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Abstrat

This note shows that the problem of learning

an optimal hain graphial model from data

is NP-hard for the Bayesian, maximum like-

lihood, and minimum desription length ap-

proahes. This hardness result holds despite

the fat that the problem is a restrition of

the polynomially solvable problem of �nding

the optimal tree graphial model.
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1 Introdution

The problem of learning graphial models has reeived

muh attention. In this note, I present a negative re-

sult on learning optimal hain graphial models.

The main positive results on learning graphial mod-

els are on learning tree graphial models. These

have been presented for maximum likelihood (ML)

riterion (Edmonds, 1967; Chow and Liu, 1968) and

adapted to a Bayesian riterion by Hekerman, Geiger,

and Chikering (1995). Two NP-hardness results for

learning graphial models have appeared in the liter-

ature. Those are the NP-hardness of �nding the opti-

mal Bayesian network struture with in-degree greater

than or equal to two using a Bayesian optimality ri-

terion (Chikering, 1996) and the problem of �nding

the ML optimal polytree (Dasgupta, 1999).

In this note, proofs of the hardness of �nding an opti-

mal hain graphial models are presented for the max-

imum likelihood (ML) riterion, the minimum desrip-

tion length (MDL) riterion, and a Bayesian riterion.

Unlike the ML hardness result of Dasgupta, I expliitly

onstrut a polynomial sized dataset for the redution

and, unlike the Bayesian hardness result of Chikering

(1996), I use a ommon \non-informative" prior.

The negative result for learning optimal hain graph-

ial models stands in ontrast to the positive result

on learning tree graphial models. While polynomial

learning algorithms exist for the lass of tree graphi-

al models, by restriting the lass of graphial models

to hains, one an make the learning problem beome

NP-hard.

2 Optimal Graphial Models

Graphial models an be used to obtain an approx-

imate joint distribution over a set of variables from

data. In this note, I fous on direted graphial mod-

els for a set of disrete variables fX
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omponent of a direted graphial model is its di-

reted graphial struture that desribes dependenies

between the variables. A direted graphial model rep-

resents a family of distributions that fator aording

to the graphial struture G of the direted graphial

model, more spei�ally,
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where pa
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) denotes the possibly empty set of par-

ents of vertex X

i

in graph G. The subsript G is omit-

ted when it is lear from ontext. The most ommon

methods guiding the hoie distribution from a fam-

ily of distributions are maximum likelihood estimation

and Bayesian estimation. Given a graphial stru-

ture and a set of ases for the variables (also a prior

distribution over the distributions in the ase of the

Bayesian method), these methods provide an approxi-

mate joint distribution. For more details on graphial

models and estimation see Hekerman (1995).

This leaves open the question of how one should hoose

the appropriate graphial struture. In the remainder

of this setion we desribe the maximum likelihood

(ML), the minimum disrimination length (MDL), and

a Bayesian riterion for evaluating direted graphial

models given a set of ases D. A value of X

i

is de-

noted by x

i

and a value of pa(X

i

) is denoted by pa(x

i

).

The number of ases in D in whih X

i

= x
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and

pa(X
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) = pa(x

i

) is denoted by N(x

i

; pa(x
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)) and the

total number of ases in D is denoted by N = N(;).

The log maximum likelihood sore for a graphial

model is
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where H
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)) is the empirial onditional en-

tropy of X
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given its parents, and is equal to
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One pratial shortoming of the ML sore is that in

omparing two models with graphial struture G and

G

0

where G ontains a proper subset of the edges of

G

0

the ML sore will never favor G. Thus, when using

an ML sore to hoose among models without restrit-

ing the lass of graphial strutures, a fully onneted

struture is guaranteed to have a maximal sore. This

is problemati due to the potential for poor general-

ization error when using the resulting approximation.

This problem is often alled \over�tting". When using

this priniple it is best to restrit the lass of alterna-

tive strutures under onsideration in some suitable

manner.

The minimum desription length sore an be viewed

as a penalized version of the ML sore
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where d =

P

i

(#(pa(X

i

))� (#(X

i

)� 1)) and #(Y ) is

used to denote the number of possible distint assign-

ments of values for a set of variables Y and #(;) = 1.

The penalty term leads to more parsimonious models,

thus, alleviating the shortoming desribed for the ML

sore.

Finally, we present a log Bayesian sore. We onsider

a restrited type of prior where we assume a uniform

prior on alternative graphs, P (G) / 1, and the \un-

informative" prior over distributions from Cooper and

Herskovits (1992).
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Although not as apparent as in the MDL sore, the

Bayesian sore also has a built-in tendeny for parsi-

mony that alleviates the problems of over�tting. The

hardness results presented below an be extended to

a variety of alternative types of priors inluding the

BDe prior with an empty prior model (see Hekerman

et al. 1995).

The problem of �nding the optimal direted graphi-

al model for a given lass of strutures G and data

D is the problem of �nding the struture G 2 G that

maximizes S(G;D). The important feature of eah of

the sores is that they an be alulated in terms of

a loal sore for eah variable. The struture of the

graphial model determines whih partiular variables

are involved in the omputation of a loal sore. Fi-

nally, the loal sore for a variableX

i

is only a funtion

of the number of possible assignments of values to the

variables X

i

and pa(X

i

) and the joint ounts for X

i

and pa(X

i

) in the set of ases D.

3 NP-Hardness of �nding optimal

hains

In this setion, we demonstrate that the problem of

�nding the optimal direted graphial model when we

restrit the lass of strutures to be hains is NP-hard.

A hain is a spanning tree in whih no vertex has

degree higher than two. This result stands in stark

ontrast to the positive results provided by Edmonds

(1967) and Chow and Liu (1968) who show that one

an learn the ML optimal tree in polynomial time.

Hekerman et al. (1995) have extended these results

to �nding the Bayesian optimal tree.

To demonstrate the hardness of �nding optimal hains

we need to formulate the problem as a deision prob-

lem. The deision problem version of �nding the opti-

mal hain direted graphial model is as follows

The optimal hain (OC) deision problem:

Is there a hain graphial model with sore

greater than or equal to k for dataset D?

In this setion we prove the following theorem.

Theorem 1 The optimal hain problem is NP-Hard.

To show this, we redue the Hamiltonian Path (HP)

deision problem to the OC deision problem.

The HP deision problem: Is there a Hamil-

tonian path in an undireted graph G?

A Hamiltonian path for an undireted graph G is a

non-repeating sequene of verties suh that eah ver-

tex in G ours on the path and for eah pair of ad-

jaent verties in the sequene there is an edge in G.

Let the undireted graph G = hV;Ei have vertex set

V = fX

1

; : : : ; X

n

g and edge set E.

The HP deision problem is NP-omplete. Loosely

speaking, this means that the HP deision problem is

as omputationally diÆult as a variety of problems

for whih no known algorithm exists that runs in time

that is a polynomial funtion of the size of the input.

Theorem 1 indiates that the OC deision problem is

at least as diÆult as any NP-omplete problem. For

more information about the HP deision problem and

NP-ompleteness see Garey and Johnson (1979).

We redue the HP deision problem for G to the OC

deision problem by onstruting a set of ases D with

the following properties;
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For suh a dataset, the problem of the existene of

a Hamiltonian path is equivalent to the existene of

a hain graphial model with sore equal to k =

+(jV j�1)�� where jV j = n is the number of verties

in the undireted graph G. Thus, if we an eÆiently

onstrut a polynomial sized dataset with these prop-

erties, we have redued the HP problem to the OC

problem. In other words, we have transformed a gen-

eral HP deision problem into an OC deision problem.

Beause the size of the input to the OC problem is a

polynomial funtion of the size of the input for the

HP problem, if one an �nd an algorithm solve the

OC problem in polynomial time then all NP-omplete

problems an be solved in polynomial time.

We onstrut a dataset for graphG assuming that eah

variable is ternary to satisfy ondition 1. For eah pair

of verties X

i

and X

j

(i < j) for whih there is an

edge in G we add the following 8 ases in whih every

variable X

k

(k 6= i; j) is zero.

X

1

: : :X

i�1

X

i

X

i+1

: : :X

j�1

X
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X

j+1

: : : X

n

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

For eah pair of verties X

i

and X

j

(i < j) for whih

there is not an edge in G we add the following 8 ases.
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i�1

X
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X
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X
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X

j+1

: : : X

n

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

For a set of ases onstruted as desribed above, the

pairwise ounts for a pair of variables X

i

and X

j

on-

neted by an edge in G are

X

i

X

j

0 1 2

0 4(n

2

� 5n+ 6) 4(n� 2) 4(n� 2)

1 4(n� 2) 3 1

2 4(n� 2) 1 3

The pairwise ounts for a pair of variables X

i

and X

j

not onneted by an edge in G are

X

i

X

j

0 1 2

0 4(n

2

� 5n+ 6) 4(n� 2) 4(n� 2)

1 4(n� 2) 2 2

2 4(n� 2) 2 2

The marginal ounts for eah variable are idential,

thus, ondition 2 is satis�ed. There are two types of

pairwise ount tables, thus, there are at most two val-

ues for a given type of pairwise LoalSore. It is easy

to verify that these two values are not equal to show

ondition 3 is satis�ed. It follows from the symmetry

in the two types of pairwise tables and ondition 2 that

ondition 4 is satis�ed. Finally, we have onstruted

the ases to satisfy ondition 5. Furthermore, the set

of ases is eÆiently onstruted and has a size whih

is polynomially bounded by the size of the graph G

proving the result.

4 Conlusion

The hardness result presented in this note highlights

one potential soure of the hardness of NP-Hard prob-

lems. By hoosing an inappropriate sublass of models

one an make an easy problem diÆult. Perhaps, by

arefully hoosing a broader lass of models than tree

graphial models one an identify interesting lasses of

graphial models for whih the problem of �nding an

optimal model is tratable.

It is important to note that good heuristis exist for

the problem of �nding weighted Hamiltonian paths

(Karp and Held, 1971). These heuristis an be easily

used to identify good quality hain models. In addi-

tion, the optimal tree model will have a sore at least

as large as any hain model so the optimal tree sore

an be used as a bound for the optimal hain sore.

This bound an be useful for searhing for good hain

models.

Finally, the problem of �nding an optimal hain graph-

ial model is a version of a general problem alled a

similarity ordering problem. Given sore for pairs of

objets Sore(X

i

; X

j

), the similarity ordering problem

is the problem of identifying a total order on a set of

objets suh that the sum of the sores for objets ad-

jaent in the total ordering is maximized. A solution

to the similarity ordering problem is potentially useful

for the visualization of quantitative and qualitative in-

formation. When viewing the problem of �nding the

optimal hain graphial model as a similarity ordering

problem, the variables are the objets and the hain

orresponds to a total order. One an use the opti-

mal hain graphial model for a dataset to hoose an

ordering of the variables in a visual display of that

dataset. By ordering the variables aording to the

optimal hain graphial model, one an potentially vi-

sually detet and inspet statistially related quanti-

ties.
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