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Abstract

We investigate parameter priors for discrete
DAG models. It was shown in previous works
that a Dirichlet prior on the parameters of a
discrete DAG model is inevitable assuming
global and local parameter independence for
all possible complete DAG structures. A sim-
ilar result for Gaussian DAG models hinted
that the assumption of local independence
may be redundant.

Herein, we prove that the local independence
assumption is necessary in order to dictate a
Dirichlet prior on the parameters of a discrete
DAG model. We explicate the minimal set
of assumptions needed to dictate a Dirichlet
prior, and we derive the functional form of
prior distributions that arise under the global
independence assumption alone.

1 Introduction

A directed graphical model is a representation of a
family of joint probability distributions for a collec-
tion of random variables via a Directed Acyclic Graph.
Each node in the DAG corresponds to a random vari-
able, and the lack of an edge between two nodes repre-
sents a conditional independence assumption. A spe-
cific joint probability distribution can be represented
by a given directed graphical model by specifying the
values for the set of associated parameters. The DAG
along with such a distribution is called a Bayestan net-
work. Graphical models and Bayesian networks have
been extensively studied in AI, Statistics, Machine
Learning, and in many application areas [2-7,9,11].

Bayesian networks encode a probability distribution
with a manageable number of parameters (due to the
factorization introduced by underlying graph), thus re-
ducing the complexity of the representation and reduc-
ing the complexity of decision making based on this

distribution. Bayesian networks are also useful when
constructed directly from expert knowledge because
they introduce cause-effect relationships that are intu-
itive to human experts. These features made Bayesian
networks a premier tool for representing probabilistic
knowledge and reasoning under uncertainty.

In this paper we focus on learning—the process of
updating both the parameters and the structure of
a Bayesian network based on data. To compute
goodness-of-fit of data to a network structure in a
closed form, researchers have made a number of as-
sumptions. Among them, global and local parame-
ter independence for all network structures, Dirichlet
distribution on network parameters, and some other
assumptions [2]. Tt was later shown that the assump-
tion of global and local parameter independence for
all nodes 1n every complete network structure dictates
that the only possible prior parameter distribution for
discrete DAG models is a Dirichlet prior [5, 7].

In contrast, in a subsequent work, it was shown that
for Gaussian DAG models, which consist of a recursive
set of linear regression models, global independence
alone dictates that the only feasible parameter prior
is the Normal-Wishart distribution, assuming models
with at least three nodes [6]. It was thus natural to
hypothesize that the proofs for discrete and continuous
case can be unified and, as a result, the assumption of
local independence will turn out to be redundant also
in the characterization of the Dirichlet distribution.

This work shows that, while global parameter indepen-
dence dictates a Normal-Wishart prior for Gaussian
DAG models with more than 3 nodes, global param-
eters independence alone does not dictate a Dirichlet
prior for discrete DAG models with more than 3 nodes.
We provide a minimal set of assumptions needed to
dictate a Dirichlet prior and, in addition, we specify
the class of discrete probability distributions, which 1s
larger than the Dirichlet family, that arise under global
independence assumption alone via a solution of a new
set of functional equations.



2 DAG Models

A Directed Acyclic Graphical model m = m(s, F)
for a set of variables X = {X;,...,X,} each as-
sociated with a set of possible values D;, is a set
of joint probability distributions with sample space
D = Dy x ... x D, specified via two components: a
structure s and a set of local distribution families F,.

The structure s for X is a DAG having for every vari-
able X; in X a node labeled X;. We denote the par-
ents of X; by Pa;. The structure s represents the set
of conditional independence assertions, and only these
conditional independence assertions, which are implied
by a factorization of a joint distribution for X given
by p(x) = [Ii=; p(zi|paZ), where x is a value for X
(an n-tuple), x; is a value for X; and pa is a value for
Pa;. When #; has no incoming arcs in s (no parents),
p(z;|pad) stands for p(z;). A DAG model is complete
if it has no missing arcs. Note that any two complete
DAG models for X encode the same set of conditional
independence assertion, namely none.

The local distributions are the n conditional and
marginal distributions that constitute the factoriza-
tion of p(x). Each such distribution belongs to the
specified family of allowable probability distributions
Fs, which depends on a finite set of numerical param-
eters 0, € O, C R*. The parameters an for a local
distribution is a set of real numbers that completely
determine the functional form of p(z;|pa?).

We restrict our discussion to discrete DAG models,
where local distributions p(x;|paj) are specified by
multinomial parameters ¢!, = {Hmpaf z; € D; pal €
Dpaf}, where Dpaf is the set of possible values of
Paj. Let 0, denote (0},,02 ,...,07) and let Ox de-
note the set of joint multinomial parameters for X, i.e.

Ox = {0|7 € D}.

According to the Bayesian framework, we suppose
there exists a prior distribution p(©x). This prior in-
duces the distributions of network parameters for each
complete model p(f,,|m) via a change of parameters
formula, because two complete models with multino-
mial parameters represent the same set of distribu-
tions. We assume the regularity of parameter distri-
butions.

Assumption 1 (Regularity) The probability distri-
bution functions on joint parameters and correspond-
g p.d.f.’s on network parameters for all complete
models are everywhere positive and twice differentiable.

This paper investigates the functional from of the prior
distributions p(©x) that satisfy the properties of global
and/or local parameter independence. Global param-
eter independence for one network was introduced in

[11] to allow a decomposable prior-to-posterior analy-
sis and global parameter independence for all the net-
works was introduced in [2] in order to search among
candidate models.

Definition Parameters 0, of a DAG model m are
said to be globally independent if {67 1", are mutu-
ally independent, i.e. p(6,,|m) = [[i, p(6%,|m).

Definition Parameters 0!, of a node X; of a DAG
model m(s, Fs) are said to be locally independent if

zi € {df,...,dP171)
p(05,Im) =

the subsets Ox,|par = {Hmpaf
of 0¢. are mutually independent, i.e.
HpafEDpas p(ngh)af m) for 1 < i <n.

We say that p(Ox) satisfies the global (or local) param-
eter independence assumption if the parameters 6, are
globally (or locally) independent under this distribu-
tion for all complete network structures, in this case we
also say that parameters ©x are globally (or locally)
independent.

3 Two Node Networks

We commence by deriving a functional form of globally
independent distribution for parameter priors of com-
plete two-node network assuming global parameter in-
dependence. The results and techniques developed in
this section are the basis for the general result.

Consider the following complete two-node network,
with variables XY having n and k states respectively.

Since this network is complete it is capable of describ-
ing any multinomial distribution of two random vari-
ables. Any multinomial distribution, described by a
set of parameters {0x—; y—=;} (in short denoted by
{0i;}), can be described by this network by specify-
ing 0;. £ Ox—i. = S5_;0i; and O;; £ Oy—jjx=; =
0;;/0x=i for 1 <i<nand1l<j<k.

We are interested in finding a functional form of a prior
distributions p({f;;}) that satisfy a global parameter
independence assumption for all complete network for
{X,Y}, namely X — Y (shown above) and X « Y.
Thus according to our assumption, such distributions
should satisfy the following two functional equations,
which encode global parameter independence:

p({0:;3) = I A ({05 1)1 (10;13)) (1)
p({0:}) = I3 f2({0.51)g2({0:5})
where Jy,J3 are appropriate Jacobians and 8 ;, 0;; are
defined similarly to ¢;. and 6;;.



We formulate the following theorem that extends the
result stated in [5] for two-node DAG models with bi-
nary variables.

Theorem 1 Any probability distribution on {6;;} that
satisfies the regularity assumption (1) and global pa-
rameter independence assumption (Equation 1), is of
the form

p({05}) = C [Tz Tz, 05

H({:U‘Q’&|l<z<n—l 1<]<k’—1})
it1,504i 5401
(2)

where o;; are arbitrary positive constants, H() is an
arbitrary Lebesgue integrable, everywhere positive and
twice-differentiable function of (n—1)(k — 1) variables
and C' is a normalization constant.

Theorem 1 implies that for two-node discrete DAG
models global parameter independence assumption
alone does not guarantee the Dirichlet distribution of
priors. In Section 4 we will prove the similar result for
all discrete DAG models. Note, that when H is a con-
stant, as happens if local parameter independence 1is
assumed, then p({6;;}) is a Dirichlet distribution [5].

The proof of this theorem is based on the direct solu-
tion of a system of functional equations 1. The general
approach is given in the following subsections.

3.1 The Functional Equation

Consider two sets of variables {y;|]1 <7 <n— 1} and
{%;i]1 <i<n,1<j<k—1}. The domain of each of
these variables is (0, 1). These sets correspond to the
sets {0;.} and {0;;} of multinomial parameters dis-
cussed above. We define

Yn =1- Z:;_flyi
zgi = 1 Zj;l zji, 1<i<n (3)
¥ =i il 1<j<k
w]z—zgyl 1<]§]{7,1§Z§7’L
7

i=1
(for 1 < j < k). Here, {x;} corresponds to {6.;} and
{wj; } corresponds to {9i|j}. Finally, we let

Note that z =1 — 23—11 z; and wj, =1 — Zﬁ_l Wy

Y:(yla"'ayn—l)a Zi:(zl,ia"'azk—l,i)a
X = (l‘l, . ..,l‘k_l), Wj = (wjyl, . ..,wjyn_l) (4)
Z=(Zy,.... Zn), W =(Wi.. W)

The functional equation we solve (1) can now be ex-
pressed as follows

F(Y)9(2) = GIX) (W) (5)

by absorbing Jacobians appearing in Equation 1 inside
the functions F|, g, G and f that correspond to fi, g1, fo

and g- respectively. Note that the free variables in
Equation 5 are yi,...,¥n—1 and 25, 1 < j < k —1,
1 < ¢ < n. All other variables appearing in Equation 5
are defined by Equations 3 and 4.

The solution of Equation 5, which is outlined in the
next subsection, is based on the technique of reducing
functional equations to partial differential equations
([1], page 324). Similar technique was used in [5].

3.2 Outline of Solution of Equation 5

The solution of Equation b relies on the fact that dis-
tribution functions are everywhere positive and twice-
differentiable. Thus, it i1s possible to take the loga-
rithm of the original equation and take the first and
second derivatives.

We use the following notations: Let h(z) denote
In h(x) for any positive function A(z). Also let

F(y)y=200 1 <icn—1
~ oo _oaz) 1 <i<n, (6)
U R P Py S

and similarly for G and f.

Taking the derivatives of the logarithm of Equation b
wrt (with respect to) y; and wrt z;;, and pushing the
derivatives fji(Z) out of the resulting equations we get
(for 1 <j<k—1):

n—1

= (wi — wp) FL(Y) =
Zl ! K% - %l) Sz zmidmi (Z) (7)
Gi(X) =2 i_;ﬁjl( ).

Taking a derivative wrt z;; and substituting z;; = %
(and thus z; = 1, wj; = y;) we get (for 1 <i <n—1):
n—1 1
—ZylFl(Y Y) = y—CZ—I-A (8)
=1 !

where C;, A are some constants. Solving Equation 8

we get
n

F(Y)=cC]v" (9)
i=1

where C' and C’ are some constants.
G(X)=1nB H] 1 &; 7. After substituting the solutlons
for F(Y) and G(X) into Equation 7 and setting y; = E
(z; = 2z;. where zj. = .1, zj;), the general solution
for ¢;;(Z) is a Dirichlet solution plus the general so-
lution of the following homogeneous first-order partial
differential equation:

3| (2 - 2) X smomer

=1

Similarly,




The general solution of Equation 10 can be shown to

be
ZiiZjglie1, 1<t <n—1,
7y = b (4 Zpsatladl 11

9(2) <{ Zj+1,izj,z'+1| I<j<k—1 (1
where h 1s an arbitrary everywhere positive, Lebesgue
integrable and twice differentiable function. Combin-
ing the results of Equation 9 and Equation 11 we con-
clude the proof of Theorem 1. B

4 Multiple Node Networks:
Independent Parameters

Globally

Consider a complete DAG model on n discrete vari-
ables: X = Xj,..., X, each having |D4|,...,|Dy|
values respectively. In this section we are interested in
determining the functional form of distributions on © x
that satisfy global parameter independence assump-
tion, i.e. p(Ox) satisfies the following n! functional
equations:

p(Ox) = I [T fribeteny, oo 1)y (12)

j=1

for all I = (i1,...,4,) permutations on (1,...,n)
where fr;() are Lebesgue integrable functions that
correspond to local parameter distributions. The net-
work parameters {9x1j|x11,~~~,xzj_1} are expressed In
terms of Ox and J; denotes the Jacobian of transfor-
mation from the joint parameters to the parameters of
the complete Bayesian network with topological order
of nodes specified by I. Note, that J; can be absorbed
into fr;, since Jy is a function of {gmjlle,..~,xz _1} (see

[7], Theorem 10).

4.1 Useful Lemmas

We present now a set of lemmas that allow the compu-
tation of the exact from of globally independent dis-
tribution for any set of discrete random variables X.

In order to solve Equation 12 we use Theorem 1. Con-

sider two discrete random variables Y; = {V;, Y},

where ¥; = X; and Y = X1 X ... x X;_1 X Xjqp1 ¥
. X Xp. We claim the following lemma:

Lemma 2 Given that p(Ox) satisfies the regularity
assumption (1), ©x are globally independent if and
only if Oy, are globally independent for all ¢ =

1,...,n.

Proof: The ’only if’ part of the proof is immediate
after noting the correspondence between Ox and Ov,.
The "if” part of the proof is done by analyzing the
functional form of globally independent distributions
for Oy, that are obtained using Theorem 1. B

Now, we apply Theorem 1 for Y; and conclude that
any p(©x) that satisfies Equation 12 satisfies the fol-
lowing n equations (for i =1,... n):

97.167,1//
)= 1] o a: ({ 0.0, }) (13)
reD Uy

where r;, v}, vl v € D are subsequent indexes with
respect to X; and X \ X; (analogous to the arguments
in Equation 2). Le., when restricted to X;: [r;]1x, =
rix, = a, [F]ix, = [r"]ix, =band b=a+1, and
when restricted to X \ Xi: [r:i]Lx\x, = ["{]Lx\x, 2,
P ixvx, = [P ]ix\x, =dand d = e+ 1. Here [r]Lx
denote the vector of values of r for nodes X C X.

Lemma 2 specifies that the set of solutions of Equa-
tion 12 is equivalent to the solutions of Equation 13,
which are obtained using the following lemma:

Lemma 3 Consider the following system of m func-
tional equations:

Flzr, oo wn) =30 aimi + h1(§11f, . ~,§1klf)
flen, o wn) =300 asiwg + ha(bai B, ... bag, T)
f(l‘l,...,l‘n)zzzl 1amle R
+h (bmlfa mex bmkmf)
(14)

where f,hy, ...,

unknown constants and Eji are arbitrary (given) n-
dimensional vectors. For applications in this paper,

bis € {—1,0,1}" and ky = ky = ... = ki,

hm are unknown functions, oj; are

The general solution for f in Equation 14 is:

fler, ... 2, :Zaixi+h(glf,...,glf) (15)
=1

where h is an arbitrary function, {«;} are arbitrary
constants and by,...,b; s the basis of the linear
space (\i~, B;, where B; is a linear space spanned by

bil, . ~~,bik,~

Since Equations 13 can be transformed to the form of
Equation 14 by taking a logarithm of both sides of each
equation and changing the variables to In 8, Lemma 3
provides a powerful tool for solving Equation 13. The
proof of this lemma is quite straightforward by chang-
ing the variables inside the h-functions in such way
that they include blx blf.

Application of Lemmas 2 and 3 provides the functional
form of globally independent distribution for any spe-
cific set of random variables X. However, the exact
functional form of a globally independent distribution
for a general X is too cumbersome, so we present the
result for binary-values networks only.



4.2 Binary-Valued Networks

The following theorem gives the exact functional form
of globally independent prior distributions for binary
valued network. This result extends the result stated
in [5] for DAG models with two binary variables and
demonstrates that global parameter independence as-
sumption alone is not enough to ensure Dirichlet prior
for networks of any size (contrary to the Gaussian

DAG models, [6]).

Theorem 4 Any distribution on Ox, where X =
Xq,..., X, are binary random variables, that satisfies
regularity (1) and global parameter independence as-
sumptions is of the form

pex)=c| T o] (H—”) (16)

7e{0,1}" Mzea, 0z
where h is an arbitrary measurable function, {az} are
arbitrary positive constants and C' 1s a normalization
constant. The set Ay is the set of all binary vectors of
length n with even number of "ones” and the set Ay
15 the set of all binary vectors of length n with an odd
number of "ones”.

The full proof, based on Lemmas 2 and 3, is explicated
in the full version of this paper [10].

5 Dirichlet Priors: The Minimal Set
of Assumptions

We have shown in the previous sections that global
parameter independence alone is not enough to en-
sure a Dirichlet prior on the network parameters. The
natural question is: “What 1s a minimal set of inde-
pendence requirements that ensure Dirichlet prior?”.
In this section we give an answer to this question. We
start by providing an additional result that links be-
tween global parameter independence in various net-
works.

We say that the parameters of node X;, 8¢, , are globally
independent if p(0,,|m) = p(6%, |m)p(0,, \ 0, |m).

Lemma 5 Let my be an arbitrary complete n-node
network with topological order of nodes X;,,..., X
{i1,...,in} = {1,...,n} and let ms be another com-
plete network, with order X;,, ..., X;, ({j1,.. ., jn}t =
{1,...,n}). Then given i = ji and {i1,...,ik_1} =
Uty Je=1}s Hf,’;l are globally independent if and
only of 8% globally independent.

ins

Proof: The proof if straightforward using the corre-
spondence between parameters f,,, and 6,,,. B

We can now present the second key result of this paper.

Theorem 6 Let X = Xq,..., X, be random variables
over Dy,....Dy. Let my(s1,Fs,) be an arbitrary,
complete DAG model for X with topological order of
nodes X, ..., X; , {i1,...,in} = {1,...,n}, and let
ma(s2, Fs,) be another complete DAG model for X,
with order X;,, ..., X;, ({j1,.-.,jn}t = {1,...,n}),
s.b. jn = 1. If the paramelers of X;, i my are glob-
ally independent, 1.e.

POy [m1) = p(033, [m1)p(Om,y \ O, 1) (17)

and the parameters of X; wn msy are globally and lo-
cally independent, 1i.e.

p(9m2 |m2) :'
p(6m2 \ 6‘777’72 |m2) Hpaji €D, 52 p(ngn |paji

In

mz)

(18)
where Ox | pas = {Hmpaf z; € D;}, and p(Ox) satisfies
Assumption 1, then p(Ox) is Dirichlet and this set of
conditions 1s minimal wn the sense that the elimination
of any one of these two conditions extends the class of
admissible priors beyond a Dirichlet distribution.

The theorem states that among the n! sets of global
and local parameter independence assumptions used
by previous authors, one actually need only two as-
sumptions: global parameter independence for the net-
work parameters for the first node in some complete
network, and global and local parameter independence
for the same node in other complete network where
this node is the last node.

Proof: The minimality of these two assumptions is
straightforward, since eliminating any one of them will
allow any distribution of the form given by Equation 17
or Equation 18. Since Lemma 5 holds, we can assume
that two DAG models under consideration are models
with node orders X,,, X1,..., X,_1and Xq,..., X, re-
spectively. By treating nodes X;,...,X,,_1 as a one
super node for a random variable Y = X; x X5 x ... X
X, —1 the problem reduces to determining prior distri-
butions for two-node network with global parameter
independence for all configurations and local parame-
ter independence for one last node in one network.

For a two-node network with n and %k node-states,
Equations 17 and 18 transform to:

p({05}) = A0S (105 HZ0 k)

p({6:5)) = ({05 2) T by )

Any solution p that satisfies Equation 19 satisfies also
Equation 1 and thus can be written in form given by
Theorem 1 (Equation 2). We have

n k g 0ii0i41, 541 |1<j<k—1
O[T = 0| 1 ({ s SISt}
k
= fo({0;}j=1,. k=1) [0 Ay ({0 iz, n-1)
(20)



Expressing ;; in terms of §; and 6;; and solving for
fo we get that f; is of Dirichlet form. Absorbing free
variables inside f{ and hj;, denoting 0;; by wj;, and
taking the logarithm, yields (for any 6.;):

k
R Wi W1 )
JiWi+1,i4+1 1<j<k-1
H ({ . l1Z%i<n-1 E , 5 ({w;i HZ
Wit1,iWii41 = = =1

(21)

the solution of which 1s

= B; wai%

where 3;,5;1,...,0;» are constants. Combining the
results of solution of Equation 19 for fo and Equa-
tion 22 we conclude the proof. B

hj(wj1, ..., wjn_1) 1<j<k (22

6 Discussion

This paper shows that local parameter independence 1s
essential in the characterization of a Dirichlet prior via
discrete DAG models (Section 5, Theorem 6). In ad-
dition, the functional form of prior distributions that
arise from global parameter independence assumption
alone are investigated (Sections 3 and 4, Theorem 4).

Methods for solving functional equations that are de-
veloped 1n this work allow us to compute prior dis-
tributions that arise under global parameter indepen-
dence assumption for any DAG model (and not only
for binary variables). However, the explicit general
formula for such priors is not compact due to a large
number of variables involved. Instead, we have de-
veloped a procedure (based on Lemmas 2 and 3) to
specify such distribution (in symbolic form) for any

specific DAG model (not described here, see [10]).

All the results presented in this paper were achieved
under the assumption of local parameter distributions
being twice differentiable and everywhere positive.
One may hope to derive the properties of twice dif-
ferentiability and being everywhere positive for prob-
ability density functions of Theorem 6 (Equation 19)
using the techniques presented in [8], as done in [5, 6].

Another open question is the question of functional
form of the prior distribution that arises from local
parameter independence assumption alone. In partic-
ular, it is unknown (even for two binary variables) if
global parameter independence in second condition in
Theorem 6 is essential, or it is enough to assume the lo-
cal independence alone. The integral functional equa-
tion that arises from this reduced set of assumptions
is of the form (for two binary variables):

(zoy + 21 (1 — y))

Z0Y (1=z0)y
f 20y+21(1—y)’ 1—20y—21(1-y) dy

Jo (Zo 91 21 fo (23)

where gg,91,G and f are unknown functions and
zo, 71,y are variables from (0,1). The general solu-
tion for this equation is unknown and the question “Is
there any Lebesgue integrable solution that is not of
the Dirichlet form?” is open.
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