithmic loss function, this approach suggests that

one should select the model M minimizing the follow-

ing prequential model selection criterion

S(v

N

;u

N

jM) =

N

X

i=1

� logP (v

i

j v

i�1

;u

i

;M): (5)

It is now important to notice that unlike in the un-

supervised case, where the prequential log-loss score

is equivalent to the marginal likelihood criterion and

hence order-independent, the value of the partial

marginal log-likelihood (5) depends on the ordering of

the data. The ordering is of course irrelevant asymp-

totically, but this raises the question of whether the

ordering is relevant with small sample sizes, and if it

is, how should we then select the data ordering?

We can now distinguish two alternative approaches for

addressing the ordering problem. First of all, if we

think of our data as an unordered list (of vectors) in-

stead of a vector (of vectors), this suggests that we

should marginalize over di�erent orderings; in other

words, we should sum the partial marginal likelihood

score (5) over all the permutations of the data. This

marginalization is obviously computationally infeasi-

ble in practice, which leaves us with approximative

methods. The simplest solution is to generate a num-

ber of random data orderings, and average the results

over the individual prequential scores obtained.

An alternative viewpoint was taken in [19], where it

was suggested that instead of summing over data or-

derings, given a model M , one should try to �nd the

ordering minimizing the prequential score (5). Nev-

ertheless, as in performing the marginalization, this

minimization is again of course computationally infea-

sible in practice. For this reason, Rissanen suggested

in [19, 20] a simple greedy procedure, where the data

is ordered so that at each step the data vector yield-

ing (locally) the largest gain in the prequential score

is processed next. In the sequel we call the resulting

model selection score the best-�rst prequential score.

The greedy best-�rst search is in most cases probably

a poor optimization method that is prone to get stuck

in a local optimum. Nevertheless, even this simple

heuristic requires O(N

2

) time to run, which can be

computationally demanding with large data sets. For

this reason, in this paper we do not consider more

elaborate optimization methods, but focus on using

simple heuristics.

One alternative to the best-�rst approach is to use the

worst-last procedure, where the ordering is determined

from the last vector to the �rst vector in a greedy fash-

ion, but so that at each stage the data vector yielding

the smallest local gain in the prequential score (5) is

chosen. This approach can be motivated by argument-

ing that the cases that are the most di�cult to predict

should be given as much history data as possible, hence

those vectors should be processed last. Two obvious

counterparts of the best-�rst and worst-last procedures

are given by the best-last and worst-�rst heuristics.



4 Empirical Results

4.1 The Setup

In �nite mixture models the classi�cation predictive

distribution (4) is obtained by a weighted sum of com-

ponent distributions,

P (V

i+1

jv

i

;u

i

;u

i+1

) =

X

z

P (V

i+1

jv

i

;u

i+1

; Z = z)P (Z = zjv

i

;u

i+1

); (6)

where Z denotes a (hidden) latent variable indexing

the component distributions of the mixture. In the

following setup we consider only �nite mixture models

where the variables X

i

are assumed to be independent

of each other, given the value of the latent variable Z.

One way to look at �nite mixture models is to treat

the latent variable Z as a clustering variable, the hid-

den values of which index the data source (a probabil-

ity distribution representing a cluster of cases) where

a data vector \originates" from. However, assum-

ing this type of a latent variable is in contradiction

with the assumption made in Section 2, where we as-

sumed that the models used are such that the pre-

dictive distributions can be obtained by integrating

over the parameters. For this reason, in the following

we simplify the setup and assume that the values of

the latent variable corresponding to each of the train-

ing vectors x

1

; : : : ;x

N

are set to some �xed values

z = (z

1

; : : : ; z

N

). We do not address the problem of

how to �nd the clustering z, but assume it to be given.

In this case the predictive distribution (6) is fully de-

termined by z, and we can regard the clusterings z as

our models M .

The prequential model selection criterion alternatives

discussed in Section 3 were empirically validated by

using 14 classi�cation data sets from the UCI data

repository [2]. A single model selection experiment

was performed in the following way. The data was

�rst partitioned into two equal size sets, the training

data and the test data. A pool of 40 candidate models

(clusterings) z

1

; : : : ; z

100

was then produced by run-

ning the K-means clustering algorithm (see, e.g., [8])

40 times with the training data, starting from random

initial points. The number of mixture components (the

number of clusters, i.e., the number of possible values

of Z) varied randomly between 3 and 20.

With each model selection criterion, all the 40 candi-

date models were then evaluated by using the criterion

with the training data, and with each criterion, the

model with the best score was selected. After that,

all the selected models were evaluated by using the

previously unseen test data, by computing both the

log-score and 0/1-score for each of the test vectors.

The score obtained by the candidate model selected

by a model selection criterion was recorded as the pre-

diction accuracy associated with this criterion.

One should observe that the test vectors were treated

as independent classi�cation tasks, not as a sequence,

and with each model selection criterion, the average

of the resulting N individual classi�cation prediction

scores was stored as the predictive accuracy obtained

by using the criterion with this training data and test

data. This whole procedure was then repeated 15

times by splitting the full data set randomly into train-

ing data and test data, and the same was repeated

with all the 14 classi�cation data sets. It should be

emphasized that the experiment is completely fair in

the sense that at no time before the actual classi�ca-

tion task had the model selection criteria access to the

test data.

4.2 The Results

The model selection scoring methods used in the ex-

periments are listed in Table 1, and the results of the

experiments are summarized in Figures 1 and 2. The

predictive scores obtained with each model selection

criterion are scaled with respect to the score obtained

by the marginal likelihood model selection criterion,

so that a score of 0,0% means the equivalent result

as with the marginal likelihood criterion, and a score

of, say +5.0%, means that the corresponding classi�-

cation score was on the average 5.0% better than the

score obtained with the marginal likelihood criterion.

Table 1: The methods used in the experiments.

ABBREVIATION EXPLANATION

L-O-O Leave-one-out crossvalidation.

PREQ-RAND(N) The prequential score (5) aver-

aged over N random permuta-

tions of the data.

PREQ-MAX(N) The prequential score (5) opti-

mized over N random permuta-

tions of the data.

BEST-FIRST The prequential score (5) with

the data ordering determined by

a greedy best-�rst optimization.

WORST-LAST The prequential score (5) with

the data ordering determined

by a greedy worst-last optimiza-

tion.

From the �gures we can see that all the relative scores

are positive, which means that the supervised model

selection criteria clearly outperformed the \unsuper-

vised" marginal likelihood in the classi�cation domains

used in the experiments. Actually, all the supervised

model selection scores tested gave almost always a pos-

itive relative score, and the score was in many cases
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Figure 1: Average relative prediction gains with the

logarithmic loss.
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Figure 2: Average relative prediction gains with the

0/1-loss.

over 50% with the 0/1-score and over 30% with the

log-score. It should be noted that in the log-score case

the scale is logarithmic, which means that the di�er-

ences in the relative score are in this case much more

signi�cant.

The results obtained with the PREQ-RAND(N) sam-

pling method �rst improve as N increases, but de-

crease slightly after N reaches 30. However, the re-

sults are consistently better than those obtained with

the greedy heuristics, or with the PREQ-MAX(N)

method. These results suggest that averaging over the

orderings gives better results than optimizing. An ad-

ditional interesting observation is that in the log-score

case the worst-last heuristic gave on the average better

results than the best-�rst method suggested. The best-

last and worst-�rst heuristics performed clearly worse

than best-�rst and worst-last and were excluded from

�gures.

5 Conclusions and Future Work

We studied the model selection problem in supervised

classi�cation domains, and demonstrated empirically

that the inherently unsupervised marginal likelihood

model selection criterion can be outperformed in prac-

tice by the prequential approach and by crossvali-

dation, which were both designed for the supervised

model selection problem at hand. The models used in

this study consisted of �nite mixture models with the

typical assumption of independence between the do-

main variables, given the value of the clustering vari-

able.

For addressing the ordering problem inherent to the

prequential method used, we considered two alterna-

tive approaches: the sampling approach and the op-

timization approach. In the sampling approach the

e�ect of data ordering was smoothed out by averaging

the score over a number of random data permutations.

In the optimization approach, motivated by the pre-

dictive MDL approach advocated by Rissanen [19, 20],

the prequential score was determined by using the sin-

gle data ordering optimizing the prequential score.

The results show that the prequential score with the

sampling approach can lead to better results than

crossvalidation. However, in the experiments reported

here, the results do not seem to improve monotoni-

cally with the number of random orderings used, after

a certain sample size is reached. We believe that this

is probably a random e�ect caused by the relatively

small number of repetitions used in the experiments.

On the other hand, it is also possible that this result

indicates that the limits of the naive random sampling

have been reached, and in order to get better results

with the sampling approach, one needs to use more

elaborate sampling methods. This question will be

studied in more detail in our future work.

The prequential score with the minimization approach

did not produce as good results as the sampling ap-

proach, although the results were signi�cantly better

than with the \vanilla" marginal likelihood approach.

Whether this means that the greedy search methods

used were just overly naive, or that the sampling ap-

proach is the more proper solution for the ordering

problem, remains as an open question that will also

be studied in the future.
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