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Abstract

This note shows that the problem of learning
an optimal chain graphical model from data
is NP-hard for the Bayesian, maximum like-
lihood, and minimum description length ap-
proaches. This hardness result holds despite
the fact that the problem is a restriction of
the polynomially solvable problem of finding
the optimal tree graphical model.
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1 Introduction

The problem of learning graphical models has received
much attention. In this note, I present a negative re-
sult on learning optimal chain graphical models.

The main positive results on learning graphical mod-
els are on learning tree graphical models. These
have been presented for maximum likelihood (ML)
criterion (Edmonds, 1967; Chow and Liu, 1968) and
adapted to a Bayesian criterion by Heckerman, Geiger,
and Chickering (1995). Two NP-hardness results for
learning graphical models have appeared in the liter-
ature. Those are the NP-hardness of finding the opti-
mal Bayesian network structure with in-degree greater
than or equal to two using a Bayesian optimality cri-
terion (Chickering, 1996) and the problem of finding
the ML optimal polytree (Dasgupta, 1999).

In this note, proofs of the hardness of finding an opti-
mal chain graphical models are presented for the max-
imum likelihood (ML) criterion, the minimum descrip-
tion length (MDL) criterion, and a Bayesian criterion.
Unlike the ML hardness result of Dasgupta, I explicitly
construct a polynomial sized dataset for the reduction
and, unlike the Bayesian hardness result of Chickering
(1996), I use a common “non-informative” prior.

The negative result for learning optimal chain graph-
ical models stands in contrast to the positive result
on learning tree graphical models. While polynomial
learning algorithms exist for the class of tree graphi-
cal models, by restricting the class of graphical models

to chains, one can make the learning problem become
NP-hard.

2 Optimal Graphical Models

Graphical models can be used to obtain an approx-
imate joint distribution over a set of variables from
data. In this note, I focus on directed graphical mod-
els for a set of discrete variables {X1,...,X,}. One
component of a directed graphical model is its di-
rected graphical structure that describes dependencies
between the variables. A directed graphical model rep-
resents a family of distributions that factor according
to the graphical structure G of the directed graphical
model, more specifically,
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where pag(X;) denotes the possibly empty set of par-
ents of vertex X; in graph G. The subscript G is omit-
ted when it is clear from context. The most common
methods guiding the choice distribution from a fam-
ily of distributions are maximum likelihood estimation
and Bayesian estimation. Given a graphical struc-
ture and a set of cases for the variables (also a prior
distribution over the distributions in the case of the
Bayesian method), these methods provide an approxi-
mate joint distribution. For more details on graphical
models and estimation see Heckerman (1995).

This leaves open the question of how one should choose
the appropriate graphical structure. In the remainder
of this section we describe the maximum likelihood
(ML), the minimum discrimination length (MDL), and
a Bayesian criterion for evaluating directed graphical
models given a set of cases D. A value of X; is de-
noted by z; and a value of pa(X;) is denoted by pa(z;).
The number of cases in D in which X; = z; and
pa(X;) = pa(z;) is denoted by N(z;,pa(x;)) and the
total number of cases in D is denoted by N = N(0).
The log maximum likelihood score for a graphical
model is
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where Hp(X;|pa(X;)) is the empirical conditional en-
tropy of X; given its parents, and is equal to
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One practical shortcoming of the ML score is that in
comparing two models with graphical structure G and
G' where G contains a proper subset of the edges of
G' the ML score will never favor G. Thus, when using
an ML score to choose among models without restrict-
ing the class of graphical structures, a fully connected
structure is guaranteed to have a maximal score. This
is problematic due to the potential for poor general-
ization error when using the resulting approximation.
This problem is often called “overfitting”. When using
this principle it is best to restrict the class of alterna-
tive structures under consideration in some suitable
manner.

The minimum description length score can be viewed
as a penalized version of the ML score
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where d = Y2, (#(pa(Xy)) x (#(X;) — 1)) and #(Y) is
used to denote the number of possible distinct assign-
ments of values for a set of variables Y and #(0) = 1.
The penalty term leads to more parsimonious models,
thus, alleviating the shortcoming described for the ML
score.

Finally, we present a log Bayesian score. We consider
a restricted type of prior where we assume a uniform
prior on alternative graphs, P(G) « 1, and the “un-
informative” prior over distributions from Cooper and
Herskovits (1992).

SBayes(GaD) =

x z": log
i=1

log P(D|G) + log P(G)

(#(Xi) - 1)!
11 (#(Xi) = 1) + N(pa(z:)))!

pa(z:)
HN(ﬂJiapa(l"i))!

X Z LOCGlSCOTeBayeS(Xiapa’(Xi))

(3

Although not as apparent as in the MDL score, the
Bayesian score also has a built-in tendency for parsi-
mony that alleviates the problems of overfitting. The
hardness results presented below can be extended to
a variety of alternative types of priors including the
BDe prior with an empty prior model (see Heckerman
et al. 1995).

The problem of finding the optimal directed graphi-
cal model for a given class of structures G and data

D is the problem of finding the structure G € G that
maximizes S(G, D). The important feature of each of
the scores is that they can be calculated in terms of
a local score for each variable. The structure of the
graphical model determines which particular variables
are involved in the computation of a local score. Fi-
nally, the local score for a variable X is only a function
of the number of possible assignments of values to the
variables X; and pa(X;) and the joint counts for X;
and pa(X;) in the set of cases D.

3 NP-Hardness of finding optimal
chains

In this section, we demonstrate that the problem of
finding the optimal directed graphical model when we
restrict the class of structures to be chains is NP-hard.
A chain is a spanning tree in which no vertex has
degree higher than two. This result stands in stark
contrast to the positive results provided by Edmonds
(1967) and Chow and Liu (1968) who show that one
can learn the ML optimal tree in polynomial time.
Heckerman et al. (1995) have extended these results
to finding the Bayesian optimal tree.

To demonstrate the hardness of finding optimal chains
we need to formulate the problem as a decision prob-
lem. The decision problem version of finding the opti-
mal chain directed graphical model is as follows

The optimal chain (OC) decision problem:
Is there a chain graphical model with score
greater than or equal to k for dataset D?

In this section we prove the following theorem.
Theorem 1 The optimal chain problem is NP-Hard.

To show this, we reduce the Hamiltonian Path (HP)
decision problem to the OC decision problem.

The HP decision problem: Is there a Hamil-
tonian path in an undirected graph G?

A Hamiltonian path for an undirected graph G is a
non-repeating sequence of vertices such that each ver-
tex in G occurs on the path and for each pair of ad-
jacent vertices in the sequence there is an edge in G.
Let the undirected graph G = (V, E) have vertex set
V ={X1,...,Xn} and edge set E.

The HP decision problem is NP-complete. Loosely
speaking, this means that the HP decision problem is
as computationally difficult as a variety of problems
for which no known algorithm exists that runs in time
that is a polynomial function of the size of the input.
Theorem 1 indicates that the OC decision problem is
at least as difficult as any NP-complete problem. For
more information about the HP decision problem and
NP-completeness see Garey and Johnson (1979).

We reduce the HP decision problem for G to the OC
decision problem by constructing a set of cases D with
the following properties;



#(Xi) = #(X;) (1)
LocalScore(X;,0) = LocalScore(X;,0) =y (2)
a<p (3)
LocalScore(X;,{X;}) = LocalScore(X;, {X,}) (4)

LocalScore(X;,{X;}) € {a, 8}

LocalScore(X;,{X;}) =6 iff {X;,X;}eE (5)

For such a dataset, the problem of the existence of
a Hamiltonian path is equivalent to the existence of
a chain graphical model with score equal to k£ =
v+ (|V|—1)x 8 where |V| = n is the number of vertices
in the undirected graph G. Thus, if we can efficiently
construct a polynomial sized dataset with these prop-
erties, we have reduced the HP problem to the OC
problem. In other words, we have transformed a gen-
eral HP decision problem into an OC decision problem.
Because the size of the input to the OC problem is a
polynomial function of the size of the input for the
HP problem, if one can find an algorithm solve the
OC problem in polynomial time then all NP-complete
problems can be solved in polynomial time.

We construct a dataset for graph G assuming that each
variable is ternary to satisfy condition 1. For each pair
of vertices X; and X; (i < j) for which there is an
edge in G we add the following 8 cases in which every
variable Xy, (k # i, j) is zero.
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For each pair of vertices X; and X; (i < j) for which
there is not an edge in G we add the following 8 cases.
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For a set of cases constructed as described above, the
pairwise counts for a pair of variables X; and X; con-
nected by an edge in G are

X
| 0 1 2
y., O 4n* —5m+6) 4(n—2) 4(n—2)
i1 4n-2) 3 1
2| 4(n-2) 1 3

The pairwise counts for a pair of variables X; and X
not connected by an edge in G are

X;
| 0 1 2
y. O 4(n> —5n+6) 4(n—2) 4(n-2)
i1 4n—2) 2 2
2| 4n-2) 2 2

The marginal counts for each variable are identical,
thus, condition 2 is satisfied. There are two types of
pairwise count tables, thus, there are at most two val-
ues for a given type of pairwise LocalScore. It is easy
to verify that these two values are not equal to show
condition 3 is satisfied. It follows from the symmetry
in the two types of pairwise tables and condition 2 that
condition 4 is satisfied. Finally, we have constructed
the cases to satisfy condition 5. Furthermore, the set
of cases is efficiently constructed and has a size which
is polynomially bounded by the size of the graph G
proving the result.

4 Conclusion

The hardness result presented in this note highlights
one potential source of the hardness of NP-Hard prob-
lems. By choosing an inappropriate subclass of models
one can make an easy problem difficult. Perhaps, by
carefully choosing a broader class of models than tree
graphical models one can identify interesting classes of
graphical models for which the problem of finding an
optimal model is tractable.

It is important to note that good heuristics exist for
the problem of finding weighted Hamiltonian paths
(Karp and Held, 1971). These heuristics can be easily
used to identify good quality chain models. In addi-
tion, the optimal tree model will have a score at least
as large as any chain model so the optimal tree score
can be used as a bound for the optimal chain score.
This bound can be useful for searching for good chain
models.

Finally, the problem of finding an optimal chain graph-
ical model is a version of a general problem called a
similarity ordering problem. Given score for pairs of
objects Score(X;, X;), the similarity ordering problem
is the problem of identifying a total order on a set of
objects such that the sum of the scores for objects ad-
jacent in the total ordering is maximized. A solution
to the similarity ordering problem is potentially useful
for the visualization of quantitative and qualitative in-
formation. When viewing the problem of finding the
optimal chain graphical model as a similarity ordering
problem, the variables are the objects and the chain
corresponds to a total order. One can use the opti-
mal chain graphical model for a dataset to choose an
ordering of the variables in a visual display of that
dataset. By ordering the variables according to the
optimal chain graphical model, one can potentially vi-
sually detect and inspect statistically related quanti-
ties.
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