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Abstract

We investigate parameter priors for discrete

DAGmodels. It was shown in previous works

that a Dirichlet prior on the parameters of a

discrete DAG model is inevitable assuming

global and local parameter independence for

all possible complete DAG structures. A sim-

ilar result for Gaussian DAG models hinted

that the assumption of local independence

may be redundant.

Herein, we prove that the local independence

assumption is necessary in order to dictate a

Dirichlet prior on the parameters of a discrete

DAG model. We explicate the minimal set

of assumptions needed to dictate a Dirichlet

prior, and we derive the functional form of

prior distributions that arise under the global

independence assumption alone.

1 Introduction

A directed graphical model is a representation of a

family of joint probability distributions for a collec-

tion of random variables via a Directed Acyclic Graph.

Each node in the DAG corresponds to a random vari-

able, and the lack of an edge between two nodes repre-

sents a conditional independence assumption. A spe-

ci�c joint probability distribution can be represented

by a given directed graphical model by specifying the

values for the set of associated parameters. The DAG

along with such a distribution is called a Bayesian net-

work. Graphical models and Bayesian networks have

been extensively studied in AI, Statistics, Machine

Learning, and in many application areas [2-7,9,11].

Bayesian networks encode a probability distribution

with a manageable number of parameters (due to the

factorization introduced by underlying graph), thus re-

ducing the complexity of the representation and reduc-

ing the complexity of decision making based on this

distribution. Bayesian networks are also useful when

constructed directly from expert knowledge because

they introduce cause-e�ect relationships that are intu-

itive to human experts. These features made Bayesian

networks a premier tool for representing probabilistic

knowledge and reasoning under uncertainty.

In this paper we focus on learning|the process of

updating both the parameters and the structure of

a Bayesian network based on data. To compute

goodness-of-�t of data to a network structure in a

closed form, researchers have made a number of as-

sumptions. Among them, global and local parame-

ter independence for all network structures, Dirichlet

distribution on network parameters, and some other

assumptions [2]. It was later shown that the assump-

tion of global and local parameter independence for

all nodes in every complete network structure dictates

that the only possible prior parameter distribution for

discrete DAG models is a Dirichlet prior [5, 7].

In contrast, in a subsequent work, it was shown that

for Gaussian DAGmodels, which consist of a recursive

set of linear regression models, global independence

alone dictates that the only feasible parameter prior

is the Normal-Wishart distribution, assuming models

with at least three nodes [6]. It was thus natural to

hypothesize that the proofs for discrete and continuous

case can be uni�ed and, as a result, the assumption of

local independence will turn out to be redundant also

in the characterization of the Dirichlet distribution.

This work shows that, while global parameter indepen-

dence dictates a Normal-Wishart prior for Gaussian

DAG models with more than 3 nodes, global param-

eters independence alone does not dictate a Dirichlet

prior for discrete DAGmodels with more than 3 nodes.

We provide a minimal set of assumptions needed to

dictate a Dirichlet prior and, in addition, we specify

the class of discrete probability distributions, which is

larger than the Dirichlet family, that arise under global

independence assumption alone via a solution of a new

set of functional equations.



2 DAG Models

A Directed Acyclic Graphical model m , m(s;F

s

)

for a set of variables X = fX

1

; : : : ; X

n

g each as-

sociated with a set of possible values D

i

, is a set

of joint probability distributions with sample space

D = D

1

� : : : � D

n

speci�ed via two components: a

structure s and a set of local distribution families F

s

.

The structure s for X is a DAG having for every vari-

able X

i

in X a node labeled X

i

. We denote the par-

ents of X

i

by Pa

s

i

. The structure s represents the set

of conditional independence assertions, and only these

conditional independence assertions, which are implied

by a factorization of a joint distribution for X given

by p(x) =

Q

n

i=1

p(x

i

jpa

s

i

), where x is a value for X

(an n-tuple), x

i

is a value for X

i

and pa

s

i

is a value for

Pa

s

i

. When x

i

has no incoming arcs in s (no parents),

p(x

i

jpa

s

i

) stands for p(x

i

). A DAG model is complete

if it has no missing arcs. Note that any two complete

DAG models for X encode the same set of conditional

independence assertion, namely none.

The local distributions are the n conditional and

marginal distributions that constitute the factoriza-

tion of p(x). Each such distribution belongs to the

speci�ed family of allowable probability distributions

F

s

, which depends on a �nite set of numerical param-

eters �

m

2 �

m

� R

k

. The parameters �

i

m

for a local

distribution is a set of real numbers that completely

determine the functional form of p(x

i

jpa

s

i

).

We restrict our discussion to discrete DAG models,

where local distributions p(x

i

jpa

s

i

) are speci�ed by

multinomial parameters �

i

m

= f�

x

i

jpa

s

i

jx

i

2 D

i

;pa

s

i

2

D

Pa

s

i

g, where D

Pa

s

i

is the set of possible values of

Pa

s

i

. Let �

m

denote h�

1

m

; �

2

m

; : : : ; �

n

m

i and let �

X

de-

note the set of joint multinomial parameters for X, i.e.

�

X

= f�

~x

j~x 2Dg.

According to the Bayesian framework, we suppose

there exists a prior distribution p(�

X

). This prior in-

duces the distributions of network parameters for each

complete model p(�

m

jm) via a change of parameters

formula, because two complete models with multino-

mial parameters represent the same set of distribu-

tions. We assume the regularity of parameter distri-

butions.

Assumption 1 (Regularity) The probability distri-

bution functions on joint parameters and correspond-

ing p.d.f.'s on network parameters for all complete

models are everywhere positive and twice di�erentiable.

This paper investigates the functional from of the prior

distributions p(�

X

) that satisfy the properties of global

and/or local parameter independence. Global param-

eter independence for one network was introduced in

[11] to allow a decomposable prior-to-posterior analy-

sis and global parameter independence for all the net-

works was introduced in [2] in order to search among

candidate models.

De�nition Parameters �

m

of a DAG model m are

said to be globally independent if f�

i

m

g

n

i=1

are mutu-

ally independent, i.e. p(�

m

jm) =

Q

n

i=1

p(�

i

m

jm).

De�nition Parameters �

i

m

of a node X

i

of a DAG

model m(s;F

s

) are said to be locally independent if

the subsets �

X

i

jpa

s

i

= f�

x

i

jpa

s

i

jx

i

2 fd

1

i

; : : : ; d

jD

i

j�1

i

gg

of �

i

m

are mutually independent, i.e. p(�

i

m

jm) =

Q

pa

s

i

2D

Pa

s

i

p(�

X

i

jpa

s

i

jm) for 1 � i � n.

We say that p(�

X

) satis�es the global (or local) param-

eter independence assumption if the parameters �

m

are

globally (or locally) independent under this distribu-

tion for all complete network structures, in this case we

also say that parameters �

X

are globally (or locally)

independent.

3 Two Node Networks

We commence by deriving a functional form of globally

independent distribution for parameter priors of com-

plete two-node network assuming global parameter in-

dependence. The results and techniques developed in

this section are the basis for the general result.

Consider the following complete two-node network,

with variables X,Y having n and k states respectively.

YX

Since this network is complete it is capable of describ-

ing any multinomial distribution of two random vari-

ables. Any multinomial distribution, described by a

set of parameters f�

X=i;Y=j

g (in short denoted by

f�

ij

g), can be described by this network by specify-

ing �

i�

, �

X=i;�

=

P

k

j=1

�

ij

and �

jji

, �

Y=jjX=i

=

�

ij

=�

X=i;�

for 1 � i � n and 1 � j � k.

We are interested in �nding a functional form of a prior

distributions p(f�

ij

g) that satisfy a global parameter

independence assumption for all complete network for

fX;Y g, namely X ! Y (shown above) and X  Y .

Thus according to our assumption, such distributions

should satisfy the following two functional equations,

which encode global parameter independence:

p(f�

ij

g) = J

�1

1

f

1

(f�

i�

g)g

1

(f�

jji

g)

p(f�

ij

g) = J

�1

2

f

2

(f�

�j

g)g

2

(f�

ijj

g)

(1)

where J

1

,J

2

are appropriate Jacobians and �

�j

, �

ijj

are

de�ned similarly to �

i�

and �

jji

.



We formulate the following theorem that extends the

result stated in [5] for two-node DAG models with bi-

nary variables.

Theorem 1 Any probability distribution on f�

ij

g that

satis�es the regularity assumption (1) and global pa-

rameter independence assumption (Equation 1), is of

the form

p(f�

ij

g) = C

h

Q

n

i=1

Q

k

j=1

�

�

ij

ij

i

�

H

�n

�

ij

�

i+1;j+1

�

i+1;j

�

i;j+1

j1 � i � n� 1; 1 � j � k � 1

o�

(2)

where �

ij

are arbitrary positive constants, H() is an

arbitrary Lebesgue integrable, everywhere positive and

twice-di�erentiable function of (n�1)(k�1) variables

and C is a normalization constant.

Theorem 1 implies that for two-node discrete DAG

models global parameter independence assumption

alone does not guarantee the Dirichlet distribution of

priors. In Section 4 we will prove the similar result for

all discrete DAG models. Note, that when H is a con-

stant, as happens if local parameter independence is

assumed, then p(f�

i

jg) is a Dirichlet distribution [5].

The proof of this theorem is based on the direct solu-

tion of a system of functional equations 1. The general

approach is given in the following subsections.

3.1 The Functional Equation

Consider two sets of variables fy

i

j1 � i � n � 1g and

fz

ji

j1 � i � n; 1 � j � k � 1g. The domain of each of

these variables is (0; 1). These sets correspond to the

sets f�

i�

g and f�

jji

g of multinomial parameters dis-

cussed above. We de�ne

y

n

= 1�

P

n�1

i=1

y

i

z

ki

= 1�

P

k�1

j=1

z

ji

; 1 � i � n

x

j

=

P

n

i=1

z

ji

y

i

; 1 � j � k

w

ji

=

z

ji

y

i

x

j

1 � j � k; 1 � i � n:

(3)

Note that x

k

= 1�

P

k�1

j=1

x

j

and w

jn

= 1�

P

n�1

i=1

w

ji

(for 1 � j � k). Here, fx

j

g corresponds to f�

�j

g and

fw

ji

g corresponds to f�

ijj

g. Finally, we let

Y = (y

1

; : : : ; y

n�1

); Z

i

= (z

1;i

; : : : ; z

k�1;i

);

X = (x

1

; : : : ; x

k�1

); W

j

= (w

j;1

; : : : ; w

j;n�1

)

Z = (Z

1

; : : : ; Z

n

); W = (W

1

; : : : ;W

k

)

(4)

The functional equation we solve (1) can now be ex-

pressed as follows

F (Y )g(Z) = G(X)f(W ) (5)

by absorbing Jacobians appearing in Equation 1 inside

the functions F; g;G and f that correspond to f

1

; g

1

; f

2

and g

2

respectively. Note that the free variables in

Equation 5 are y

1

; : : : ; y

n�1

and z

ji

, 1 � j � k � 1,

1 � i � n. All other variables appearing in Equation 5

are de�ned by Equations 3 and 4.

The solution of Equation 5, which is outlined in the

next subsection, is based on the technique of reducing

functional equations to partial di�erential equations

([1], page 324). Similar technique was used in [5].

3.2 Outline of Solution of Equation 5

The solution of Equation 5 relies on the fact that dis-

tribution functions are everywhere positive and twice-

di�erentiable. Thus, it is possible to take the loga-

rithm of the original equation and take the �rst and

second derivatives.

We use the following notations: Let

^

h(x) denote

lnh(x) for any positive function h(x). Also let

^

F

i

(Y ) =

@

^

F (Y )

@y

i

1 � i � n� 1

ĝ

ji

(Z) =

@ĝ(Z)

@z

ji

1 � i � n;

1 � j � k � 1

(6)

and similarly for G and f .

Taking the derivatives of the logarithm of Equation 5

wrt (with respect to) y

i

and wrt z

ji

, and pushing the

derivatives

^

f

ji

(Z) out of the resulting equations we get

(for 1 � j � k � 1):

P

n�1

l=1

(w

jl

� w

kl

)

^

F

l

(Y ) =

P

n

l=1

h�

z

jl

x

j

�

z

kl

x

k

�

P

k�1

m=1

z

ml

ĝ

ml

(Z)

i

+

^

G

j

(X) �

P

n

l=1

z

jl

x

j

ĝ

jl

(Z):

(7)

Taking a derivative wrt z

ji

and substituting z

ji

�

1

k

(and thus x

j

�

1

k

, w

ji

� y

i

) we get (for 1 � i � n�1):

�

n�1

X

l=1

y

l

^

F

l

(Y ) +

^

F

i

(Y ) =

1

y

i

C

i

+ A (8)

where C

i

, A are some constants. Solving Equation 8

we get

F (Y ) = C

n

Y

i=1

y

C

i

i

(9)

where C and C

i

are some constants. Similarly,

G(X) = B

Q

k

j=1

x

B

j

j

. After substituting the solutions

for F (Y ) and G(X) into Equation 7 and setting y

i

�

1

n

(x

j

�

1

n

z

j�

where z

j�

=

P

n

i=1

z

ji

), the general solution

for ĝ

ji

(Z) is a Dirichlet solution plus the general so-

lution of the following homogeneous �rst-order partial

di�erential equation:

n

X

l=1

"

�

z

jl

z

j�

�

z

kl

z

k�

�

k�1

X

m=1

z

ml

ĝ

ml

(Z)

#

�

n

X

l=1

z

jl

z

j�

ĝ

jl

(Z) = 0:

(10)



The general solution of Equation 10 can be shown to

be

g(Z) = h

��

z

ji

z

j+1;i+1

z

j+1;i

z

j;i+1

j

1 � i � n� 1;

1 � j � k � 1

��

(11)

where h is an arbitrary everywhere positive, Lebesgue

integrable and twice di�erentiable function. Combin-

ing the results of Equation 9 and Equation 11 we con-

clude the proof of Theorem 1. �

4 Multiple Node Networks: Globally

Independent Parameters

Consider a complete DAG model on n discrete vari-

ables: X = X

1

; : : : ; X

n

, each having jD

1

j; : : : ; jD

n

j

values respectively. In this section we are interested in

determining the functional formof distributions on �

X

that satisfy global parameter independence assump-

tion, i.e. p(�

X

) satis�es the following n! functional

equations:

p(�

X

) = J

�1

I

n

Y

j=1

f

I;j

(f�

x

i

j

jx

i

1

;:::;x

i

j�1

g); (12)

for all I = hi

1

; : : : ; i

n

i permutations on h1; : : : ; ni

where f

I;j

() are Lebesgue integrable functions that

correspond to local parameter distributions. The net-

work parameters f�

x

i

j

jx

i

1

;:::;x

i

j�1

g are expressed in

terms of �

X

and J

I

denotes the Jacobian of transfor-

mation from the joint parameters to the parameters of

the complete Bayesian network with topological order

of nodes speci�ed by I. Note, that J

I

can be absorbed

into f

I;j

, since J

I

is a function of f�

x

i

j

jx

i

1

;:::;x

i

j�1

g (see

[7], Theorem 10).

4.1 Useful Lemmas

We present now a set of lemmas that allow the compu-

tation of the exact from of globally independent dis-

tribution for any set of discrete random variables X.

In order to solve Equation 12 we use Theorem 1. Con-

sider two discrete random variables Y

i

= fY

i

; Y g,

where Y

i

= X

i

and Y = X

1

� : : : � X

i�1

� X

i+1

�

: : :�X

n

. We claim the following lemma:

Lemma 2 Given that p(�

X

) satis�es the regularity

assumption (1), �

X

are globally independent if and

only if �

Y

i

are globally independent for all i =

1; : : : ; n.

Proof: The 'only if' part of the proof is immediate

after noting the correspondence between �

X

and �

Y

i

.

The 'if' part of the proof is done by analyzing the

functional form of globally independent distributions

for �

Y

i

, that are obtained using Theorem 1. �

Now, we apply Theorem 1 for Y

i

and conclude that

any p(�

X

) that satis�es Equation 12 satis�es the fol-

lowing n equations (for i = 1; : : : ; n):

p(�

X

) = C

i

Y

r2D

�

�

r;i

r

H

i

 (

�

r

i

�

r

000

i

�

r

0

i

�

r

00

i

)!

(13)

where r

i

; r

0

i

; r

00

i

; r

000

i

2D are subsequent indexes with

respect to X

i

and X nX

i

(analogous to the arguments

in Equation 2). I.e., when restricted to X

i

: [r

i

]

?X

i

=

[r

00

i

]

?X

i

, a, [r

0

i

]

?X

i

= [r

000

i

]

?X

i

, b and b = a+1, and

when restricted to X nX

i

: [r

i

]

?XnX

i

= [r

0

i

]

?XnX

i

, c,

[r

00

i

]

?XnX

i

= [r

000

i

]

?XnX

i

, d and d = c+1. Here [r]

?X

denote the vector of values of r for nodes X � X.

Lemma 2 speci�es that the set of solutions of Equa-

tion 12 is equivalent to the solutions of Equation 13,

which are obtained using the following lemma:

Lemma 3 Consider the following system of m func-

tional equations:

f(x

1

; : : : ; x

n

) =

P

n

i=1

�

1i

x

i

+ h

1

(

~

b

11

~x; : : : ;

~

b

1k

1

~x)

f(x

1

; : : : ; x

n

) =

P

n

i=1

�

2i

x

i

+ h

2

(

~

b

21

~x; : : : ;

~

b

2k

2

~x)

.

.

.

f(x

1

; : : : ; x

n

) =

P

n

i=1

�

mi

x

i

+h

m

(

~

b

m1

~x;

~

b

m2

~x; : : : ;

~

b

mk

m

~x)

(14)

where f; h

1

; : : : ; h

m

are unknown functions, �

ji

are

unknown constants and

~

b

ji

are arbitrary (given) n-

dimensional vectors. For applications in this paper,

~

b

ji

2 f�1; 0; 1g

n

and k

1

= k

2

= : : : = k

m

.

The general solution for f in Equation 14 is:

f(x

1

; : : : ; x

n

) =

n

X

i=1

�

i

x

i

+ h(

~

b

1

~x; : : : ;

~

b

l

~x) (15)

where h is an arbitrary function, f�

i

g are arbitrary

constants and

~

b

1

; : : : ;

~

b

l

is the basis of the linear

space

T

m

i=1

B

i

, where B

i

is a linear space spanned by

~

b

i1

; : : : ;

~

b

ik

i

.

Since Equations 13 can be transformed to the form of

Equation 14 by taking a logarithm of both sides of each

equation and changing the variables to ln �

r

, Lemma 3

provides a powerful tool for solving Equation 13. The

proof of this lemma is quite straightforward by chang-

ing the variables inside the h-functions in such way

that they include

~

b

1

~x; : : : ;

~

b

l

~x.

Application of Lemmas 2 and 3 provides the functional

form of globally independent distribution for any spe-

ci�c set of random variables X. However, the exact

functional form of a globally independent distribution

for a general X is too cumbersome, so we present the

result for binary-values networks only.



4.2 Binary-Valued Networks

The following theorem gives the exact functional form

of globally independent prior distributions for binary

valued network. This result extends the result stated

in [5] for DAG models with two binary variables and

demonstrates that global parameter independence as-

sumption alone is not enough to ensure Dirichlet prior

for networks of any size (contrary to the Gaussian

DAG models, [6]).

Theorem 4 Any distribution on �

X

, where X =

X

1

; : : : ; X

n

are binary random variables, that satis�es

regularity (1) and global parameter independence as-

sumptions is of the form

p(�

X

) = C

2

4

Y

~x2f0;1g

n

�

�

~x

~x

3

5

h

 

Q

~x2A

0

�

~x

Q

~x2A

1

�

~x

!

(16)

where h is an arbitrary measurable function, f�

~x

g are

arbitrary positive constants and C is a normalization

constant. The set A

0

is the set of all binary vectors of

length n with even number of "ones" and the set A

1

is the set of all binary vectors of length n with an odd

number of "ones".

The full proof, based on Lemmas 2 and 3, is explicated

in the full version of this paper [10].

5 Dirichlet Priors: The Minimal Set

of Assumptions

We have shown in the previous sections that global

parameter independence alone is not enough to en-

sure a Dirichlet prior on the network parameters. The

natural question is: \What is a minimal set of inde-

pendence requirements that ensure Dirichlet prior?".

In this section we give an answer to this question. We

start by providing an additional result that links be-

tween global parameter independence in various net-

works.

We say that the parameters of nodeX

i

, �

i

m

, are globally

independent if p(�

m

jm) = p(�

i

m

jm)p(�

m

n �

i

m

jm).

Lemma 5 Let m

1

be an arbitrary complete n-node

network with topological order of nodes X

i

1

; : : : ; X

i

n

,

fi

1

; : : : ; i

n

g = f1; : : : ; ng and let m

2

be another com-

plete network, with order X

j

1

; : : : ; X

j

n

(fj

1

; : : : ; j

n

g =

f1; : : : ; ng). Then given i

k

= j

k

and fi

1

; : : : ; i

k�1

g =

fj

1

; : : : ; j

k�1

g: �

i

k

m

1

are globally independent if and

only if �

j

k

m

2

globally independent.

Proof: The proof if straightforward using the corre-

spondence between parameters �

m

1

and �

m

2

. �

We can now present the second key result of this paper.

Theorem 6 Let X = X

1

; : : : ; X

n

be random variables

over D

1

; : : : ; D

n

. Let m

1

(s

1

;F

s

1

) be an arbitrary,

complete DAG model for X with topological order of

nodes X

i

1

; : : : ; X

i

n

, fi

1

; : : : ; i

n

g = f1; : : : ; ng, and let

m

2

(s

2

;F

s

2

) be another complete DAG model for X,

with order X

j

1

; : : : ; X

j

n

(fj

1

; : : : ; j

n

g = f1; : : : ; ng),

s.t. j

n

= i

1

. If the parameters of X

i

1

in m

1

are glob-

ally independent, i.e.

p(�

m

1

jm

1

) = p(�

i

1

m

1

jm

1

)p(�

m

1

n �

i

1

m

1

jm

1

) (17)

and the parameters of X

j

n

in m

2

are globally and lo-

cally independent, i.e.

p(�

m

2

jm

2

) =

p(�

m

2

n �

j

n

m

2

jm

2

)

Q

pa

s

2

j

n

2D

Pa

s

2

j

n

p(�

X

j

n

jpa

s

2

j

n

jm

2

)

(18)

where �

X

i

jpa

s

i

= f�

x

i

jpa

s

i

jx

i

2 D

i

g, and p(�

X

) satis�es

Assumption 1, then p(�

X

) is Dirichlet and this set of

conditions is minimal in the sense that the elimination

of any one of these two conditions extends the class of

admissible priors beyond a Dirichlet distribution.

The theorem states that among the n! sets of global

and local parameter independence assumptions used

by previous authors, one actually need only two as-

sumptions: global parameter independence for the net-

work parameters for the �rst node in some complete

network, and global and local parameter independence

for the same node in other complete network where

this node is the last node.

Proof: The minimality of these two assumptions is

straightforward, since eliminating any one of them will

allow any distribution of the form given by Equation 17

or Equation 18. Since Lemma 5 holds, we can assume

that two DAG models under consideration are models

with node orders X

n

; X

1

; : : : ; X

n�1

andX

1

; : : : ; X

n

re-

spectively. By treating nodes X

1

; : : : ; X

n�1

as a one

super node for a random variable Y = X

1

�X

2

� : : :�

X

n�1

the problem reduces to determining prior distri-

butions for two-node network with global parameter

independence for all con�gurations and local parame-

ter independence for one last node in one network.

For a two-node network with n and k node-states,

Equations 17 and 18 transform to:

p(f�

ij

g) = f

1

(f�

i�

g

n�1

i=1

)g

1

(f�

jji

g

j=1;:::;k�1

i=1;:::;n

)

p(f�

ij

g) = f

2

(f�

�j

g

k�1

j=1

)

Q

k

j=1

h

j

(f�

ijj

g

n�1

i=1

)

(19)

Any solution p that satis�es Equation 19 satis�es also

Equation 1 and thus can be written in form given by

Theorem 1 (Equation 2). We have

C

h

Q

n

i=1

Q

k

j=1

�

�

ij

ij

i

H

�n

�

ij

�

i+1;j+1

�

i+1;i

�

i;j+1

j

1�j�k�1

1�i�n�1

o�

= f

2

(f�

�j

g

j=1;:::;k�1

)

Q

k

j=1

h

j

(f�

ijj

g

i=1;:::;n�1

)

(20)



Expressing �

ij

in terms of �

�j

and �

ijj

and solving for

f

2

we get that f

2

is of Dirichlet form. Absorbing free

variables inside H and h

j

, denoting �

ijj

by w

ji

, and

taking the logarithm, yields (for any �

�j

):

^

H

��

w

ji

w

j+1;i+1

w

j+1;i

w

j;i+1

j

1�j�k�1

1�i�n�1

��

=

k

X

j=1

^

h

j

(fw

ji

g

n�1

i=1

)

(21)

the solution of which is

h

j

(w

j1

; : : : ; w

j;n�1

) = �

j

n

Y

i=1

w

�

ji

ji

; 1 � j � k (22)

where �

j

; �

j1

; : : : ; �

j;n

are constants. Combining the

results of solution of Equation 19 for f

2

and Equa-

tion 22 we conclude the proof. �

6 Discussion

This paper shows that local parameter independence is

essential in the characterization of a Dirichlet prior via

discrete DAG models (Section 5, Theorem 6). In ad-

dition, the functional form of prior distributions that

arise from global parameter independence assumption

alone are investigated (Sections 3 and 4, Theorem 4).

Methods for solving functional equations that are de-

veloped in this work allow us to compute prior dis-

tributions that arise under global parameter indepen-

dence assumption for any DAG model (and not only

for binary variables). However, the explicit general

formula for such priors is not compact due to a large

number of variables involved. Instead, we have de-

veloped a procedure (based on Lemmas 2 and 3) to

specify such distribution (in symbolic form) for any

speci�c DAG model (not described here, see [10]).

All the results presented in this paper were achieved

under the assumption of local parameter distributions

being twice di�erentiable and everywhere positive.

One may hope to derive the properties of twice dif-

ferentiability and being everywhere positive for prob-

ability density functions of Theorem 6 (Equation 19)

using the techniques presented in [8], as done in [5, 6].

Another open question is the question of functional

form of the prior distribution that arises from local

parameter independence assumption alone. In partic-

ular, it is unknown (even for two binary variables) if

global parameter independence in second condition in

Theorem 6 is essential, or it is enough to assume the lo-

cal independence alone. The integral functional equa-

tion that arises from this reduced set of assumptions

is of the form (for two binary variables):

g

0

(z

0

)g

1

(z

1

) =

R

1

0

G (z

0

y + z

1

(1� y))

f

�

z

0

y

z

0

y+z

1

(1�y)

;

(1�z

0

)y

1�z

0

y�z

1

(1�y)

�

dy

(23)

where g

0

; g

1

; G and f are unknown functions and

z

0

; z

1

; y are variables from (0; 1). The general solu-

tion for this equation is unknown and the question \Is

there any Lebesgue integrable solution that is not of

the Dirichlet form?" is open.
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