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Abstract

We show that the Bayesian evidence frame-

work can be applied to both �-support vec-

tor regression (�-SVR) and �-support vec-

tor regression (�-SVR) algorithms. Standard

SVR training can be regarded as performing

level one inference of the evidence framework,

while levels two and three allow automatic

adjustments of the regularization and kernel

parameters respectively, without the need of

a validation set.

1 Introduction

In recent years, there has been a lot of interest in

studying the use of support vector machines (SVMs)

on various classi�cation and regression problems.

SVMs are motivated by results from the statistical

learning theory [14] and, unlike other machine learn-

ing methods, its performance does not deteriorate even

in problems with high input dimensionalities. In this

paper, we consider two popular techniques for ap-

plying SVMs to the regression problems, namely the

�-support vector regression (�-SVR) [1] and the �-

support vector regression (�-SVR) algorithms [9].

To obtain a high level of performance, some parame-

ters in both SVR algorithms have to be tuned. These

include a kernel parameter that helps to de�ne the fea-

ture space and a regularization parameter

1

that de-

termines the tradeo� between training accuracy and

model complexity. Data-resampling techniques such

as cross-validation can be used, but they are usually

very expensive in terms of computation and/or data.

In this paper, we address this issue by adopting the

Bayesian approach. In general, the Bayesian approach
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As will be mentioned in Section 2, �-SVR requires one

more regularization parameter to trade o� � against model

complexity and training accuracy.

is attractive in being logically consistent, simple and


exible. Recently, various Bayesian techniques have

been applied to support vector classi�cation (SVC)

[2, 4, 7, 10, 13]. Here, we follow [2, 4] in applying the

evidence framework [5] to SVR. The evidence frame-

work is divided into three levels of inference, and is

computationally equivalent to the type II maximum

likelihood method in Bayesian statistics. Its use in

feedforward neural networks [6] has allowed the au-

tomatic selection of the regularization parameters and

network architectures, without the need of a validation

set.

The rest of this paper is organized as follows. A brief

overview of �-SVR and �-SVR will be given in Sec-

tion 2. The connections between these two SVR algo-

rithms and the evidence framework will be described

in Sections 3 and 4 respectively. Simulation results are

presented in Section 5, and the last section gives some

concluding remarks.

2 �-SVR and �-SVR

In this section, we brie
y review �-SVR and �-SVR.

Interested readers may consult [11, 14] for more details

and extensions.

Let the training set D be f(x

i

; y

i

)g

N

i=1

, with input x

i

and output y

i

2 <. In �-SVR, x is �rst mapped to

z = �(x) in feature space F , then a linear function

f(x;w) = w

T

z + b is constructed in F such that it

deviates least from the training data according to the

�-insensitive loss function

jy � f(x)j

�

=

�

0 if jy � f(x)j � �,

jy � f(x)j � � otherwise,

while at the same time is as \
at" as possible (i.e.,

kwk is as small as possible). Formally, this means

minimize

1

2

kwk

2

+ C

N

X

i=1

(�

i

+ �

�

i

); (1)



subject to
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�
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i
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i
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�

i

; �

�

i

� 0;

(2)

where C is a user-de�ned constant. It is now well-

known that (1) can be transformed to a quadratic pro-

gramming problem.

While the value of � has to be set beforehand in �-SVR,

�-SVR allows the automatic determination of � by us-

ing an additional constant � � 0 to trade o� � against

model complexity and training accuracy. Mathemati-

cally, this means

minimize

1

2

kwk

2

+ C

 

��+

1

N

N

X

i=1

(�

i

+ �

�

i

)

!

; (3)

subject to (2) and � � 0. Again, (3) can be trans-

formed to a quadratic programming problem.

3 �-SVR and the Evidence Framework

Under the evidence framework, a model H, with a k-

dimensional parameter vector w, consists of its func-

tional form f , the distribution p(Djw; �;H) that the

model makes about the data D, and a prior parameter

distribution p(wj�;H). Here, � and � are the hyper-

parameters associated with the two distributions.

3.1 �-SVR and Level 1 Inference

For given values of � and �, the �rst level of inference

infers the posterior distribution ofw by the Bayes rule.

Assuming that the patterns are i.i.d., the �rst level

of inference infers the posterior distribution of w for

given values of �; � using

p(wjD;�; �;H) / p(wj�;H)

Y

i

p(y

i

jx

i

;w; �;H)p(x

i

):

As discussed in [11, 12], the �-insensitive cost func-

tion corresponds to the following probability density

function

2

p(y

i

jx

i

;w; �;H) = c exp(��jy

i

� f

i

j

�

); (4)

where c = �=(2(1 + ��)) is the normalizing factor.

Hence, by using the Gaussian prior

p(wj�;H) / exp(�

�

2

kwk

2

); (5)

with � = �=C, optimizing (1) can be regarded as �nd-

ing the maximum a posteriori (MAP) estimate w

MP

of w and thus performing the level one inference.
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Note that we have added a � into (4) to control the

noise variance.

Moreover, note that while SVC can only be regarded

as approximately performing the level one inference [4],

here for �-SVR we have exact correspondence as the

density function in (4) is normalized. Thus, concerns

about the problem of having an un-normalized prob-

ability model as in the classi�cation case [13] do not

apply here.

3.2 �-SVR and Level 2 Inference

The second level of inference determines � and � by

maximizing

p(�; �jD;H) / p(Dj�; �;H)p(�; �jH):

When p(�; �jH) is a 
at prior, the evidence for � and

�, p(Dj�; �;H), can be used to assign a preference to

alternative values of � and �. In the following, de�ne

E

W

=

1

2

kwk

2

and E

D

=

P

N

i=1

(�

i

+ �

�

i

). Similar to [5],

we approximate the posterior weight distribution by a

single Gaussian at w

MP

, and the evidence for � and

� can then be obtained by integrating out w as:

log p(Dj�; �;H) =

��E

MP

W

� �E

MP

D

�

1

2

log detA+

k

2

log�

+N(log� � log 2� log(1 + ��)); (6)

where

A =

@

2

(�E

W

+ �

P

N

i=1

(�

i

+ �

�

i

))

@w

2

;

E

MP

W

andE

MP

D

are the values of E

W

andE

D

evaluated

at w

MP

.

Instead of directly maximizing log p(Dj�; �;H) to ob-

tain the most probable values �

MP

and �

MP

, one usu-

ally proceeds in an iterative manner [5]: By setting the

derivative of log p(Dj�; �;H) in (6) w.r.t. � to zero,

we obtain the following re-estimation formula:

2�E

MP

W

= 
; (7)

where 
 = k � � traceA

�1

is often called the e�ective

number of parameters [5]. Similarly, for �, we obtain

2�E

MP

D

�

2

+ (2E

MP

D

+ 
�)� � (2N � 
) = 0:

Based on the new iterates of � and �, w

MP

can be re-

estimated using level one inference and then the pro-

cess re-iterated.

3.2.1 Computing the Hessian for �-SVR

To determine the hessianA, we write �

i

= [f

i

�y

i

��]

+

and �

�

i

= [y

i

� f

i

� �]

+

respectively, where [u]

+

=

uI

fu>0g

. As I

fu>0g

is not smooth and does not have a



second derivative, we replace it by the sigmoid function

&(u) = 1=(1 + e

��u

). Di�erentiating w.r.t. w, we get

@

2

�

i

@w

2

= r(f

i

� y

i

� �)z

i

z

T

i

;

@

2

�

�

i

@w

2

= r(y

i

� f

i

� �)z

i

z

T

i

;

where r(u) = u&

00

(u) + 2&

0

(u) and the prime denotes

the derivative w.r.t. the argument of &(�). Thus,

A = �I

k

+ �B where I

k

is the k-dimensional iden-

tity matrix, B =

P

N

i=1

r

i

z

i

z

T

i

and r

i

= r(f

i

�y

i

� �)+

r(y

i

� f

i

� �). As for SVC [2, 4], eigenvalues � of B

(and hence also of A) can be obtained from �u =Hu,

where H is a N �N matrix with entries r

i

K(x

i

;x

j

).

Using this eigen decomposition, we obtain

log detA =

n

X

i=1

log(�+ ��

i

) + (k � n) log�;

and


 =

n

X

i=1

��

i

�+ ��

i

; (8)

where n � N is the number of nonzero eigenval-

ues of H. These can then be used to compute

log p(Dj�; �;H) and to iterate for �; � as mentioned

in Section 3.2

3

.

To reduce the O(N

3

) time complexity in sthe above

eigen system, we notice that r

i

becomes very small

when jy

i

� f

i

j � � is large. Hence, B is dominated by

patterns lying close to the edges of the �-tube, and we

can thus signi�cantly reduce the complexity by includ-

ing only these patterns in B.

3.3 �-SVR and Level 3 Inference

The third level of inference ranks di�erent models by

examining their posterior probabilities

p(HjD) / p(DjH)p(H):

Assuming a 
at prior p(H) for all models, di�erent

models can then be rated by the evidence p(DjH).

Again, this is obtained by integrating

4

out � and �, as

p(DjH) =

Z

p(Dj�; �;H)p(�jH)p(�jH)d(log �)d(log �):

Using a Gaussian approximation for p(Dj�; �;H), we

have

p(DjH) / p(Dj�

MP

; �

MP

;H)� log�� log�;

3

Note that this still holds when k is in�nite (such as

when the Gaussian kernel is used).

4

As � and � are scale parameters, we perform the inte-

gration w.r.t. log � and log �.

where

(� log�)

2

=

2




; (9)

and

(� log �)

2

=

(1 + ��

MP

)

2

�

MP

(E

MP

D

(1 + ��

MP

)

2

+N�)

:

4 �-SVR and the Evidence Framework

4.1 �-SVR and Level 1 Inference

Following the probability model (4) and (5) in Sec-

tion 3.1, we further on adopt the following prior on �

(Figure 1):

p(�j�; �;H) / (1 + ��)

N

exp(�N���): (10)

It can then be shown that �nding the MAP estimates

w

MP

and �

MP

amounts to minimizing

1

2

kwk

2

+

�N

�

 

��+

1

N

N

X

i=1

(�

i

+ �

�

i

)

!

;

which is the same as (3) on setting C = �N=�.
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Figure 1: A plot of p(�j�; �;H) at di�erent values of

N (� = 10; � = 0:5).

As can be seen from Figure 1, p(�j�; �;H) has a single

peak. This can be explained by �rst noting that at the

peak, @ log p(�j�; �;H)=@� = 0, or

� =

1

1 + ��

: (11)

Now, under our probabilistic model (4), the probabil-

ity that a particular x has its corresponding y lying

outside the �-tube (and is thus an error) is:

1�

Z

�

��

�

2(1 + ��)

exp(�� � 0)d� =

1

1 + ��

: (12)



Thus, by comparing this with (11), we see that at the

peak of p(�j�; �;H), the value of � is in line with the ob-

servation that � equals the fraction of errors (and also

the fraction of support vectors) asymptotically with

probability one [9]. To the left of this peak, � is so

small that the probability in (12) will be greater than

�; whereas to the right of the peak, � is so large that

the probability in (12) will be smaller than � .

Moreover, notice that unlike traditional Bayesian

inference, here we have a data dependent prior

p(�j�; �;H) which depends on N , the size of the data.

In fact, as can be seen from Figure 1, the prior becomes

more concentrated around the peak as N increases.

This di�erence is due to the fact that in traditional

Bayesian inference, with the arrival of more and more

data, the e�ect of the prior diminishes and the poste-

rior becomes more and more dominated by the likeli-

hood term. However, as have been shown earlier, we

want to use � to control the fraction of data points

lying outside the �-tube in �-SVR. This is impossible

with a conventional prior. But with the prior in (10),

its logarithm grows linearly with N . As the log likeli-

hood also grows linearly with N , the net e�ect is that

our prior belief (as expressed by the prior) will not

be diminished with the arrival of more data. In other

words, our prior belief that � determines the fraction

of errors has the same strength in comparison to the

likelihood, no matter the size of the data set observed.

4.2 �-SVR and Level 2 Inference

The second level of inference determines �; � and

� in �-SVR by maximizing p(�; �; �jD;H) /

p(Dj�; �; �;H)p(�; �; �jH). Again, we approximate

the joint posterior distribution of w and log � by a

single Gaussian at their MAP values. Thus

log p(Dj�; �; �;H) =

��E

MP

W

� �E

MP

D

� �N��

MP

�

1

2

log detA

+

k

2

log�+N log

�

2

+

1

2

log 2� �N�

+(N + 1) log(N�) + log � � log �(N + 1; N�);

where �(N + 1; N�) =

R

1

N�

e

�t

t

N

dt is related to the

incomplete gamma function and can be readily com-

puted [8].

It can be shown that the re-estimation formula for

�

MP

is still (7), while that for �

MP

is changed to

� =

2N � 
 + 1

2(E

MP

D

+N��

MP

)

:

For �, the derivative of log p(Dj�; �; �;H) w.r.t. � is:

�N(1 + ��

MP

) +

N + 1

�

+N exp(�N� +N log(N�)� log �(N + 1; N�));

and it is not easy to obtain a re-estimation formula for

� by simply setting this derivative to zero. So, instead,

we use the Newton's method [8] to �nd the root of the

derivative. At each iteration, a new estimate for � can

be obtained from the old estimate �

old

as:

�

old

�

@ log p(Dj�; �; �;H)

@�

=

@

2

log p(Dj�; �; �;H)

@�

2

�

�

�

�

�

old

;

where

@

2

log p(Dj�; �; �;H)

@�

2

=

�

N + 1

�

2

�

@ log �(N + 1; N�)

@�

�

�N +

N

�

�

@ log �(N + 1; N�)

@�

�

;

and

@ log �(N + 1; N�)

@�

=

�N exp(�N� +N log(N�)� log �(N + 1; N�)):

4.2.1 Computing the Hessian for �-SVR

For �-SVR, the hessian A now becomes

@

2

(�E

W

+ �E

D

+N���)

@([w

T

: log �]

T

)

2

:

As � is non-negative, we take the Gaussian approxima-

tion w.r.t. to w and log �. Similar to Section 3.2.1, we

obtain

A =

�

�I

k

+ �B ��

P

i

s

i

z

i

��

P

i

s

i

z

T

i

��

2

P

i

r

i

�

; (13)

where s

i

= r(y

i

� f

i

� �)� r(f

i

� y

i

� �). To compute

the determinant of A, we make use of the following

identity on partitioned matrices:

det

�

A

11

A

12

A

21

A

22

�

=

det(A

22

) det(A

11

�A

12

A

�1

22

A

21

):

Note that the sub-matrix ��

2

P

i

r

i

in (13) is just a

number, and assuming that it is not equal to zero

(which always holds in practice), then its inverse al-

ways exist. This leads to

detA = (��

2

X

i

r

i

) det(�

~

B+ �I

k

);



where

~

B = B�

P

ij

s

i

s

j

z

i

z

T

j

=

P

i

r

i

. Denote the eigen-

values of

~

B by ~�. It can be shown that these can be

obtained by solving the eigen system ~�~u =

~

H~u, where

~

H = (diag(r

i

) � ss

T

=

P

i

r

i

)K, with s = (s

1

; : : : ; s

N

)

and K = fK(x

i

;x

j

)g

ij

. We then have

log detA =

X

i

log(� + �~�

i

) + (k � n) log�+ log(��

2

X

i

r

i

):

Moreover, 
 is still given by (8) with ~�

i

replacing �

i

.

4.3 �-SVR and Level 3 Inference

Integrating out �; � and � from p(Dj�; �; �;H) and

using a Gaussian approximation as in Section 3.3, it

can be shown that

log p(DjH) =

log p(Dj�

MP

; �

MP

; �

MP

;H) +

3

2

log(2�)

�

1

2

log 
 +

1

2

log 2�

1

2

log

�

2N + 1� 


2

�

N + 1

��

MP

(N�

MP

�

MP

�

MP

� 1)

@ log �(N + 1; N�)

@�

�

�(N�

MP

�

MP

�

MP

)

2

�

:

5 Simulation

In this section, we illustrate the results on a toy prob-

lem. The target function is sinc(x) = sin(x)=x, with

x uniformly distributed over [�12; 12] and Gaussian

noise N(0; 0:05

2

) added. The test set has 10,000 pat-

terns. We repeat the experiments with a total of 10

independent training sets, each of size 80. The Gaus-

sian kernel K(x

i

;x

j

) = exp(�!kx

i

� x

j

k

2

) is used.

Figure 2 illustrates the choice of the regularization pa-

rameter by level 2 inference. p(Dj�; �;H) (for �-SVR)

and p(Dj�; �; �;H) (for �-SVR) are plotted against

various testing errors at di�erent values of C. Fig-

ure 3 illustrates the choice of the kernel width by level

3 inference. p(DjH) is plotted against the testing er-

rors at di�erent values of !. For a �xed !, the hyper-

parameters �; � are obtained from the re-estimation

formulas in Section 3.2 (for �-SVR) and Section 4.2

(for �-SVR). As can be seen from both �gures, the

evidence follows the testing errors closely.

6 Conclusion

In this paper, we extend the application of the evidence

framework to both �-SVR and �-SVR. As in previous

applications on neural networks [5] and SVC [2, 4],

this allows automatic adjustment of the regularization

and kernel parameters to their near-optimal values,

without the need to set data aside in a validation set.

Building on this Bayesian connection, the posterior

predictive distribution and error bars for �-SVR and

�-SVR can also be computed (similar to the computa-

tion of the moderated outputs for SVC [3]). Thus, a

measure of uncertainty can be associated with its out-

put predictions. This can be a major advantage, es-

pecially in safety-critical applications. Details of this

extension will be reported elsewhere.
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Figure 2: Level 2 inference results. The error bars

correspond to the �1 standard deviations based on

the converged results among the 10 repetitions.

10
−2

10
−1

10
0

0

20

40

60

80

100

120

140

ω
lo

g
 e

v
id

e
n

c
e

log evidence                
mean abs err                
root mean sqr err           

mean ε−insensitve err

10
−2

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

e
rr

o
r

(a) �-SVR

10
−2

10
−1

10
0

250

300

350

400

ω

lo
g

 e
v
id

e
n

c
e

log evidence                
mean abs err                
root mean sqr err           

mean ε−insensitve err

10
−2

10
−1

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
rr

o
r

(b) �-SVR

Figure 3: Level 3 inference results. Again the error

bars correspond to the �1 standard deviations based

on the converged results among the 10 repetitions.


