
The Efficient Propagation of Arbitrary Subsets of Beliefs in

Discrete-Valued Bayesian Belief Networks

Duncan Smith
Department of Physics, Astronomy and Mathematics

University of Central Lancashire
England
Scotland
PR1 2HE

Abstract

The paper describes an approach for propagating
arbitrary subsets of beliefs in Bayesian Belief
Networks. The method is based on a multiple
message passing scheme in junction trees. A
hybrid tree structure is introduced, both for the
propagation of evidence and as an efficiently
permutable representation of a decomposable
graph. The use of maximal prime subgraph
decompositions and tree permutations to reduce
computational cost is demonstrated.

1 INTRODUCTION

A discrete valued Bayesian Belief Network (BBN) is a

sparse representation of a full joint probability

distribution over a set of variables and is generally

represented as a Directed Acyclic Graph (DAG). It is a

collection of conditional and marginal probability tables

such that each child node is conditional upon its parent

nodes. The sparseness of the representation allows

evidence to be propagated through the network to

efficiently generate posterior beliefs on queried variables.

This is achieved through a process of node elimination.

The process of node elimination is managed somewhat

differently by junction tree methods (Lauritzen and

Spiegelhalter 1988) (Shafer and Shenoy 1990) and

factoring methods (Li and D’Ambrosio 1994). The

former are generally used to propagate the posterior joints

for each clique, and subsequently all single beliefs.

Factoring methods are generally used to generate one

single or joint posterior belief, although they can also be

used to propagate all single beliefs (Bloemeke and

Valtorta 1998).

A DAG, D, can be converted to an undirected graph,

G=(V, E), by pairwise connecting all parental sets and

dropping the directions on the edges, such that adjacency

between two variables v, w in the G, denoted v∈Adj(w),

implies that there exists some probability table that

contains both v and w. Thus initially each table is a

pairwise-connected subgraph in G, and is said to be

complete. The elimination of a variable v implies the

deletion of v and all its incident edges from G and the

addition of the fill-in edges required to make Adj(v)

complete. The set of fill-in edges implied by a node

elimination is its deficiency. The set of fill-in edges

implied by an elimination ordering, α, is a graph

triangulation T, such that the corresponding

decomposable graph is G’=(V,E∪T). A triangulation is

minimal if there exists no T’⊂T such that G’’=(V,E∪T’) is

triangulated. A complete subgraph of G is a clique C, if

there exists no superset of C that is also complete. A

separator S, of two complete subgraphs is the intersection

of their vertex sets.

As both junction tree and factoring methods are based on

a process of variable elimination, they both have

computational costs that depend heavily on the chosen

elimination ordering. The optimisation of junction trees

is usually carried out as an off-line process. Factoring

methods exploit Markov properties to reduce the cost of

propagation through, for instance, graph pruning (Zhang

and Poole 1994). Thus the optimisation problem is query-

dependent and is usually carried out as an on-line process.

Single joint queries are easily handled by factoring

methods whereas the standard junction tree method is to

fire additional messages through the junction tree (Jensen

1996). An alternative approach by Xu (1995) creates new

cliques which are supersets of existing cliques such that

each superset contains all the variables in a queried joint.

2. OPTIMAL DECOMPOSITIONS

Previous attempts to optimise inference in belief networks

have used a range of optimisation criteria. The

optimisation criterion used here is that of the

‘marginalisation cost’. That is, the total cost of

generating the queried posteriors in terms of the total

number of additions. This cost is essentially equal to the

sum of clique state spaces minus the sum of separator

state spaces. The use of this criterion, rather than the

more usual sum of clique state spaces, is a consequence of

a general 2-stage approach to optimisation that attempts to

minimise the total cost of additions, before using

heuristics to reduce the total cost of table combinations.

Strategies for table combination will not be detailed in

this paper.

Any non-minimal graph triangulation can be made
minimal by removing superfluous edges, one at a time,
such that each visited graph is decomposable. This result
has been used to thin superfluous edges in order to find
minimal triangulations from some arbitrarily triangulated
graph (Kjaerulff 1990). Kjaerulff showed that each edge
removal results in the breaking up of some clique into two
smaller cliques. It is easily shown that the sum of state
spaces of any two cliques has, at most, the same state
space as a clique formed by their union. As the
marginalisation cost requires the subtraction of the
separator state space, any superfluous edge removal will
reduce the marginalisation cost of a graph triangulation,
and any minimum cost solution will have a minimal graph
triangulation. Furthermore, in a graph G, there exists a
subset of clique separators that are common to all
minimal triangulations (Leimer 1993). These separators
decompose a graph into unique maximal prime subgraphs
(MPS) that can be (minimally) triangulated independently
of each other.

3. BELIEF PROPAGATION

3.1. INDIVIDUAL JOINT BELIEFS

The undirected graph for the ‘Asia’ network is shown in
Figure 1. It has a single fill-in edge {D,E}. The
corresponding junction tree is shown in Figure 2, with the
separators of the maximal prime subgraphs signified by
the more heavily lined boxes.

Figure 1: Junction Tree For Asia

Variable firing (Jensen 1996) generates the joint P(A,B)
by treating each level of A as observed, and ‘firing’ a
message from clique (A,C) to clique (B,D,E). The
marginalisation cost of this scheme can be easily
evaluated by adding A to all cliques and separators on the
path between (A,C) and (B,D,E). This results in the
junction tree shown in Figure 3, where A* denotes that A

Figure 2: Triangulation For Asia

is a member of a clique due to the query. So in effect, the
joint is found by choosing not to eliminate A from cliques
containing A*. The new junction tree implies the
triangulation in Figure 4, which represents a relatively
arbitrary graph decomposition with edges fanning out
from A to all variables contained in cliques from (A,C) to
(B,D,E). The only constraint on the decomposition is that
the variables in the queried joint should form a complete
subgraph. So if the undirected graph is pre-processed by
making the queried joint complete, then the resulting
query graph can be re-triangulated in order to reduce the
cost of inference.

Figure 3: Junction Tree For P(A,B)

Figure 4: Triangulation For P(A,B)

The additional edges in the query graph can affect the
maximal prime subgraph decomposition. In this example
the MPSs (A,C), (C,D,F) and (B,D,E,F) are merged to

AC

FG

DEF EFHCDF EF

F

DFC

BDE

DE

A

D

B

C E

G

F

H

AC

FG

A*DEF EFHA*CDF EF

F

A*DFA*C

A*BDE

A*DE

A

D

B

C E

G

F

H

form the MPS (A,B,C,D,E,F) in the query graph. But as a
minimal solution is being sought, any existing solutions to
other MPSs can be retained, and the problem becomes
that of re-triangulating the MPS (A,B,C,D,E,F) in the
query graph.

3.2. BELIEFS IN DISTINCT MAXIMAL PRIME
SUBGRAPHS

Consider the query set P(A,B), P(H) and the query graph

for P(A,B). Generation of P(H) requires additional

messages from (A*,B,D,E) to (A*,D,E,F) and from

(A*,D,E,F) to (E,F,H). These messages do not require the

starred variables. The message from (A*,B,D,E) to

(A*,D,E,F) is generated at a cost of bde – de (where lower

case denotes a variable’s state space). The message from

(A*,D,E,F) to (E,F,H) can be computed in a number of

ways. It requires the combination of the incoming

messages (A*,D,F), (D,E) and any tables allocated to

(D,E,F) in the original junction tree, and elimination of

A* and D. As A is starred it can be eliminated before any

table combinations. So the cost of the message is adf – df

for the elimination of A plus the cost def – ef for the

elimination of D after table combinations. So,

1. Starred variables are passed in messages in one

‘direction’ only. Messages in the reverse direction

ignore starred variables.

2. When a message requires the elimination of starred

variables from a clique, they are eliminated from the

clique’s existing incoming messages before table

combination.

If the elements of the query set are in distinct maximal

prime subgraphs in the query graph, then they can be

considered individually. The required incoming and

outgoing messages to/from an MPS are known from the

query and all the costs of MPS solutions are mutually

independent.

3.3. MULTIPLE BELIEFS IN THE SAME

MAXIMAL PRIME SUBGRAPH

Elements of a query in the same MPS cannot be

considered independently. They could be answered

separately by producing separate solutions, but this would

waste opportunities for re-using results. A naïve

extension of the query graph approach for an individual

joint to the more general problem of multiple joints might

seem inappropriate. In the worst case the graph would be

fully connected. But a considered treatment of the starred

variables shows that it is possible to generate multiple

joints efficiently despite the apparent density of the graph

triangulation.

Consider the query set P(A,B), P(H), P(E,G) and the

resulting junction tree in Figure 5. All the required

messages have been shown with arrows. The message

passing that relates directly to the query set is detailed

below.

P(A,B) is answered as before by propagating messages

from pendant cliques towards (A*,B,D,E) and then

marginalising to P(A,B). But when the outgoing message

from (A*,D,E,F,G*) is calculated Rule 2 is invoked. G*

is eliminated from the incoming message before being

combined with incoming message (A*,D,F) and any

tables allocated to (A*,D,E,F,G*). F is eliminated from

the resultant table to produce the message to be sent to

(A*,B,D,E).

P(H) is found by marginalisation from the clique (E,F,H).

The message from (A*,D,E,F,G*) is calculated by

combining the tables allocated to (A*,D,E,F,G*) with it’s

incoming messages from (F,G*), (A*,D,F) and (D,E) after

eliminating G* and A* under Rule 2, followed by the

elimination of D. Note: Only the message (D,E) is sent

from (A*,B,D,E) under Rule 1.

The calculation of P(E,G) involves a permutation of the

junction tree in order to avoid adding G* to (A*,C,D,F)

and (A*,D,F). As usual, Rule 2 is invoked and A* is

eliminated from the message (A*,D,F). The resultant

table is combined with the other inmessages to

(A*,D,E,F,G*), including (F,G*), and P(E,G) is

marginalised from the resulting joint, P(D,E,F,G).

So, although ostensibly there is a large clique
(A*,D,E,F,G*), its full joint is never calculated. The
queried joints are only marginalised from the joints that
would be necessary under a single-joint variable firing
scheme. Under the proposed scheme cached results are
re-used and only the messages necessary for the query set
are sent. The optimisation of the re-use of results from
intermediate table combinations and eliminations of
starred variables is treated as a secondary problem to that
of minimising the marginalisation cost. Each clique
constitutes a separate combination problem. However,
the approach to managing the table combinations will not
be detailed here. It is partially managed within a hybrid
junction tree structure which can also be efficiently
permuted in order to introduce an element of on-line
optimisation.

Figure 5: Junction Tree For P(A,B), P(H), P(E,G)

AC

FG

A*DEFG* EFHA*CDF EF

FG*

A*DFA*C

A*BDE

A*DE

4. DIRECTED JUNCTION TREES

A directed junction tree (DJT) of a connected graph

G=(V,E) represents the decomposition G’=(V,E∪T)

implied by an elimination ordering α of the vertices of G.

Each vertex in G has a corresponding labeled node in a

directed junction tree J, of G. A node label Σv indicates

the elimination of v from the elimination graph GV of the

set of vertices V s.t. x∈V if and only if there is a directed

path Σx→Σv in J. Each node Σv contains the member set

v∪Madj(v) where x∈Madj(v) denotes that x∈Adj(v) in

GV. Furthermore, there exists a directed edge from Σv to

Σx, denoted Σx=Madj(Σv), only if x∈Madj(v). Thus a
DJT is essentially a hybrid junction tree / factor tree but

with the following additional property.

The directed junction tree property:

Σx=Madj(Σv) ⇒ x∈Adj(v) in G’=(V,E∪T)

A DJT has a root node corresponding to the last variable

in α. The root node can be chosen arbitrarily as it places

no constraints on the underlying graph decomposition.

4.1. PERMUTATION OF DIRECTED JUNCTION

TREES

The directed junction tree property enables a DJT to be

efficiently permuted in order to search the space of

underlying graph triangulations. Permutation of the DJT

is achieved by selecting two nodes Σv and Σw=Madj(v),

reversing the direction of their common edge and locally

updating their members and adjacent edges. Each

permutation involves the local re-triangulation of the

subgraph induced by the members of the permuted nodes.

Care is taken to preserve the directed junction tree

property:

1. All edges between Σxi and Σw s.t. Σxi→Σw are

unchanged.

2. Edges between Σxi and Σv s.t. Σxi→Σv and

w∉xi∪Madj(xi) are unchanged.

3. Edges between Σxi and Σv s.t. Σxi→Σv and

w∈xi∪Madj(xi) are removed and edges Σxi→Σw are

added.

The directed junction tree property guarantees that the

two variables eliminated are adjacent in G. Permuting

variables that are adjacent in some elimination ordering,

but not adjacent in G, leaves the underlying graph

decomposition unchanged.

The marginalisation cost can be updated locally as the

cost change depends only on the domain sizes of the

members of Σv and Σw. It should be noted that although

the sum of DJT node state spaces is greater than that of

the sum of clique state spaces of an equivalent junction

tree, their marginalisation costs are identical.

Lemma. The space of all graph triangulations

corresponding to elimination orderings can be traversed

through permutations of a DJT.

Proof: Any elimination ordering is trivially reachable

from any starting ordering by the repeated permutation of

adjacent variables. So it is sufficient to show that all

corresponding DJT permutations are possible. If two

adjacent variables v and w s.t. v is ordered before w, are

separated in G, then the pre- and post-permutation

orderings have the same DJT. If v and w are adjacent in

both the ordering and G, then Σw=Madj(Σv) and there is

a DJT permutation corresponding to the reordering of the

variables. ð

Figure 6 shows a sub-DJT corresponding to the MPS

(A,B,C,D,E,F) in the decomposition of the Asia network

in Figure 2. In this case the root node contains the

variables of the MPS separator (E,F). There is no node

ΣF as this would allow permutations resulting in a

variable on the MPS separator being eliminated before

elimination of all non-separator variables. This would

lead to non-minimality.

∑ A

AC CDF DEF EF

∑C

∑B

∑D ∑E

BDE

Figure 6: Sub-DJT For The MPS (A,B,C,D,E,F)

The addition of starred variables for the query P(A,B)

results in the tree in Figure 7. However this is not a valid

DJT. In order to construct a valid DJT, permutations of

the DJT in Figure 6 are carried out until the query edge

{A,B} appears in a DJT node. This is easily achieved by

permuting so that A and B are eliminated late in the

ordering.

∑ A

AC A*CDF A*DEF EFH
∑C

∑B

∑D ∑E

A*BDE

Figure 7: P(A,B) Removes The DJT Property

The tree resulting from the permutations A,C,B,D,E

→C,A,B,D,E→C,A,D,B,E→C,D,A,B,E results in the tree

in Figure 8. Although the edge {A,B} is a fill-in edge, it

can subsequently be treated as a graph edge, ensuring that

it will exist in some node after further permutations.

∑ A

ACDF ABDF ABF BEF

∑ C ∑ B∑ D ∑ E

EF

Figure 8: DJT Property Restored By Permutation

Local cost updating must take into account the fact that

messages might not be transmitted in both directions

between two adjacent cliques. Furthermore, message

passing from a clique might be achieved at a lesser cost

than the clique’s state space minus the message state

space. The former can be adequately allowed for by

suitably weighting the relevant cliques and separators.

The latter is less straightforward and is handled by an

alternative DJT permutation scheme.

The DJT for the query P(A,B) could have been permuted

by treating the state spaces of the starred variables as

weights and ignoring them for the purposes of DJT

permutation. In such a case it would be unnecessary to

permute the DJT until the edge {A,B} existed in some

DJT node. However, it would be necessary to consider

the problem of which (possibly intermediate) clique

should receive the fired messages.

DJT algorithms and permutation strategies are the subject

of on-going research.

4.2. BELIEF PROPAGATION IN DIRECTED

JUNCTION TREES

It is easy to construct a junction tree from a DJT by

merging adjacent nodes to form cliques, and dropping the

directions on the edges. However this is unnecessary as

evidence propagation can be handled within the DJT

itself. In order to reduce storage costs the DJT is

modified as follows.

1. Each probability table is allocated to a node

according to some heuristic.

2. Any node which is not a clique, has only a single

parent, and no allocated table, is merged with its

parent.

3. The directions on edges are dropped.

The resulting tree of complete subgraphs is not generally
a tree of cliques. The subsequent message passing
scheme will not be detailed here as it is essentially a
version of the well-known Shafer-Shenoy algorithm
(Shafer and Shenoy 1990). For arbitrary sets of beliefs it
also obeys the rules outlined earlier.

5. CONCLUSIONS

Existing methods for propagating joint beliefs in junction

trees take an existing junction tree and, either implicitly or

explicitly, create new cliques which are supersets of

existing cliques. The costs of these schemes are

arbitrarily high. Factoring methods can easily answer

single joint queries, but do not offer a means of

propagating multiple joint beliefs without constructing

separate factorings. However, it is possible to efficiently

generate an arbitrary set of posterior beliefs through a

multiple message passing scheme which exploits

marginalisation from existing messages, as well as from

cliques. Moreover, a directed junction tree representation

enables a junction tree to be efficiently permuted, so that

elements of an efficient off-line solution can be combined

with on-line optimisation. In fact, it is possible to

abandon the standard junction tree representation and

propagate beliefs in a directed junction tree.

Directed junction trees offer an efficient means of
searching the space of decomposable graphs. A number
of algorithms have already been implemented, and an
adaptation of the scheme for (decomposable) model
determination is the subject of current research.

References

Bloemeke, M. & Valtorta, M. (1998). A Hybrid

Algorithm to Compute Marginal and Joint Beliefs in

Bayesian Networks and Its Complexity. In G.F. Cooper,

M. Serafín (eds.), Proceedings of the 14th Conference on

Uncertainty in Artificial Intelligence, pp.16-23. San

Francisco, Calif: Morgan Kaufmann.

Jensen, F.V. (1996) An Introduction to Bayesian

Networks. UCL Press, London. pp.60-61.

Kjaerulff, U. (1990). Triangulation of Graphs-Algorithms

Giving Small Total State Space. Technical Report R90-

09. Department of Mathematics and Computer Science,

Aalborg University, Denmark.

Lauritzen, S.L. & Spiegelhalter, D.J. (1988). Local

Computations with Probabilities on Graphical Structures

and their Application to Expert Systems. Journal of the

Royal Statistical Society B, 50, No.2., pp.157-224.

Leimer, H.-G. (1993). Optimal Decomposition by Clique

Separators. Discrete Mathematics 113. pp.99-123.

Li, Z. & D’Ambrosio, B. (1994). Efficient Inference in

Bayes Networks as a Combinatorial Optimization

Problem. International Journal of Approximate

Reasoning 11. pp.55-81.

Shafer, G. & Shenoy, P. (1990). Probability propagation.

Annals of Mathematics and artificial Intelligence 2.

pp.327-352.

Xu, H. (1995). Computing Marginals for Arbitrary

Subsets from Marginal Representation in Markov Trees.

Artificial Intelligence 74. pp.177-189.

Zhang, N.L. & Poole, D. (1994). A Simple Approach to

Bayesian Network Computations. Proceedings of the

10th Biennial Canadian Artificial Intelligence Conference

(AI-94), Banff, pp.171-178.

