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Abstra
t

This note shows that the problem of learning

an optimal 
hain graphi
al model from data

is NP-hard for the Bayesian, maximum like-

lihood, and minimum des
ription length ap-

proa
hes. This hardness result holds despite

the fa
t that the problem is a restri
tion of

the polynomially solvable problem of �nding

the optimal tree graphi
al model.
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1 Introdu
tion

The problem of learning graphi
al models has re
eived

mu
h attention. In this note, I present a negative re-

sult on learning optimal 
hain graphi
al models.

The main positive results on learning graphi
al mod-

els are on learning tree graphi
al models. These

have been presented for maximum likelihood (ML)


riterion (Edmonds, 1967; Chow and Liu, 1968) and

adapted to a Bayesian 
riterion by He
kerman, Geiger,

and Chi
kering (1995). Two NP-hardness results for

learning graphi
al models have appeared in the liter-

ature. Those are the NP-hardness of �nding the opti-

mal Bayesian network stru
ture with in-degree greater

than or equal to two using a Bayesian optimality 
ri-

terion (Chi
kering, 1996) and the problem of �nding

the ML optimal polytree (Dasgupta, 1999).

In this note, proofs of the hardness of �nding an opti-

mal 
hain graphi
al models are presented for the max-

imum likelihood (ML) 
riterion, the minimum des
rip-

tion length (MDL) 
riterion, and a Bayesian 
riterion.

Unlike the ML hardness result of Dasgupta, I expli
itly


onstru
t a polynomial sized dataset for the redu
tion

and, unlike the Bayesian hardness result of Chi
kering

(1996), I use a 
ommon \non-informative" prior.

The negative result for learning optimal 
hain graph-

i
al models stands in 
ontrast to the positive result

on learning tree graphi
al models. While polynomial

learning algorithms exist for the 
lass of tree graphi-


al models, by restri
ting the 
lass of graphi
al models

to 
hains, one 
an make the learning problem be
ome

NP-hard.

2 Optimal Graphi
al Models

Graphi
al models 
an be used to obtain an approx-

imate joint distribution over a set of variables from

data. In this note, I fo
us on dire
ted graphi
al mod-

els for a set of dis
rete variables fX

1

; : : : ; X

n

g. One


omponent of a dire
ted graphi
al model is its di-

re
ted graphi
al stru
ture that des
ribes dependen
ies

between the variables. A dire
ted graphi
al model rep-

resents a family of distributions that fa
tor a

ording

to the graphi
al stru
ture G of the dire
ted graphi
al

model, more spe
i�
ally,
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where pa

G

(X

i

) denotes the possibly empty set of par-

ents of vertex X

i

in graph G. The subs
ript G is omit-

ted when it is 
lear from 
ontext. The most 
ommon

methods guiding the 
hoi
e distribution from a fam-

ily of distributions are maximum likelihood estimation

and Bayesian estimation. Given a graphi
al stru
-

ture and a set of 
ases for the variables (also a prior

distribution over the distributions in the 
ase of the

Bayesian method), these methods provide an approxi-

mate joint distribution. For more details on graphi
al

models and estimation see He
kerman (1995).

This leaves open the question of how one should 
hoose

the appropriate graphi
al stru
ture. In the remainder

of this se
tion we des
ribe the maximum likelihood

(ML), the minimum dis
rimination length (MDL), and

a Bayesian 
riterion for evaluating dire
ted graphi
al

models given a set of 
ases D. A value of X

i

is de-

noted by x

i

and a value of pa(X

i

) is denoted by pa(x

i

).

The number of 
ases in D in whi
h X

i

= x

i

and

pa(X

i

) = pa(x

i

) is denoted by N(x

i

; pa(x

i

)) and the

total number of 
ases in D is denoted by N = N(;).

The log maximum likelihood s
ore for a graphi
al

model is

S
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where H

D

(X

i

jpa(X
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)) is the empiri
al 
onditional en-

tropy of X

i

given its parents, and is equal to

�
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One pra
ti
al short
oming of the ML s
ore is that in


omparing two models with graphi
al stru
ture G and

G

0

where G 
ontains a proper subset of the edges of

G

0

the ML s
ore will never favor G. Thus, when using

an ML s
ore to 
hoose among models without restri
t-

ing the 
lass of graphi
al stru
tures, a fully 
onne
ted

stru
ture is guaranteed to have a maximal s
ore. This

is problemati
 due to the potential for poor general-

ization error when using the resulting approximation.

This problem is often 
alled \over�tting". When using

this prin
iple it is best to restri
t the 
lass of alterna-

tive stru
tures under 
onsideration in some suitable

manner.

The minimum des
ription length s
ore 
an be viewed

as a penalized version of the ML s
ore
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where d =

P

i

(#(pa(X

i

))� (#(X

i

)� 1)) and #(Y ) is

used to denote the number of possible distin
t assign-

ments of values for a set of variables Y and #(;) = 1.

The penalty term leads to more parsimonious models,

thus, alleviating the short
oming des
ribed for the ML

s
ore.

Finally, we present a log Bayesian s
ore. We 
onsider

a restri
ted type of prior where we assume a uniform

prior on alternative graphs, P (G) / 1, and the \un-

informative" prior over distributions from Cooper and

Herskovits (1992).
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Although not as apparent as in the MDL s
ore, the

Bayesian s
ore also has a built-in tenden
y for parsi-

mony that alleviates the problems of over�tting. The

hardness results presented below 
an be extended to

a variety of alternative types of priors in
luding the

BDe prior with an empty prior model (see He
kerman

et al. 1995).

The problem of �nding the optimal dire
ted graphi-


al model for a given 
lass of stru
tures G and data

D is the problem of �nding the stru
ture G 2 G that

maximizes S(G;D). The important feature of ea
h of

the s
ores is that they 
an be 
al
ulated in terms of

a lo
al s
ore for ea
h variable. The stru
ture of the

graphi
al model determines whi
h parti
ular variables

are involved in the 
omputation of a lo
al s
ore. Fi-

nally, the lo
al s
ore for a variableX

i

is only a fun
tion

of the number of possible assignments of values to the

variables X

i

and pa(X

i

) and the joint 
ounts for X

i

and pa(X

i

) in the set of 
ases D.

3 NP-Hardness of �nding optimal


hains

In this se
tion, we demonstrate that the problem of

�nding the optimal dire
ted graphi
al model when we

restri
t the 
lass of stru
tures to be 
hains is NP-hard.

A 
hain is a spanning tree in whi
h no vertex has

degree higher than two. This result stands in stark


ontrast to the positive results provided by Edmonds

(1967) and Chow and Liu (1968) who show that one


an learn the ML optimal tree in polynomial time.

He
kerman et al. (1995) have extended these results

to �nding the Bayesian optimal tree.

To demonstrate the hardness of �nding optimal 
hains

we need to formulate the problem as a de
ision prob-

lem. The de
ision problem version of �nding the opti-

mal 
hain dire
ted graphi
al model is as follows

The optimal 
hain (OC) de
ision problem:

Is there a 
hain graphi
al model with s
ore

greater than or equal to k for dataset D?

In this se
tion we prove the following theorem.

Theorem 1 The optimal 
hain problem is NP-Hard.

To show this, we redu
e the Hamiltonian Path (HP)

de
ision problem to the OC de
ision problem.

The HP de
ision problem: Is there a Hamil-

tonian path in an undire
ted graph G?

A Hamiltonian path for an undire
ted graph G is a

non-repeating sequen
e of verti
es su
h that ea
h ver-

tex in G o

urs on the path and for ea
h pair of ad-

ja
ent verti
es in the sequen
e there is an edge in G.

Let the undire
ted graph G = hV;Ei have vertex set

V = fX

1

; : : : ; X

n

g and edge set E.

The HP de
ision problem is NP-
omplete. Loosely

speaking, this means that the HP de
ision problem is

as 
omputationally diÆ
ult as a variety of problems

for whi
h no known algorithm exists that runs in time

that is a polynomial fun
tion of the size of the input.

Theorem 1 indi
ates that the OC de
ision problem is

at least as diÆ
ult as any NP-
omplete problem. For

more information about the HP de
ision problem and

NP-
ompleteness see Garey and Johnson (1979).

We redu
e the HP de
ision problem for G to the OC

de
ision problem by 
onstru
ting a set of 
ases D with

the following properties;
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For su
h a dataset, the problem of the existen
e of

a Hamiltonian path is equivalent to the existen
e of

a 
hain graphi
al model with s
ore equal to k =


+(jV j�1)�� where jV j = n is the number of verti
es

in the undire
ted graph G. Thus, if we 
an eÆ
iently


onstru
t a polynomial sized dataset with these prop-

erties, we have redu
ed the HP problem to the OC

problem. In other words, we have transformed a gen-

eral HP de
ision problem into an OC de
ision problem.

Be
ause the size of the input to the OC problem is a

polynomial fun
tion of the size of the input for the

HP problem, if one 
an �nd an algorithm solve the

OC problem in polynomial time then all NP-
omplete

problems 
an be solved in polynomial time.

We 
onstru
t a dataset for graphG assuming that ea
h

variable is ternary to satisfy 
ondition 1. For ea
h pair

of verti
es X

i

and X

j

(i < j) for whi
h there is an

edge in G we add the following 8 
ases in whi
h every

variable X

k

(k 6= i; j) is zero.

X

1

: : :X

i�1

X

i

X

i+1

: : :X

j�1

X

j

X

j+1

: : : X

n

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

For ea
h pair of verti
es X

i

and X

j

(i < j) for whi
h

there is not an edge in G we add the following 8 
ases.

X

1

: : :X

i�1

X

i

X

i+1

: : :X

j�1

X

j

X

j+1

: : : X

n

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 1 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 1 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 1 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

0 : : : 0 2 0 : : : 0 2 0 : : : 0

For a set of 
ases 
onstru
ted as des
ribed above, the

pairwise 
ounts for a pair of variables X

i

and X

j


on-

ne
ted by an edge in G are

X

i

X

j

0 1 2

0 4(n

2

� 5n+ 6) 4(n� 2) 4(n� 2)

1 4(n� 2) 3 1

2 4(n� 2) 1 3

The pairwise 
ounts for a pair of variables X

i

and X

j

not 
onne
ted by an edge in G are

X

i

X

j

0 1 2

0 4(n

2

� 5n+ 6) 4(n� 2) 4(n� 2)

1 4(n� 2) 2 2

2 4(n� 2) 2 2

The marginal 
ounts for ea
h variable are identi
al,

thus, 
ondition 2 is satis�ed. There are two types of

pairwise 
ount tables, thus, there are at most two val-

ues for a given type of pairwise Lo
alS
ore. It is easy

to verify that these two values are not equal to show


ondition 3 is satis�ed. It follows from the symmetry

in the two types of pairwise tables and 
ondition 2 that


ondition 4 is satis�ed. Finally, we have 
onstru
ted

the 
ases to satisfy 
ondition 5. Furthermore, the set

of 
ases is eÆ
iently 
onstru
ted and has a size whi
h

is polynomially bounded by the size of the graph G

proving the result.

4 Con
lusion

The hardness result presented in this note highlights

one potential sour
e of the hardness of NP-Hard prob-

lems. By 
hoosing an inappropriate sub
lass of models

one 
an make an easy problem diÆ
ult. Perhaps, by


arefully 
hoosing a broader 
lass of models than tree

graphi
al models one 
an identify interesting 
lasses of

graphi
al models for whi
h the problem of �nding an

optimal model is tra
table.

It is important to note that good heuristi
s exist for

the problem of �nding weighted Hamiltonian paths

(Karp and Held, 1971). These heuristi
s 
an be easily

used to identify good quality 
hain models. In addi-

tion, the optimal tree model will have a s
ore at least

as large as any 
hain model so the optimal tree s
ore


an be used as a bound for the optimal 
hain s
ore.

This bound 
an be useful for sear
hing for good 
hain

models.

Finally, the problem of �nding an optimal 
hain graph-

i
al model is a version of a general problem 
alled a

similarity ordering problem. Given s
ore for pairs of

obje
ts S
ore(X

i

; X

j

), the similarity ordering problem

is the problem of identifying a total order on a set of

obje
ts su
h that the sum of the s
ores for obje
ts ad-

ja
ent in the total ordering is maximized. A solution

to the similarity ordering problem is potentially useful

for the visualization of quantitative and qualitative in-

formation. When viewing the problem of �nding the

optimal 
hain graphi
al model as a similarity ordering

problem, the variables are the obje
ts and the 
hain


orresponds to a total order. One 
an use the opti-

mal 
hain graphi
al model for a dataset to 
hoose an

ordering of the variables in a visual display of that

dataset. By ordering the variables a

ording to the

optimal 
hain graphi
al model, one 
an potentially vi-

sually dete
t and inspe
t statisti
ally related quanti-

ties.
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