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Abstra
t

We des
ribe novel fast learning 
urve meth-

ods | methods for s
aling indu
tive methods

to large data sets { and their appli
ation to


lustering. We des
ribe the de
ision theoreti


underpinnings of the approa
h and demon-

strate signi�
ant performan
e gains on two

real-world data sets.
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1 Introdu
tion

In situations where one has a

ess to massive amounts

of data, the 
ost of building a statisti
al model 
an be

signi�
ant if not insurmountable. A 
ommon pra
ti
e

is to build the model on the basis of a sample of the

data. However, the 
hoi
e of the size of the sample to

use is far from 
lear. In this paper, we des
ribe the

learning 
urve method, an approa
h to 
hoosing the

size of sample to use for training, and its appli
ation

to the problem of 
lustering large data sets. Learn-

ing 
urve methods rely upon two basi
 observations;

�rst, the 
omputational 
ost in
reases as a fun
tion of

the size of the training data and se
ond, the perfor-

man
e/a

ura
y of a model has diminishing improve-

ments as a fun
tion of the size of the training data.

The 
urve des
ribing the performan
e as a fun
tion of

the size of the training data is often 
alled the learning


urve. The typi
al shape of a learning 
urve is 
on
ave

with performan
e approa
hing some limiting behav-

ior. This suggests that one 
an often signi�
antly re-

du
e the 
ost of training a model without signi�
antly

redu
ing the performan
e of the resulting model by

simply redu
ing the amount of data used to train the

model. The goal of a learning 
urve method is to bal-

an
e the 
omputational 
ost of training a model from

data with the bene�ts of in
reases in a

ura
y.

We des
ribe the learning 
urve method and its appli-


ation to the problem of learning a 
lustering model.

Unlike previous appli
ations of this approa
h to s
al-

ing learning methods, our fo
us is on how one 
an

adapt the training poli
y, the method by whi
h the

training algorithm is applied to subsets of the data.

One idea that we investigate is the use of 
ompu-

tationally fast but 
rude training methods to deter-

mine the size of the sample to use for training. For

an iterative training method su
h as the Expe
tation-

Maximization algorithm, one 
an run the algorithm a

�xed number of iterations or run the algorithm to a


onvergen
e threshold at whi
h the statisti
al model

is only partially trained. Additionally, we 
onsider

using the results of the training algorithm obtained

on smaller data sets as the initialization of the train-

ing algorithm for larger data sets. Using these basi


ideas, we provide several simple eÆ
ient methods for


hoosing the amount of data for training a 
luster-

ing model. We demonstrate signi�
ant 
omputational

performan
e gains on two real-world data sets obtain-

ing, roughly, a 5 to 20 fold speedup when using these

methods.

2 The Learning Curve Method

The basi
 idea of a learning 
urve method is to itera-

tively apply a training algorithm to larger and larger

subsets of the data until the future expe
ted 
osts out-

weigh the future expe
ted bene�ts asso
iated with the

training. There are three main 
omponents of a learn-

ing 
urve method. The �rst 
omponent is the data

poli
y; the s
hedule by whi
h one uses portions of the

data set to train a model. The se
ond 
omponent is

the training poli
y, whi
h de�nes how one applies a

training algorithm to the data. The �nal 
omponent

is the 
onvergen
e 
riterion, whi
h is how one deter-

mines that the marginal 
ost asso
iated with training

ex
eeds the marginal bene�t of improved performan
e.

Ea
h of these will be dis
ussed in more detail below.



2.1 Data Poli
y

Two types of �xed data poli
ies have been 
onsidered.

John and Langly (1996) 
onsider in
rementally adding

a �xed number of data points and Provost, Jensen, and

Oates (1999) 
onsider in
rementally adding a geomet-

ri
ally in
reasing number of data points. As argued

by Provost et al., when one does not have an a

urate

guess as to the \
orre
t" number of data points to

a
hieve the proper 
ost/bene�t tradeo�, the method

of in
rementally adding a �xed number of data points


an require an unreasonable number of iterations when

a large number of data points is needed. In 
ontrast,

when using a geometri
 s
hedule, one 
an qui
kly rea
h

an appropriate number of data points. For instan
e, if

the 
ost of training is roughly linear in the number of

data points, then using a geometri
 s
hedule to train

on data sets of size k � 2

0

; k � 2

1

; : : : ; k � 2

i

until we

rea
h some data set of size k � 2

i

(N < k � 2

i

< 2N)

will require only a 
onstant fa
tor more 
omputation

than simply applying the training method to the data

set of N data points.

An alternative approa
h is to adaptively 
hoose the

number of data points for 
onsideration by modeling

the shape of the learning 
urve.

In this work we evaluate a geometri
 data poli
y. We

label the su

essive data sets D

1

; : : : ; D

n

where D

i

�

D

j

if i < j.

2.2 Training Poli
y

The training poli
y is the method used when evaluat-

ing the subsets of training data, D

1

; : : : ; D

n

. By 
are-

fully 
hoosing this method it is possible to gain signif-

i
ant in
reases in performan
e, that is, one 
an signif-

i
antly redu
e the amount of time it takes to identify

the number of data points N

l


needed to adequately

train the model and, thus, redu
e the amount of time

needed to train the model. Note that the training pol-

i
y used while determining N

l


might not 
orrespond

to the training poli
y used to obtain the �nal model

using the N

l


data points. If alternative training poli-


ies yield similar learning 
urves then one 
an 
hoose a


omputationally eÆ
ient poli
y to sele
t a number of

data points for training whi
h would be similar to the

number 
hosen by a 
omputationally more expensive

poli
y.

For the appli
ation of the learning 
urve methods to


lustering we 
onsider two aspe
ts of the training pol-

i
y. First, we 
onsider alternative 
onvergen
e thresh-

olds and alternative �xed numbers of iterations of an

iterative learning algorithm. In this paper, we use the

Expe
tation-Maximization (EM) algorithm. Se
ond,

we 
onsider the reuse of parameter estimates from pre-

vious stages of pro
essing. We denote the parameters

obtained from training a model on subset D

i

by �(D

i

).

2.3 Convergen
e Poli
y

The 
onvergen
e poli
y is the method by whi
h we de-


ide that we have identi�ed the number of data points

needed to adequately train the statisti
al model. It is

natural to view this 
omponent from a de
ision theo-

reti
 perspe
tive. Given a �xed training and data pol-

i
y, how does one balan
e the tradeo� between the 
ost

of training and the bene�t of improved performan
e.

In the 
ase of 
lustering, it is natural to measure the

expe
ted 
ost of training in terms of the expe
ted time

it will take to train on the next data set. Alternatively,

when using the EM algorithm, the time is roughly lin-

ear in the size of the data set and, thus, one 
an mea-

sure 
ost in terms of the size of the next data set. We

assume that the 
ost is linear in the size of the data

set (i.e. roughly linear in time). Thus, after evaluat-

ing data set D

n

the 
ost to evaluate/train on the next

data set would be jD

n+1

j.

Again, in the 
ase of 
lustering, it is natural to evalu-

ate the bene�t in terms of the performan
e on holdout

data. We use the log-likelihood of the model on hold-

out data, l(D

ho

j�(D

i

)). There are a variety of natural

measures of expe
ted bene�t. For our analysis, we as-

sume that the expe
ted bene�t is linear in the relative

improvement in holdout s
ore between two most re-


ent data sets and the improvement in holdout s
ore

between the most re
ent data set and a baseline model,

�

base

(D

1

).

Thus, under these assumptions, we 
hoose to termi-

nate the learning 
urve method after evaluating data

set D

n

when the learning 
urve 
onvergen
e measure,

the ratio of bene�t over 
ost, drops below the (learning


urve) 
onvergen
e threshold, �, that is,

l(D

ho

j�(D

n

))� l(D

ho

j�(D

n�1

))

l(D

ho

j�(D

n

))� l(D

ho

j�

base

(D

1

))

1

jD

n+1

j

< �: (1)

When the ratio of the bene�t over 
ost drops below

this 
onvergen
e threshold we say that the (learning


urve) 
onvergen
e 
riterion is satis�ed.

In our experiments we 
hoose the baseline model to be

a model in whi
h all of the features are mutually inde-

pendent. Alternative poli
ies have been des
ribed by

John and Langley (1996) and Provost et al. (1999).

Our poli
y is simple but potentially sensitive to lo-


al variations in the learning 
urve. Fortunately, our

experiments, des
ribed below, suggest that learning


urves for 
lustering models are usually smooth. In

situations where the learning 
urves are not smooth,

the alternative poli
ies suggested by John and Langly

and Provost et al. may be useful.



MSNBC

Sample size

method 40000 80000 160000 320000 497971

�xed-1 0.002363 0.000472 0.000099 0.000017 0.000003

�xed-3 0.001281 0.000299 0.000065 0.000016 0.000003

�xed-5 0.001060 0.000244 0.000051 0.000017 0.000002

�xed-10 0.001134 0.000289 0.000056 0.000010 0.000005

thres-0.1 0.001577 0.000350 0.000078 0.000018 0.000005

thres-0.01 0.000372 0.000241 0.000046 0.000015 0.000003

thres-0.001 0.001855 0.000210 0.000070 0.000022 0.000002

thres-0.0001 0.002332 0.000399 0.000085 0.000027 0.000003

naive 0.002342 0.000425 0.000131 0.000019 0.000000

MS.COM

Sample size

method 40000 80000 160000 320000 640000 1280000 1838877

�xed-1 0.026042 0.003178 0.000371 0.000141 0.000036 0.000007 0.000003

�xed-3 0.006356 0.001501 0.000347 0.000081 0.000024 0.000003 0.000002

�xed-5 0.003913 0.001363 0.000336 0.000067 0.000021 0.000003 0.000001

�xed-10 0.002515 0.000998 0.000319 0.000073 0.000020 0.000004 0.000001

thres-0.1 0.006356 0.001501 0.000347 0.000081 0.000024 0.000003 0.000002

thres-0.01 0.002628 0.000576 0.000237 0.000099 0.000020 0.000005 0.000001

thres-0.001 0.001421 0.001017 0.000351 0.000061 0.000016 0.000004 0.000001

thres-0.0001 0.001449 0.000910 0.000373 0.000081 0.000026 0.000002 0.000001

naive 0.002307 0.000857 0.000393 0.000094 0.000029 0.000004 0.000001

Table 1: Values for the learning 
urve 
onvergen
e measure at sample sizes given by the data poli
y.

3 Methods, Models, and

Experimental Results

In this se
tion, we evaluate several di�erent learning


urve methods for the problem of 
lustering large data

sets. As des
ribed above, ea
h of the methods utilizes

the geometri
 �xed data poli
y and 
ontinues to eval-

uate larger data sets until the learning 
urve 
onver-

gen
e 
riterion is satis�ed. Ea
h of the learning 
urve

methods is distinguished only on the basis of the train-

ing poli
y and not the 
onvergen
e or data poli
ies.

We investigate a simple but widely used 
lass of mod-

els for 
lustering, namely �nite mixture models, where

ea
h 
omponent is de�ned by a log-linear model with

only main e�e
ts for all variables in the data set.

These models 
an alternatively be viewed as naive-

Bayes models with a hidden 
lass variable, also known

as AutoClass models (Cheeseman and Stutz, 1995).

We use the EM algorithm to train the mixture models.

We initialize the algorithm by estimating the param-

eters for the baseline model and then randomly per-

turb parameter values by a small amount to obtain

a parameterization for ea
h mixture 
omponent. See

Thiesson, Meek, Chi
kering, and He
kerman (1999)

for further details. The 
onvergen
e 
riterion that

we use to terminate the EM algorithm is the follow-

ing. We 
onverge when the relative improvement in

log-likelihood of the training data between su

essive

EM iterations relative to the total improvement in log-

likelihood over the initial model is less than the EM


onvergen
e threshold 
. Typi
ally when running the

EM algorithm, one runs the algorithm to a 
onver-

gen
e threshold that is quite low. In our experiments

we use 


final

= 10

�5

when we train the mixture model

after having used a learning 
urve method to deter-

mine the adequate number of data points N

l


to be

used in the �nal training of the model.

Our ben
hmark learning 
urve method is the LC

naive

method whi
h runs the EM algorithm to EM 
onver-

gen
e threshold 


final

on ea
h data set using the same

initial parameterization until the (learning 
urve) 
on-

vergen
e 
riterion � is satis�ed. The LC

fixed

meth-

ods runs the EM algorithm for a �xed number of it-

erations using the same initial parameterization. The

LC

thres

methods runs the EM algorithm to a EM 
on-

vergen
e threshold 


l


> 


final

on ea
h of the data sets

D

i

using the same initial parameterization for ea
h

data set. The LC

naive

method 
orresponds to LC

thres

with threshold 10

�5

. Our �nal types of method are

the LC

reuse

fixed

and LC

reuse

thres

methods whi
h are similar to

the LC

fixed

and LC

thresh

methods. They di�er in the

following two ways. First, parameter values �(D

n�1

)

(ex
ept those parameter values asso
iated with 
om-

ponent mixture weights whi
h are set to be uniform)

obtained from the previous iteration in the learning


urve method are used to initialize the EM algorithm

for data set D

n

. Se
ond, when reusing parameter val-

ues, some 
luster 
omponents loose all of their support

due to the size of the initial data sets. To alleviate

this premature 
omponent starvation we identify 
om-

ponents that have little or no support (less than one


ase) and reset the 
omponent parameterization to its

initial parameterization.
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Figure 1: LC

fixed

and LC

thres

learning 
urves for the

MSNBC and MS.COM data sets.

3.1 Data Sets

We evaluated the learning 
urve methods on two real-

world data sets. TheMSNBC data set, is derived from

web logs for one day in 1998 for the MSNBC website.

It re
ords whi
h of the 303 most popular stories on

that day ea
h of the visitors read. The MS.COM data

set is derived from the web logs for one day in 2000 for

the mi
rosoft.
om web site. It re
ords whi
h areas or

\vroots" of the site ea
h of the user visited among the

775 most popular sites. In ea
h of the data sets, users


orrespond to 
ases and items possible viewed 
orre-

spond to variables. Both data sets are sparse in the

sense that on average a user only views a few items.

The MSNBC data set 
ontains 597,971 users and the

MS.COM data set 
ontains 1,938,877 users. The data

sets were partitioned into training and holdout sets at

random. In both 
ases, we used 100,000 users for the

holdout set and the remaining users for the training

set. The holdout set is used during both the evalu-

ation of the learning 
urve 
onvergen
e 
riterion and

the evaluation the �nal holdout s
ore after the EM al-

gorithm is run to EM 
onvergen
e threshold of 


final

for the sele
ted number of 
ases N

l


.

We have investigated mixture models with 25, 50, and

100 
omponents. All experiments were qualitatively

similar and demonstrated the same trends. Hen
e, in

this paper, we only report results for the 25 
omponent

mixture model.

3.2 Results

We �rst 
on
entrate on the LC

fixed

and LC

thres

meth-

ods. Figure 1 shows learning 
urves for these methods

on the MSNBC and MS.COM experiments. The num-

ber of iterations used for the LC

fixed

and the thresh-

old used for the LC

thres

are indi
ated to the right of

'�xed' and 'thres' in the legend for the �gure. For

the MS.COM data set, the thres-0.1 
urve is identi
al

to the �xed-3 
urve and 
an therefore not be distin-

guished in the �gure.

We see that all LC

fixed

methods display same behav-

ior as the LC

naive

method. In parti
ular, we noti
e

that the one-step LC

fixed

method shows this behav-

ior, whi
h implies that the learning 
urve 
onvergen
e


an be dete
ted eÆ
iently for 
lustering models. Be-

ing able to qui
kly evaluate the adequa
y of alterna-

tive subsets of training data allows one to more easily

use other 
onvergen
e poli
ies su
h as the LRLS poli
y

suggested in Provost, Jensen, and Oates (1999).

From Figure 1 we also noti
e that the learning 
urves

for LC

thres

methods and the LC

naive

method are sim-

ilar in shape. In our experien
e, the LC

thres


urves

are noisier and do not tra
k the LC

naive


urve as well

as the LC

fixed

methods. The explanation for this is

that EM 
onvergen
e is only evaluated after a 
om-

plete pass through the data and su

essive steps of the

LC

thres

may run the EM algorithm a di�erent number

of iterations. This di�eren
e 
an have a dramati
 e�e
t

on the resulting parameterization (espe
ially when the

EM 
onvergen
e level 


l


is high) and, hen
e, a dra-

mati
 e�e
t on the log-likelihood s
ore for the holdout

set. Sin
e our 
onvergen
e poli
y is based on lo
al

tests, this behavior may o

asionally for
e the algo-

rithm to terminate early and 
hoose a sample size that

is too low. Alternative 
onvergen
e poli
ies might al-

leviate this diÆ
ulty with the LC

thres

methods.

It is useful to 
ompare the learning 
urve 
onvergen
e

measures for the alternative learning 
urve methods.

If the 
onvergen
e measures for the alternative meth-

ods follow the 
onvergen
e measures of the LC

naive

method for di�erent sample sizes, then the methods

will likely 
hoose identi
al sample sizes to be adequate



for training, that is, theN

l



hosen by the methods will

be similar. Table 1 demonstrates that the 
onvergen
e

poli
y in Equation (1) has this property. For our two

data sets, there are many values of the 
onvergen
e

threshold for whi
h all of the LC

thres

and LC

fixed

learning 
urve methods will sele
t the same sample

size, and some thresholds for whi
h the adequate sam-

ple size varies by only one step in the data poli
y. For

instan
e, for LC 
onvergen
e level � = 0:0005, all but

one method agree on 80,000 
ases for MSNBC, and for

all MS.COM experiments the adequate sample size is

160,000 
ases.

To present performan
e results for the learning 
urve

methods we introdu
e the following additional nota-

tion. Let EM-full denote the method whi
h runs EM

to EM 
onvergen
e level 


final

on the full data set.

The elapsed time to run a learning 
urve method to


onvergen
e is the time needed to 
hoose the number

of data points N

l


plus the time needed to run EM to


onvergen
e level 


final

on those N

l


data points. On

the �nal run of EM we use the parameters obtained

during the last step of the learning 
urve method as

the initial values for the EM algorithm. We 
ompute

the speedup fa
tor as the runtime for EM-full to rea
h


onvergen
e divided by the elapsed time for a learn-

ing 
urve method to rea
h 
onvergen
e. To 
ompare

the quality of the learned models we also 
ompute the

holdout s
ore: log p(D

ho

j

^

�

l


), where

^

�

l


denote the es-

timate obtained by the parti
ular method. Methods

that 
hoose identi
al sample sizes N

l


will yield iden-

ti
al holdout s
ores. Finally, to measure the 
ost of

using the learning 
urve method we 
ompute the over-

head ratio as the elapsed time to run the method to


onvergen
e divided by the runtime for the standard

EM algorithm when run on the adequate sample size

N

l


to an EM 
onvergen
e level of 


final

.

Table 2 shows the adequate sample sizes, test s
ores,

speedup ratios, and overhead ratios that we obtain

for MSNBC and MS.COM when training the 25 
om-

ponent mixture models. Results shown are for the

learning 
urve 
onvergen
e threshold � = 0:0005.

Of 
ourse, a higher 
onvergen
e threshold will tend

to sele
t a smaller N

l


and provide more signi�
ant

speedups; the 
hoi
e of � is our 
ost/bene�t tradeo�.

As suggested by Table 1 all methods (approximately)

agree on the adequate sample size N

l


.

The speedup fa
tor for a learning 
urve method de-

pends on both the size and other features of the data

set. By 
hoosing larger data sets one 
an arbitrarily

improve the speedup fa
tor for the full EM algorithm


omparison for a �xed �. Hen
e, the speedup numbers

in the table do not express the obtainable 
omputa-

tional bene�t from using learning 
urves methods, but

provide us with a way to 
ompare the di�erent meth-

MSNBC

N

l


holdout speedup overhead

method s
ore fa
tor ratio

�xed-1 80000 -956531 4.9 1.03

�xed-3 80000 -956531 4.8 1.05

�xed-5 80000 -956531 4.8 1.06

�xed-10 80000 -956531 4.6 1.10

thres-0.1 80000 -956531 4.9 1.04

thres-0.01 40000 -965492 10.4 1.08

thres-0.001 80000 -956531 4.0 1.28

thres-0.0001 80000 -956531 3.3 1.52

naive 80000 -956531 3.0 1.66

EM-full 497971 -949953 1.0 1.00

MS.COM

N

l


holdout speedup overhead

method s
ore fa
tor ratio

�xed-1 160000 -563194 19.7 1.02

�xed-3 160000 -563194 19.5 1.04

�xed-5 160000 -563194 19.2 1.05

�xed-10 160000 -563194 18.6 1.09

thres-0.1 160000 -563194 19.5 1.04

thres-0.01 160000 -563194 18.4 1.10

thres-0.001 160000 -563194 15.9 1.27

thres-0.0001 160000 -563194 13.9 1.45

naive 160000 -563194 10.6 1.90

EM-full 497971 -550914 1.0 1.00

Table 2: Adequate sample sizes, holdout s
ores,

speedups, and overheads for the LC

fixed

and LC

thres

learning 
urve methods.

ods. Aside from di�eren
e in the sele
ted size of N

l


,

the one-step method is the most eÆ
ient of the LC

fixed

and LC

thres

methods. Ea
h of the methods provides

a signi�
ant speedup.

The overhead ratios in Table 2 provides us with a guide

to the overhead of applying the learning 
urve method

to 
lustering. The ratios show that several of the LC

methods evaluated in this paper have very little over-

head. The overhead ratio is sensitive to the 
hoi
e of




final

. By 
hoosing 


final

to be larger, the �nal run

of EM would likely run fewer iterations and the rel-

ative amount of time that is spent determining N

l


would in
rease making the overhead ratio larger. For




final

= 10

�5

, the LC

fixed

method using a single EM

iteration has a overhead ratio 
lose to one. Despite the

sensitivity to 


final

, the impressive overhead ratios are

due, in part, to the e�e
tive use of a training poli
ies to

identify the adequate number of data points. This 
an

be seen in the large di�eren
e between the overhead ra-

tios of the LC

naive

method and the other LC

fixed

and

LC

thres

methods. The relative importan
e of alterna-

tive training poli
ies 
an also be seen in the large dif-

feren
e between speedup fa
tors between the LC

naive

and the other LC

fixed

and LC

thres

methods.

Now we 
onsider the LC

reuse

fixed

and LC

reuse

thres

methods.

The results for these methods are not as regular as


ompared to the other methods. In parti
ular, both

LC

reuse

fixed

and LC

reuse

thres

methods skew the sele
tion of



the adequate sample size towards larger sample sizes

| sometimes signi�
antly larger | than the one we

obtain from the LC

naive

method. For the same 
on-

vergen
e threshold � = 0:0005, as used for the exper-

iments reported above, all but one of the reuse LC

methods sele
ts an adequate sample size of 320,000

for MSNBC and all methods sele
t a sample size of

640,000 as adequate for MS.COM. This indi
ates that

the learning 
urves for the reuse methods have a sig-

ni�
antly di�erent shape than the LC

naive

learning


urve.

We have found that with learning 
urve 
onvergen
e

level � = 0:005, all LC

reuse

fixed

and LC

reuse

thres

methods (ap-

proximately) sele
t the same sample size as LC

naive

.

We 
urrently do not have any insight about how the

LC 
onvergen
e threshold for the reuse LC methods

s
ale with the 
onvergen
e threshold for the naive

method.

Table 3 shows the adequate sample sizes, test s
ores,

speedups, and overheads that we obtain for MSNBC

and MS.COM where we have used LC

reuse

fixed

and

LC

reuse

thres

methods with learning 
urve 
onvergen
e

threshold � = 0:005 to train models with 25 
lusters.

MSNBC

method N

l


holdout speedup overhead

with reuse s
ore fa
tor ratio

�xed-1 160000 -951241 1.5 1.13

�xed-3 80000 -954587 3.2 1.57

�xed-5 80000 -955439 4.8 1.06

�xed-10 80000 -957846 5.0 1.00

thres-0.1 160000 -950591 1.5 1.14

thres-0.01 80000 -955539 4.5 1.13

thres-0.001 80000 -960141 4.7 1.07

thres-0.0001 80000 -958500 4.2 1.21

thres-0000001 80000 -958252 3.7 1.38

EM-full 497971 -949953 1.0 1.00

MS.COM

method N

l


holdout speedup overhead

with reuse s
ore fa
tor ratio

�xed-1 160000 -561997 20.9 0.96

�xed-3 160000 -565041 17.8 1.13

�xed-5 160000 -566180 14.5 1.39

�xed-10 160000 -566909 25.3 0.80

thres-0.1 160000 -564072 14.3 1.41

thres-0.01 80000 -580073 45.7 0.71

thres-0.001 160000 -568619 28.1 0.72

thres-0.0001 160000 -568656 18.2 1.11

thres-0.00001 160000 -568699 24.3 0.83

EM-full 497971 -550914 1.0 1.00

Table 3: Adequate sample sizes, holdout s
ores,

speedups, and overheads for the LC

reuse

fixed

and LC

reuse

thres

learning 
urve methods.

Results for the reuse methods show improved speedup

for most of the methods (aside from di�eren
es in the

sele
ted size of N

l


), and surprisingly, even 
ompared

to the one-step LC

fixed

method. In most 
ases, the im-

proved eÆ
ien
y has, however, the 
ost of additional

redu
ed log-likelihood s
ores on the holdout set, even

for the same N

l


. This suggests that reusing the previ-

ous parameterizations 
an drive the algorithm towards


onvergen
e more qui
kly resulting in fewer iterations

being needed for the �nal run of the EM on the N

l


data points. However, this gain 
omes at the 
ost of a

�nal parameterization with lower overall holdout s
ore

| even when being smart about the initialization, as

des
ribed in Se
tion 3.

4 Related and Future Work

Learning 
urve methods are a natural way to improve

the s
alability of a learning algorithm. In this paper,

we have des
ribed the appli
ation of learning 
urve

methods to the problem of identifying good 
lusters

of data for a �xed number of mixture 
omponents.

There are many areas for future investigation. One in-

teresting area for future work is to adapt these learn-

ing 
urve methods to simultaneously sele
t the number

of 
lusters in the model and the size of the data set.

However, one might expe
t that, by in
reasing the size

of the data set, one in
reases the need for additional


lusters; with more data you might need more 
ompo-

nents.

In this paper, we have limited the appli
ation of de-


ision theory to the 
onvergen
e poli
y. It might be

useful to 
onsider de
ision theoreti
 approa
hes of 
on-

trolling the data and training poli
ies. In addition, al-

ternative adaptive data and training poli
ies should be

investigated. Additional investigation of the 
onne
-

tion between the learning 
urve 
onvergen
e measures

for the LC

naive

and reuse LC methods are needed.

Finally, our approa
h of using 
rude 
omputationally

eÆ
ient training methods for determining the appro-

priate number of data points to use for training should

be evaluated for alternative iterative training methods

(e.g. sto
hasti
 gradient des
ent, Newton-Raphson)

and for alternative statisti
al models (e.g. 
lassi�
a-

tion and regression models).
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