
Online Bagging and Boosting

Nikunj C. Oza and Stuart Russell

Computer S
ien
e Division

University of California

Berkeley, CA 94720-1776

foza,russellg�
s.berkeley.edu

Abstra
t

Bagging and boosting are well-known ensem-

ble learning methods. They 
ombine multi-

ple learned base models with the aim of im-

proving generalization performan
e. To date,

they have been used primarily in bat
h mode,

and no e�e
tive online versions have been

proposed. We present simple online bagging

and boosting algorithms that we 
laim per-

form as well as their bat
h 
ounterparts.

1 Introdu
tion

Traditional supervised learning algorithms 
lassify

examples

1

based on a single model su
h as a de
ision

tree or neural network. Ensemble learning algorithms,

of whi
h there are many varieties, 
ombine the predi
-

tions of multiple base models, ea
h of whi
h is learned

using a traditional algorithm. Bagging [3℄ and Boost-

ing [8℄ are well-known ensemble learning algorithms

that have been shown to be very e�e
tive in improv-

ing generalization performan
e 
ompared to individ-

ual base models [1℄. Theoreti
al analysis of boosting's

performan
e supports these results [9℄.

In this paper, we develop online versions of these algo-

rithms. Online learning algorithms pro
ess ea
h train-

ing instan
e on
e \on arrival" without the need for

storage and repro
essing, and maintain a 
urrent hy-

pothesis that re
e
ts all the training instan
es seen

so far. Su
h algorithms have advantages over typi-


al bat
h algorithms in situations where data arrive


ontinuously. They are also useful with very large

data sets on se
ondary storage, for whi
h the multi-

ple passes required by most bat
h algorithms are pro-

hibitively expensive.

1

In this paper, we only deal with the 
lassi�
ation

problem.

Bat
h ensemble algorithms typi
ally use a bat
h learn-

ing algorithm, whi
h we shall 
all L

b

, to generate ea
h

base model. The �rst requirement of an online en-

semble algorithm is an online learning algorithm for

base models, whi
h we shall 
all L

o

. Online variants

of many learning algorithms are available. A lossless

online algorithm is one whose output hypothesis for a

given training set is identi
al to that of the 
orrespond-

ing bat
h algorithm. Lossless online algorithms are

available for de
ision trees [14℄, Naive Bayes models,

and nearest-neighbor 
lassi�ers, among others. We use

lossless online algorithms for de
ision trees and Naive

Bayes models in our experiments.

Produ
ing online versions of bagging and boosting also

requires a way to mirror their spe
i�
 te
hniques for

generating multiple distin
t base models. The diÆ-


ulty is that both algorithms appear to require fore-

knowledge of the size of the training set, whi
h is un-

available (or meaningless) in the online 
ontext. For

example, bagging works by resampling the original

training set of size N to produ
e M bootstrap train-

ing sets of size N , ea
h of whi
h is used to train a base

model. Our online version trains M base models on-

line. It simulates the bootstrap pro
ess by sending K


opies of ea
h new example to update ea
h base model,

where K is a suitable Poisson random variable. This

simple tri
k yields learning behavior similar to that of

bat
h bagging. We des
ribe the online bagging algo-

rithm and give theoreti
al results in Se
tion 2; empir-

i
al results are provided in Se
tion 4.

Boosting is a somewhat more 
omplex pro
ess that

generates a series of base models h

1

; : : : ; h

M

. Ea
h

base model h

m

is learned from a weighted training set

whose weights are determined by the 
lassi�
ation er-

rors of the pre
eding model h

m�1

. Spe
i�
ally, the

examples mis
lassi�ed by h

m�1

are given more weight

in the training set for h

m

, su
h that the weights of

all the mis
lassi�ed examples 
onstitute half the total

weight of the training set. As with bagging, this type

of \normalization" appears to require foreknowledge



of the 
omplete training set. Again, we use a Poisson

sampling pro
ess to approximate the reweighting al-

gorithm. The online boosting algorithm is des
ribed

in detail in Se
tion 3. Empiri
al results are given in

Se
tion 4.

The topi
 of online bagging and boosting has re
eived

very little attention in the literature. In [5℄, an ensem-

ble of three neural networks was trained using boost-

ing in an online fashion; the method proposed therein

often dis
ards substantial amounts of data in the pro-


ess of drawing the desired distribution of data for its

base models. More re
ently, a \blo
ked" online boost-

ing algorithm has been proposed [4℄ that trains several

base models using 
onse
utive subsets of training ex-

amples of some �xed size; this pro
ess also dis
ards a

fra
tion of the data re
eived. Neither of these algo-

rithms is dire
tly 
omparable to our approa
h, whi
h

fo
uses on reprodu
ing the advantages of bagging and

boosting in an online setting. In [7℄, an online bag-

ging algorithm is proposed; it attempts to simulate

the bootstrap pro
ess by sending ea
h new training

example to update ea
h base model with some prob-

ability that the user �xes in advan
e. In experiments

with various su
h probabilities, their online bagging al-

gorithm never performed better than a single de
ision

tree. The same paper also proposes an online boosting

algorithm that is an online version of Ar
-x4 [3℄, i.e.,

ea
h example is given weight 1 + m

4

to update ea
h

base model, where m is the number of previous base

models that 
urrently mis
lassify that example. The

algorithm was applied to the bran
h predi
tion prob-

lem from 
omputer ar
hite
ture. The results suggest

that, given limited memory, a boosted ensemble with

a greater number of smaller de
ision trees is generally

superior to one with fewer large trees.

Potentially interesting parallels 
an be drawn between

our approa
h and the Winnow [11℄ and Weighted Ma-

jority [12℄ algorithms. These algorithms use a �xed

set of base models that are trained online and 
om-

bined using weights that depend on the training set

performan
e of ea
h base model. Their performan
e


an be shown to be almost as good as that of the

best 
omponent model for any training sequen
e. On

the other hand, ensemble algorithms generally perform

better than all of their 
omponent models. Comparing

them to online bagging or boosting, we see that they

send identi
al training sequen
es to ea
h base model;

hen
e, base model diversity, whi
h is known to aid

ensemble performan
e [13℄, must be built in a priori

rather than emerging from the data itself. One 
an

imagine hybrid approa
hes; it may also be the 
ase

that amortized analysis te
hniques 
an be applied to

our algorithms.

2 Online Bagging

Given a training dataset of size N , standard bat
h

bagging 
reates M base models,

2

ea
h trained on a

bootstrap sample of sizeN 
reated by drawing random

samples with repla
ement from the original training

set. In the following pseudo
ode, T is the original

training set of N examples and M is the number of

base models to be learned.:

Bagging(T ,M)

� For ea
h m 2 f1; 2; : : : ;Mg,

{ T

m

= Sample With Repla
ement(T;N)

{ h

m

= L

b

(T

m

)

� Return fh

1

; h

2

; : : : ; h

M

g

Ea
h base model's training set 
ontains ea
h of the

original training examples K times where

P (K = k) =

�

N

k

��

1

N

�

k

�

1�

1

N

�

N�k

whi
h is the binomial distribution. As N ! 1, the

distribution of K tends to a Poisson(1) distribution:

K �

exp(�1)

k!

. This suggests that we 
an perform bag-

ging online as follows: as ea
h training example is pre-

sented to our algorithm, for ea
h base model, 
hoose

the example K � Poisson(1) times and update the

base model a

ordingly. In the pseudo
ode below, h

is the set of M base models learned so far and d is the

latest training example to arrive.

OnlineBagging(h; d)

For ea
h base model h

m

, (m 2 f1; 2; : : : ;Mg) in

the ensemble,

� Set k a

ording to Poisson(1).

� Do k times

h

m

= L

o

(h

m

; d)

New instan
es are 
lassi�ed the same way in online

and bat
h bagging|by unweighted voting of the M

base models.

Online bagging is a good approximation to bat
h bag-

ging to the extent that their base model learning algo-

rithms produ
e similar hypotheses when trained with

similar distributions of training examples. We �rst

prove that if the same original training set is supplied

to the two bagging algorithms, then the distributions

2

The number of base models is normally 
hosen by trial

and error but sometimes a validation set is used [6℄.



over the training sets supplied to the base models in

bat
h and online bagging 
onverge as the size of that

original training set grows to in�nity.

De�ne �

m

b

to be a ve
tor of length N where the ith

element represents the number of times that the ith

original training example is in
luded in the bootstrap

training set of the mth base model under bat
h bag-

ging. Sampling with repla
ement in the bat
h bagging

algorithm is done by performing N trials where ea
h

trial yields one of the N training examples, all of whi
h

have equal probability

1

N

of being drawn. Therefore,

�

m

b

� Multinomial(N;

1

N

), where all the training ex-

amples have equal \su

ess probability"

1

N

. De�ne

�

m

o

to be the online bagging version of �

m

b

. We men-

tioned earlier that, under online bagging, ea
h train-

ing example is 
hosen a number of times a

ording to

a Poisson(1) distribution. Sin
e there are N training

examples, there are N su
h trials; therefore, the total

number of examples drawn has a Poisson(N) distribu-

tion. Be
ause ea
h example has an equal probability

of being drawn, we 
an re
ast sampling in the online

bagging algorithm as performing N

0

� Poisson(N)

trials where ea
h trial yields one of the N training

examples, all of whi
h have equal probability

1

N

of be-

ing drawn. Therefore, �

o

�

P

N

t=0

P (Poisson(N) =

t)Multinomial(t;

1

N

).

Theorem As N !1, P (�

b

) 
onverges in distribution

to P (�

o

).

Proof The probability generating fun
tion [10℄ for

the bat
h bagging algorithm's sampling distribution,

Multinomial(N;

1

N

), is

G

Mult(N;

1

N

)

(x

1

; : : : ; x

N

) =

�

1

N

(x

1

+ : : :+ x

N

)

�

N

:

The generating fun
tion for a Multinomial(1;

1

N

) dis-

tribution is

G

Mult(1;

1

N

)

(x

1

; : : : ; x

N

) =

1

N

(x

1

+ : : :+ x

N

):

The generating fun
tion for a Poisson(N) distribu-

tion is G

Poi(N)

(s) = exp(N(s � 1). Online bag-

ging's sampling algorithm involves performing N

0

Multinomial(1;

1

N

) trials; therefore, the generating

fun
tion for online bagging's sampling distribution is

G

Poi(N)

(G

Mult(1;

1

N

)

(x

1

; : : : ; x

N

)) =

exp

�

N

�

1

N

(x

1

+ : : :+ x

N

)� 1

��

:

Furthermore, it is a standard result [10℄ that

lim

N!1

G

Mult(N;

1

N

)

(x

1

; : : : ; x

N

) =

lim

N!1

�

1 +

�

x

1

+ : : :+ x

N

�N

N

�

N

�

=

exp

�

N

�

1

N

(x

1

+ : : :+ x

N

)� 1

��

:

The 
onvergen
e of the generating fun
tions implies

the 
onvergen
e of the probabilities for every possible �

ve
tor; therefore, the two sampling methods 
onverge

in distribution.

�

De�ne Resample(�; T ) to be a fun
tion that takes as

input the original training set T and a ve
tor � whi
h

has the same length as T and whose ith element is the

number of times that the ith training example from T

is in
luded in the bootstrap training set. This fun
-

tion returns the a
tual bootstrap training set indu
ed

by � and T . We assume that the N examples in T are

drawn randomly and independently from a �xed distri-

bution. The sampling distributions of bat
h and online

bagging indu
e distributions over the base hypotheses

P

�

b

L

b

(Resample(�

b

; T )) and P

�

o

L

o

(Resample(�

o

; T )),

respe
tively. A bat
h-bagged ensemble 
onsists of

M independent and identi
ally distributed (i.i.d.)

draws from P

�

b

L

b

(Resample(�

b

; T )). An online-

bagged ensemble 
onsists of M i.i.d. draws from

P

�

o

L

o

(Resample(�

o

; T )). We would like to show that

P

�

o

L

o

(Resample(�

o

; T )) ! P

�

b

L

b

(Resample(�

b

; T )).

Clearly, this is not true for all learning algorithms L

b

and L

o

. Suppose that L

o

and L

b

return some null hy-

pothesis unless the training set has exa
tly N exam-

ples: L

b

is always given N examples, but as N ! 1,

the probability that L

o

re
eives N examples tends to

0. Intuitively, we need a learning algorithm that is

\well-behaved," in the sense that, as N ! 1, having

a few more or few less examples in the bootstrapped

training set should not make a signi�
ant di�eren
e in

the learning algorithm's output.

Lo
al learning algorithms su
h as K-Nearest-Neighbor

are 
learly well-behaved in this sense. A K-Nearest

Neighbor base model returns a 
lassi�
ation for a new

test example x based on the K nearest neighbors

within its bootstrap training set. It 
an be shown eas-

ily that the distribution over the K nearest neighbors

for bat
h bagging 
onverges to that of online bagging

as N !1.

Simple 
ontingen
y-table learning is also well-behaved.

For every 
lass 
, we have P (C = 
jx) = P (x; 
)=P (x),

Sin
e the denominator is the same for all 
, we 
an just


onsider P (x; 
) for the purpose of 
lassi�
ation. De-

�ne p

x;


to be the fra
tion of examples within T of the

form (x; 
), i.e., having attribute values x and 
lass 
.

Bat
h bagging draws bootstrap training sets a

ording

to �

b

�Multinomial(N;

1

N

), whi
h means it performs

N i.i.d. trials in whi
h the probability of 
hoosing an

example (x; 
) is p

x;


; therefore, P

�

b

(x; 
) = p

x;


. On-

line bagging draws bootstrap training sets a

ording

to �

o

�

P

N

t=0

P (Poisson(N) = t)Multinomial(t;

1

N

),

whi
h involves performing t i.i.d. trials in whi
h the

probability of 
hoosing an example (x; 
) is p

x;


; there-



AdaBoost(f(x

1

; y

1

); : : : ; (x

N

; y

N

)g; L

b

;M)

� Initialize D

1

(n) = 1=N for all n 2 f1; 2; : : : ; Ng.

� Do for m = 1; 2; : : : ;M :

{ 1. Call L

b

with the distribution D

m

.

{ 2. Get ba
k a hypothesis h

m

: X ! Y .

{ 3. Cal
ulate the error of h

m

: �

m

=

P

n:h

m

(x

n

) 6=y

n

D

m

(n). If �

m

> 1=2 then set

M = m� 1 and abort this loop.

{ 4. Set �

m

=

�

m

1��

m

.

{ 5. Update distribution D

m

:

D

m+1

(n) =

D

m

(n)

Z

m

�

�

�

m

if h

m

(x

n

) = y

n

1 otherwise

where Z

m

is a normalization 
onstant 
hosen

so that D

m+1

is a probability distribution.

� Output the �nal hypothesis: h

fin

(x) =

argmax

y2Y

P

m:h

m

(x)=y

log

1

�

m

:

Figure 1: AdaBoost.M1 algorithm from [8℄

fore,

P

�

o

(x; 
) =

N

X

t=0

P (Poisson(N) = t)P

�2Mult(t;

1

N

)

(x; 
) = p

x;


:

Sin
e P

�

b

(x; 
) = P

�

o

(x; 
) for all examples (x; 
), the

expe
ted 
ounts in ea
h entry of the 
ontingen
y tables

are the same under online and bat
h bagging; there-

fore, the 
lassi�
ations of new examples have the same

expe
tation under online and bat
h bagging.

We are working on des
ribing a larger set of learning

algorithms that are well-behaved.

3 Online Boosting

Our online boosting algorithm is designed to 
or-

respond to the bat
h boosting algorithm, Ad-

aBoost.M1 [8℄. We give the pseudo
ode for AdaBoost

in Figure 1, where the inputs are a set of training

examples f(x

1

; y

1

); : : : ; (x

N

; y

N

)g, base learning algo-

rithm L

b

, and the number of base modelsM to be gen-

erated. As explained earlier, AdaBoost.M1 generates

a sequen
e of base models h

1

; : : : ; h

M

using weighted

training sets su
h that the training examples mis
las-

si�ed by model h

m�1

are given half the total weight

for model h

m

and the 
orre
tly 
lassi�ed examples are

given the remaining half of the weight.

In our online boosting algorithm pseudo
ode (Fig-

ure 2), h

M

is the set of M base models learned so

OnlineBoosting(h

M

; OnlineBase; d)

� Set the example's \weight" �

d

= 1.

� For ea
h base model h

m

, (m 2 f1; 2; : : : ;Mg) in

the ensemble,

{ 1. Set k a

ording to Poisson(�

d

).

{ 2. Do k times

h

m

= OnlineBase(h

m

; d)

{ 3. If h

m

(d) is the 
orre
t label,

� then

� �

s


m

 � �

s


m

+ �

d

� �

d

 � �

d

�

N

2�

s


m

�

� else

� �

sw

m

 � �

sw

m

+ �

d

� �

d

 � �

d

�

N

2�

sw

m

�

To 
lassify new examples:

� For ea
h m 2 f1; 2; : : : ;Mg

Cal
ulate �

m

=

�

sw

m

�

s


m

+�

sw

m

and �

m

=

�

m

1��

m

� Return h(x) = argmax


2C

P

m:h

m

(x)=y

log

1

�

m

.

Figure 2: Online Boosting Algorithm

far, d is the latest training example to arrive, and

OnlineBase is the in
remental learning algorithm that

takes a 
urrent hypothesis and training example as in-

put and returns an updated hypothesis. Our online

boosting algorithm is similar to our online bagging al-

gorithm ex
ept that when a base model mis
lassi�es

a training example, the Poisson distribution parame-

ter (�) asso
iated with that example is in
reased when

presented to the next base model; otherwise it is de-


reased. For example, in Figure 3, in the upper left


orner (point \a" in the diagram) is the �rst training

example. This example updates the �rst base model

but is still mis
lassi�ed after training, so its weight

is in
reased (the re
tangle \b" used to represent it is

taller). This example with its higher weight updates

the se
ond base model and then 
orre
tly 
lassi�es it,

so its weight de
reases (re
tangle \
"). Just as in Ad-

aBoost, our algorithm gives the examples mis
lassi�ed

by one stage half the total weight in the next stage;

the 
orre
tly 
lassi�ed examples are given the remain-

ing half of the weight.

3

We 
an see this by examining

the adjustments to �

d

shown in Figure 2 item 3 as

follows. Suppose that �

s


m

is the sum of the � values

for the examples that were 
lassi�ed 
orre
tly by the

base model at stage m and �

sw

m

is the same sum for

3

We dis
uss a 
aveat to this point at the end of this

se
tion.



a b c

Weighted

Combination

Training
Examples

. . .

Figure 3: Illustration of online boosting in progress. Ea
h row represents one example being passed in sequen
e to

all the base models for updating; time runs down the diagram. Ea
h base model (depi
ted as a tree) is generated

by updating the base model above it with the next weighted training example. Ea
h re
tangle represents a

training example|the height of the re
tangle represents its weight.

in
orre
tly 
lassi�ed examples. For the next stage of

boosting, we want these two sums to be s
aled to the

same value, just as in AdaBoost;

4

therefore, we want

to �nd the fa
tors f




m

and f

w

m

that s
ale �

s


m

and �

sw

m

to half the total weight, respe
tively. The sum of all

AdaBoost weights is one; therefore, the sum of all the

�s for our online algorithm is N , whi
h is the number

of examples seen so far. Therefore, we get:

�

s


m

f




m

=

N

2

=) f




m

=

N

2�

s


m

�

sw

m

f

w

m

=

N

2

=) f

w

m

=

N

2�

sw

m

:

Note that we expe
t that �

s


m

> N=2 and �

sw

m

< N=2

and, therefore, that f




m

< 1 and f

w

m

> 1, whi
h means

4

In AdaBoost terminology, the examples' weights would

a
tually be �

d

=N , but sin
e our algorithm works with the

� values, we treat them as weights.

that the weights of 
orre
tly 
lassi�ed examples will

de
rease, and the weights of in
orre
tly 
lassi�ed ex-

amples will in
rease, as desired.

One area of 
on
ern is that, in AdaBoost, an exam-

ple's weight is adjusted based on the performan
e of

a base model on the entire training set while in on-

line boosting, the weight adjustment is based on the

base model's performan
e only on the examples seen

earlier. To see why this may be an issue, 
onsider run-

ning AdaBoost and online boosting on a training set

of size 10000. In AdaBoost, the �rst base model h

1

is

generated from all 10000 examples before being tested

on, say, the tenth training example. In online boost-

ing, h

1

is generated from only the �rst ten examples

before being tested on the tenth example. Clearly, we

may expe
t the two h

1

's to be very di�erent; therefore,

h

2

in AdaBoost and h

2

in online boosting may be pre-

sented with di�erent weights for the tenth example.

This may, in turn, lead to very di�erent weights for



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400

F
ra

ct
io

n 
C

or
re

ct

Number of Examples

Decision Tree
Bagging

Online Bagging
AdaBoost

Online Boosting

Figure 4: Learning 
urves for Car-Evaluation dataset

the tenth example when presented to h

3

in ea
h algo-

rithm, and so on. Intuitively, we want online boosting

to get a good mix of training examples so that the

normalized error of ea
h base model in online boost-

ing qui
kly 
onverges to what it is in AdaBoost. The

more rapidly this 
onvergen
e o

urs, the more similar

the weight adjustments will be and the more similar

their performan
es will be.

4 Experimental Results

In this se
tion, we dis
uss some experiments that

demonstrate that our online algorithms perform more

like their bat
h 
ounterparts as the number of train-

ing examples in
reases. We have implemented online

bagging and online boosting with de
ision trees and

Naive Bayes 
lassi�ers as the base models. For de-


ision trees, we have reimplemented the lossless ITI

online algorithm [14℄; bat
h and online Naive Bayes

algorithms are essentially identi
al.

To illustrate the 
onvergen
e of bat
h and online learn-

ing, we experimented with the Car Evaluation dataset

from the UCI Ma
hine Learning Repository [2℄. The

dataset has 1728 examples, of whi
h we retained 346

(20%) as a test set and used 200, 400, 600, 800, 1000,

1200, and all the remaining 1382 examples as training

sets. We ran ea
h algorithm (ex
ept de
ision trees) ten

times with ea
h number of training examples to a
-


ount for the randomness in the ensemble algorithms.

The results are shown in Figure 4.

The �gure shows bat
h and online bagging with de-


ision trees performing identi
ally (and always signif-

i
antly better than a single de
ision tree). AdaBoost

also performs signi�
antly better than a single de
i-

sion tree for all numbers of examples. Online boost-

ing struggles at �rst but performs 
omparably to Ad-

aBoost and signi�
antly better than single de
ision

trees for the maximum number of examples. Note

that online boosting's performan
e steadily be
omes


loser to that of AdaBoost as the number of examples

grows, as one expe
ts from an online algorithm when


ompared to its bat
h version.

We tested our algorithms on several UCI datasets [2℄

with varying sizes and numbers of attributes (see Ta-

ble 1). The a

ura
ies of our algorithms are given in

Table 2 and Table 3 in in
reasing order of dataset size.

Boldfa
e entries represent 
ases when the ensemble al-

gorithm signi�
antly (t-test, � = 0:05) outperformed

a single model while itali
ized entries represent 
ases

when the ensemble algorithm signi�
antly underper-

formed relative to a single model. The bat
h algo-

rithm a

ura
ies are averages over ten runs of �ve-

fold 
ross-validation. We tested our online algorithms

with �ve random orders of ea
h training set generated

for the bat
h algorithms. (Order matters for online

boosting, even with a lossless learning algorithm.) We

tested bagging and boosting with de
ision trees only

on some of the smaller datasets be
ause the ITI algo-

rithm proved too expensive with larger ones. Even for

the very small Promoters dataset, the AdaBoost algo-

rithm ran in around 30 se
onds while online boosting

needed about 15 hours. This 
ompares to around 1

se
ond for online boosting with Naive Bayes.

With de
ision trees, online boosting performed signi�-


antly worse than AdaBoost on the Promoters dataset,

signi�
antly better on Balan
e, and 
omparably on

the remaining datasets. Bagging and online bagging

performed noti
eably better than single de
ision trees

on all ex
ept the Breast Can
er dataset. With Naive

Bayes, bagging and online bagging never performed

noti
eably better than Naive Bayes, whi
h we ex-

pe
ted be
ause of the stability of Naive Bayes [3℄.

Boosting and online boosting performed 
omparably

to ea
h other on all but the relatively small Promot-

ers dataset and their performan
es relative to a sin-

gle Naive Bayes 
lassi�er 
onsistently improved as the

sizes of the datasets grew. On the Balan
e and Soy-

bean datasets, the boosting algorithms performed sig-

ni�
antly worse than Naive Bayes. On the Breast Can-


er dataset, AdaBoost performed signi�
antly worse

and online boosting performed marginally worse. On

the Car Evaluation and Chess datasets, AdaBoost and

online boosting performed signi�
antly better than

Naive Bayes. On the Nursery dataset, AdaBoost per-

formed signi�
antly better and online boosting per-

formed marginally better.

5 Con
lusions

The paper has des
ribed online versions of the popu-

lar bagging and boosting algorithms and has shown,



Table 1: Sizes of the UCI datasets used in our experiments.

Data Set Training Test Inputs Classes

Set Set

Promoters 86 20 57 2

Balan
e 500 125 4 3

Soybean-Large 307 376 35 19

WI. Breast Can
er 559 140 9 2

German Credit 800 200 20 2

Car Evaluation 1382 346 6 4

Chess 2556 640 36 2

Mushroom 6499 1625 22 2

Nursery 10368 2592 8 5

Table 2: Results (fra
tion 
orre
t): bat
h and online algorithms (with De
ision Trees) on UCI Datasets

Dataset De
ision Tree Bagging Online Bagging AdaBoost Online Boosting

Promoters 0.75 0.82 0.845 0.935 0.77

Balan
e 0.792 0.8128 0.8032 0.7408 0.7664

WI Breast Can
er 0.9786 0.9714 0.9714 0.9729 0.9679

Car Evaluation 0.9537 0.9673 0.9679 0.9664 0.9639

through experiment, that these online versions typi-


ally perform 
omparably to their bat
h 
ounterparts.

The algorithms have low overhead and are quite suit-

able for pra
ti
al appli
ations. Our 
urrent empiri
al

work fo
uses on testing with large, 
ontinuously arriv-

ing data streams. We have also shown that bat
h and

online bagging are identi
al for large datasets provided

that the base learning algorithm is well-behaved in a


ertain sense. Theoreti
al tasks in
lude 
hara
teriz-

ing more tightly the 
lass of learning algorithms for

whi
h 
onvergen
e between online and o�ine bagging


an be proved and developing an analyti
al framework

for online boosting. We are also investigating the 
ase

of lossy online learning and its e�e
t on ensemble per-

forman
e.

A
knowledgements We would like to thank Leo

Breiman, Bin Yu, Mi
hael Jordan, Joe Hellerstein, and

Kagan Tumer for useful dis
ussions on this work. Part

of this work was done while the �rst author was at

NASA Ames Resear
h Center.

Referen
es

[1℄ Eri
 Bauer and Ron Kohavi. An empiri
al 
omparison

of voting 
lassi�
ation algorithms: Bagging, boost-

ing, and variants. Ma
hine Learning, 36:105{139, Sep.

1999.

[2℄ C. Blake, E. Keogh, and C.J. Merz. UCI repos-

itory of ma
hine learning databases, 1999. (URL:

http://www.i
s.u
i.edu/�mlearn/MLRepository.html).

[3℄ L. Breiman. Bias, varian
e and ar
ing 
lassi�ers.

Te
hni
al Report 460, Department of Statisti
s, Uni-

versity of California, Berkeley, 1996.

[4℄ L. Breiman. Pasting small votes for 
lassi�
ation in

large databases and on-line. Ma
hine Learning, 36:85{

103, 1999.

[5℄ H. Dru
ker, R. S
hapire, and P. Simard. Improving

performan
e in neural networks using a boosting algo-

rithm. In S.J. Hanson, J. D. Cowan, and C. L. Giles,

editors, Advan
es in Neural Information Pro
essing

Systems-5, pages 42{49. Morgan Kaufmann, 1993.

[6℄ Harris Dru
ker. Boosting using neural networks. In

A. J. C. Sharkey, editor, Combining Arti�
ial Neu-

ral Nets: Ensemble and Modular Multi-Net Systems,

pages 51{77. Springer-Verlag, London, 1999.

[7℄ Alan Fern and Robert Givan. Online ensemble learn-

ing: An empiri
al study. In Pro
eedings of the Seven-

teenth International Conferen
e on Ma
hine Learning,

pages 279{286. Morgan Kaufmann, 2000.

[8℄ Y. Freund and R. S
hapire. Experiments with a new

boosting algorithm. In Pro
eedings of the Thirteenth

International Conferen
e on Ma
hine Learning, pages

148{156, Bari, Italy, 1996. Morgan Kaufmann.

[9℄ Yoav Freund and Robert E. S
hapire. A de
ision-

theoreti
 generalization of on-line learning and an ap-

pli
ation to boosting. Journal of Computer and Sys-

tem S
ien
es, 55(1):119{139, 1997.

[10℄ G. R. Grimmett and D. R. Stirzaker. Probability and

Random Pro
esses. Oxford S
ien
e Publi
ations, New

York, 1992.



Table 3: Results (fra
tion 
orre
t): bat
h and online algorithms (with Naive Bayes) on UCI Datasets

Dataset Naive Bayes Bagging Online Bagging AdaBoost Online Boosting

Promoters 0.8774 0.8354 0.8401 0.8455 0.7483

Balan
e 0.9072 0.9062 0.9067 0.8686 0.8747

Soybean-Large 0.7497 0.7487 0.7471 0.7184 0.7315

WI Breast Can
er 0.9679 0.9698 0.9692 0.9501 0.9533

German Credit 0.7410 0.7437 0.7437 0.7318 0.7110

Car Evaluation 0.8569 0.8532 0.8547 0.9017 0.8967

Chess 0.8757 0.8759 0.8749 0.9517 0.9476

Mushroom 0.9966 0.9966 0.9966 0.9999 0.9987

Nursery 0.9061 0.9029 0.9027 0.9163 0.9118

[11℄ N. Littlestone. Learning qui
kly when irrelevant at-

tributes abound: A new linear-threshold algorithm.

Ma
hine Learning, 2:285{318, 1988.

[12℄ N. Littlestone and M. Warmuth. The weighted

majority algorithm. Information and Computation,

108:212{261, 1994.

[13℄ Kagan Tumer. Linear and Order Statisti
s Combiners

for Reliable Pattern Classi�
ation. PhD thesis, The

University of Texas, Austin, TX, May 1996.

[14℄ P.E. Utgo�, N.C. Berkman, and J.A. Clouse. De
i-

sion tree indu
tion based on eÆ
ient tree restru
tur-

ing. Ma
hine Learning, 29(1):5{44, 1997.


