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Abstract 

 

The Fast Casual Inference (FCI) algorithm 
searches for features common to observationally 
equivalent sets of causal directed acyclic graphs.  
It is correct in the large sample limit with 
probability one even if there is a possibility of 
hidden variables and selection bias. In the worst 
case, the number of conditional independence 
tests performed by the algorithm grows 
exponentially with the number of variables in the 
data set. This affects both the speed of the 
algorithm and the accuracy of the algorithm on 
small samples, because tests of independence 
conditional on large numbers of variables have 
very low power. In this paper, I prove that the 
FCI algorithm can be interrupted at any stage 
and asked for output. The output from the 
interrupted algorithm is still correct with 
probability one in the large sample limit, 
although possibly less informative (in the sense 
that it answers “Can’t tell” for a larger number of 
questions) than if the FCI algorithm had been 
allowed to continue uninterrupted.   

1 INTRODUCTION 

One approach to causal inference from observational data 

represents causal relations by directed acyclic graphs 

(DAGs) and makes assumptions relating the causal DAG 

structure to probability distributions. The problem of 

making causal inferences then becomes the problem of 

finding the “best” DAG or set of DAGs for a given 

sample (Spirtes, Glymour, and Scheines 1993, 

Heckerman, Meek, and Cooper 1999). 

There are two distinct types of  algorithms that have been 

proposed for finding the “best” DAG or set of DAGs for a 

given data set.  Both of these types of algorithms share the 

problem that they are very slow for data sets with large 

numbers of variables. “Score-based algorithms” assign a 

score to each causal model (e.g. a Bayesian posterior, an 

MDL, or BIC score) and perform searches over a large 

number of different DAGs for the DAG with the highest 

score (Heckerman, Meek, and Cooper 1999). One 

problem with this approach is that a conclusion about a 

causal influence can be reversed if a DAG with a higher 

score is later found. If the possibility of unmeasured 

variables is disallowed, the  number of possible DAGs 

grows super-exponentially with the number of variables. 

Hence heuristic searches are performed,  and a very 

extensive search is needed if a causal conclusion drawn 

by a score-based algorithm is to be held with any 

confidence. Moreover, if one allows the possibility of 

unmeasured variables, scoring the models becomes slow, 

and the number of potential models is infinite, so it is not 

clear how the search should be structured.  

In contrast, a “constraint-based algorithm” constructs a 

graphical object that represents features common to all 

DAGS compatible with the results of a set of statistical 

tests of conditional independence selected by the 

algorithm. For example, there are cases in which all 

causal structures compatible with the results of a set of 

selected conditional independence tests have the features 

that “A causes B”, other cases where all agree that “A 

does not cause B”, and still others in which all agree that 

“There is an unmeasured common cause of A and B”. If 

some causal structures in which A causes B are 

compatible with a given set of conditional independence 

tests C, and other causal structures in which A does not 

cause B are compatible with C, then with respect to the 

question of whether A causes B the algorithm outputs 

“Can’t tell”. In addition, there are cases in which the size 

of a causal effect can be estimated in the limit as well. 

There is a constraint-based algorithm (the Fast Causal 

Inference, or FCI algorithm) which is correct in the large 

sample limit with probability one (Spirtes, Glymour, and 

Scheines 1993, Spirtes, Meek, and Richardson 1999) even 

if there is a possibility of latent variables and selection 

bias. Although it does not perform all possible tests of 

conditional independence among the measured variables, 

in the worst case, the number of conditional independence 

tests performed by the algorithm grows exponentially 

with the number of variables in the data set. Hence, in the 

worst case the algorithm is not feasible on data sets with 

large numbers of variables (although in many cases it is 

feasible with large numbers of variables).  In addition, 



tests of independence conditional on large numbers of 

variables have very low power and hence the accuracy of 

the algorithm on small sample sizes decreases if the 

algorithm requires tests of independence conditional on a 

large set of variables.  

In this paper, I prove that the FCI algorithm can be 

interrupted at any stage and asked for output, and that the 

output is still correct in the large sample limit with 

probability one, although possibly less informative (in the 

sense that it answers “Can’t tell” for a larger number of 

questions) than if it had been allowed to continue 

uninterrupted.  (The FCI algorithm has an outer loop in 

which tests of independence conditional on sets of 

variables of increasing size are considered. “Interrupting 

at any stage” means stopping the outer loop at any chosen 

size). Limiting the number of variables in the 

conditioning set of the independence tests that the FCI 

algorithm performs not only increases the speed of the 

algorithm, it also makes the algorithm more reliable on 

finite samples because the statistical tests with the least 

power have been eliminated. Call this modified version of 

the FCI algorithm the anytime FCI algorithm.  

2 CAUSAL DAGS 

Causal relations among random variables are represented 

by a DAG. A set of variables V is causally sufficient if 

every cause of two members of V is also a member of V. 

A DAG G is a causal DAG for a causally sufficient set of 

variables V and a population Pop if and only if there is an 

edge from A to B in G if and only if A is a direct cause of 

B relative to V for some units in Pop.  

Causal relationships between a set of variables V, on the 

one hand, and the mechanism by which individuals in the 

sample are selected from a population, on the other hand, 

may lead to differences between the expected parameter 

values in a sample and the population parameter values. In 

this case say that the differences are due to selection bias.  

For the purposes of representing selection bias, following 

Cooper (1995) for each measured random variable A, 

there is a binary random variable SA that is equal to one if 

the value of A has been recorded, and is equal to zero 

otherwise. (Say that a variable is measured if its value is 

recorded for any member of the sample.) If V is a set of 

variables, V can be partitioned into three sets: the set O 

(standing for observed) of measured variables, the set S 

(standing for selection) of selection variables for O, and 

the remaining variables L (standing for latent). Although 

this representation allows for the possibility that some 

units have missing values for some variables and not 

others, the algorithms for causal inference that are 

described in this paper use only the data for the subset of 

the sample in which all of the units have no missing data 

for any of the measured variables (i.e. S=1). Since in some 

circumstances this reduces the usable sample dramatically 

(or even to zero) it would obviously be desirable to make 

use of the full sample; how to do this is an open research 

problem.  

For a given DAG G, and a partition of the variable set V 

of G into observed (O), selection (S), and latent (L) 

variables, write G(O,S,L). I assume that the only 

conditional independence relations that can be tested are 

those among variables in O conditional on any subset X 

of O when S=1 (which is written as X∪(S=1). Let 

I(X,Y,Z) mean X is independent of Z given Y. If X, Y, 

and Z are included in O, and I(X,Y∪ (S=1),Z), then say it 

is an observed conditional independence relation.  

Say that a distribution P satisfies the Markov Condition 

for a DAG G if in the distribution P each vertex V is 

independent of the set of vertices which are neither 

parents nor descendants of V, conditional on the parents 

of V. A DAG G entails a conditional independence 

relation I(A,B,C) if I(A,B,C) is true in every distribution 

that satisfies the Markov condition for G. There is a 

graphical relationship, d-separation, among three disjoint 

sets of vertices in a DAG, which determines whether or 

not a DAG G entails I(A,C,B). A vertex V is a collider on 

an undirected path U if and only if U contains a pair of 

distinct edges adjacent on the path and into V. For three 

disjoint sets of variables A, B, and C, A is d-separated 

from B given C in DAG G, if and only if there is an 

undirected path from some member of A to a member of 

B such that every collider on that path is either in C or has 

a descendant in C, and every non-collider on the path is 

not in C. For three disjoint sets of variables A, B, and C, 

A is d-connected to B given C in DAG G if and only if A 

is not d-separated from B given C. Geiger, Pearl, and 

Verma have shown that G entails I(A,C,B) if and only if 

A is d-separated from B given C in G. See Pearl(1988). In 

a DAG G(O,S,L), if X, Y, and Z are included in O, and X 

is d-separated from Z given Y∪(S=1) then say it is an 

observed d-separation relation (in the sense that it entails 

an observed conditional independence relation.) It is 

possible that the set of observed d-separation relations in 

two different DAGs are identical, in which case say that 

they are O-equivalent. More formally, if X, Y, and Z are 

disjoint subsets of O, and X is d-separated from Z given 

Y∪(S=1) in G(O,S,L) if and only if X is d-separated from 

Z given Y∪(S’=1) in G’(O,S’,L’) then G’(O,S’,L’) is in 

O-Equiv(G). If two DAGs are O-equivalent, then no set 

of conditional independence tests can distinguish between 

them. Since the FCI algorithm uses just tests of 

conditional independence relations to construct its output, 

the output of the algorithm should be an object that 

represents an entire O-equivalence class of DAGs. 

3 PARTIAL ANCESTRAL GRAPHS 

Partial ancestral graphs (PAGs) serve a dual purpose. 

They represent all of the observed d-separation relations 

in a DAG G(O,S,L) and they represent some of the 

features common to every member of an O-equivalence 



class of DAGs. There are three kinds of endpoints an edge 

in a PAG can have: “– ”, “o”, or “>”. These can be 

combined to form the following four kinds of edges: A → 

B, A ↔ B, A o→ B, or A oo B. Let “*” be a meta-

symbol that stands for any of the three kinds of endpoints, 

e.g. “A *→ B” stands for “A o→ B” or “A ↔ B” or “A 

→ B”. A PAG π represents a DAG G(O,L,S) if and only: 

1. The set of variables in π is O. 

2. If there is any edge between A and B in π, it is one of 

the following kinds: A → B, A ο→ B, A οο B, or 

A ↔ B. 

3. There is at most one edge between any pair of 

vertices in π.  

4. A and B are adjacent in π if and only if for every 

subset Z of O\{A,B} A and B are d-connected 

conditional on Z∪S in G. 

5. An edge between A and B in π is oriented as A → B 

only if A is an ancestor of B but not S in every DAG 

in O-Equiv(G). 

6. An edge between A and B in π is oriented as A *→ B 

only if B is not an ancestor of A or S in every DAG 

in O-Equiv(G). 

7. A ** B** C in π only if in every DAG in O-

Equiv(G) B is an ancestor of either C, or A, or S. 

(Suppose that A and B are adjacent, and B and C are 

adjacent, and A and C are not adjacent, and the edges 

in the PAG are not both into B, i.e. the PAG does not 

contain A *→ B ←* C. Then the underlining of B 

should be assumed to be present, although it is not 

explicitly represented in π.)  

Note that an “o” endpoint does not place any restriction 

on the ancestor relations in G. Hence there can be several 

different PAGs representing the same DAG G(O,S,L) 

because where one PAG π may have a “>” or “” 

endpoint, or an underlined pair of endpoints, the other 

PAG π’ may have a “o” endpoint or a non-underlined pair 

of endpoints respectively; if this is the case say that π is 

more informative than π’. An example of a PAG is 

shown in Figure 1 where O = {X,Z,Y,W}, L = {L}, and 

each S ∈ S (not shown) has no edges into or out of it.  

 

 

 

 

 

Figure 1 

The proofs of the following theorems are in Spirtes, 

Meek, and Richardson (1999).  

Theorem 1: If π is a partial ancestral graph, and there is a 

directed path U from A to B in π, then in every DAG 

G(O,S,L) represented by PAG π, there is a directed path 

from A to B, and A is not an ancestor of S.  

A semi-directed path from A to B in a PAG π is an 

undirected path U from A to B in which no edge contains 

an arrowhead pointing towards A, (i.e. there is no 

arrowhead at A on U, and if X and Y are adjacent on the 

path, and X is between A and Y on the path, then there is 

no arrowhead at the X end of the edge between X and Y). 

Theorem 2, Theorem 3, and Theorem 4 give information 

about what variables appear on causal paths between a 

pair of variables A and B, i.e. information about how 

those paths could be blocked.  

Theorem 2: If π is a partial ancestral graph, and there is 

no semi-directed path from A to B in π that contains a 

member of C, then every directed path from A to B in 

every DAG G(O,S,L) represented by PAG π that contains 

a member of C also contains a member  of S.  

Theorem 3: If π is a partial ancestral graph of DAG 

G(O,S,L), and there is no semi-directed path from A to B 

in π, then every directed path from A to B in every DAG 

G(O,S,L) represented by PAG π contains a member of S.  

Theorem 4: If π is a partial ancestral graph, and every 

semi-directed path from A to B contains some member of 

C in π, then every directed path from A to B in every 

DAG G(O,S,L) represented by PAG π  contains a 

member of S∪C. 

Pearl (1995) showed how in some cases to use the 

“Causal Calculus” (equivalent to Theorem 7.1 of Spirtes, 

Glymour, and Scheines 1993) to calculate the effects of 

interventions from a DAG of completely known structure 

and a marginal observed distribution, even if the DAG 

contains latent variables. PAGs represent partial 

knowledge about DAGs (possibly with latent variables.) 

There is an algorithm which can take partial knowledge 

about a DAG which may contain latent variables (in the 

form of a PAG) and an observed marginal distribution as 

input, and in some cases calculate the magnitude of an  

effect of an intervention. See Spirtes, Glymour, and 

Scheines (1993). 

4 FAST CAUSAL INFERENCE 
ALGORITHM 

For details, proofs, and examples for this section see 

Spirtes, Meek, and Richardson (1999). The fundamental 

assumption I will make relating causal DAGs to 

probability distributions is the following:  

Selection Bias Causal Assumption: For each set of 

variables O, and each population Pop  such that S=1, 

there is a causally sufficient set of variables V such that 

O∪S ⊆ V and for all A, B, C ⊆ O, I(A,(C∪(S=1),B) in 

Pop if and only if the causal DAG G(O,S,L) relative to V 

in Pop entails that I(A,(C∪(S= 1),B) in Pop.  
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The justification of this assumption, and conditions under 

which it may fail are discussed in Spirtes, Meek, and 

Richardson, 1999. One of its consequences is a kind of 

Markov condition, i.e. the indirect causes of a variable V 

are screened off from V by its immediate causes.  

In practice, for several different families of 

parameterizations of DAGs there are statistical tests of 

conditional independence that can be performed. For the 

purposes of this paper, however, problems of sample size 

will not be considered. I will assume that there is an 

oracle that the FCI algorithm can use to determine if 

I(A,(C∪(S=1),B) in Pop; in that case say that the oracle is 

an input for the FCI algorithm. 

DAG G(O,S,L) entails that I(A,(C∪(S=1),B) if and only 

if A is d-separated from B conditional on C∪(S=1). So 

given the Selection Bias Causal Assumption, the 

assumption of an oracle that can determine whether 

I(A,(C∪(S=1),B) in Pop. is equivalent to having an oracle 

that can determine whether A is d-separated from B 

conditional on C∪S in G(O,S,L). 

The algorithm starts off with a complete undirected graph 

between the observed variables. When the algorithm 

removes an edge between A and B, it does so because it 

has queried its oracle and received a “yes” answer to the 

question of whether some subset Z of O\{A,B} is such 

that A and B are d-separated conditional on Z∪S. The 

subset Z is recorded in Sepset(A,B) and Sepset(B,A). 

This information is used later in the orientation phase of 

the algorithm. Because each edge is removed at most 

once, Sepset(A,B) contains at most one subset of 

O\{A,B}. In the algorithm, Adjacencies(Q,X) is the set of 

vertices that are adjacent to X in graph Q. 

Adjacencies(Q,X) changes as the algorithm progresses, 

because the algorithm removes edges from Q. (However, 

Possible-D-Sep is calculated only once, and remains 

fixed, even as the graph changes.) When an orientation 

rule changes the orientation of an edge, e.g. from “A** 

B” to “A*→* B” this means that the orientation of the A 

endpoint of the edge remains at whatever its current value 

is, and the the orientation of the B endpoint of the edge is 

changed to “>”.  

The following definitions are used in the algorithm. A, B, 

and C form a triangle in a DAG or a PAG if and only if A 

and B are adjacent, B and C are adjacent, and A and C are 

adjacent. V is in Possible-D-Sep(A,B,π) in a PAG π if 

and only if there is an undirected path U between A and B 

in π such that for every subpath X ** Y ** Z of U 

either Y is a collider on the subpath, or X, Y, and Z form a 

triangle in π. In a partial ancestral graph π, U is a definite 

discriminating path for B if and only if U is an 

undirected path between X and Y, B is the predecessor of 

Y on U, B ≠ X, every vertex on U except for the endpoints 

and possibly B is a collider on U, for every vertex V on U 

except for the endpoints there is an edge V → Y, and X 

and Y are not adjacent. 

Fast Causal Inference Algorithm 

 Input: Oracle for G(O,S,L) 

A). Form the complete undirected graph Q on the vertex 

set V.  

B). n = 0. 

       repeat 

           repeat 

select an ordered pair of variables X and Y that 

are adjacent in Q such that 

Adjacencies(Q,X)\{Y} contains at least n 

members, 

             repeat 

select a subset T of Adjacencies(Q,X)\{Y} 

with n members, and if X and Y are d-

separated given T ∪ S according to the 

oracle for G(O,S,L), delete the edge 

between X and Y from Q, and record T in 

Sepset(X,Y) and Sepset(Y,X) 

until all subsets of Adjacencies(Q,X)\{Y} of 

size n have been checked for d-separation 

given T ∪ S or there is no edge between X 

and Y;  

until all ordered pairs of adjacent variables X and 

Y such that Adjacencies(Q,X)\{Y} has at least n 

members have been selected; 

   n = n + 1; 

until for each ordered pair of adjacent vertices X, Y, 

Adjacencies(Q,X)\{Y} has fewer than n  members. 

C). Let π0 be the undirected graph resulting from step B). 

Orient each edge as “”. For each triple of vertices A, B, 

C such that the pair A, B and the pair B, C are each 

adjacent in π0 but the pair A, C are not adjacent in π0, 

orient A   B   C as A  → B ← C if and only if B is 

not in Sepset(A,C). 

D). Let π1 be the graph resulting from step C.) For each 

pair of variables A and B adjacent in π1, if there is a 

subset T of Possible-D-SEP(A,B, π1)\{A,B} or of 

Possible-D-SEP(B,A, π1)\{A,B} such that A and B are d-

separated conditional on T∪S according to the oracle for 

G(O,S,L), remove the edge between A and B from π1, and 

record T in Sepset(A,B) and Sepset(B,A). 

E.) Orient each edge in π1 as “oo”. Call this graph π2.  

F. For each triple of vertices A, B, C such that the pair A, 

B and the pair B, C are each adjacent in π2 but the pair A, 

C are not adjacent in F', orient A ** B ** C as A *→ 

B  ←* C if and only if B is not in Sepset(A,C). 

G. repeat 

(i) If there is a directed path from R to S, and an edge 

R ** S, orient R ** S as R *→ S, 

(ii) else if P *→ M ** R then orient as P *→ M → 

R., 

(iii) else if B is a collider along <A,B,C>, A is not 

adjacent to C, B is adjacent to D, and D  is a non-

collider along <A,D,C>, then orient B ** D as B  

←* D, 



(iv) else if X ←* Y, X → Z, and Z o* Y, orient as 

Z  ←* Y; 

(v) If U is a definite discriminating path between F 

and Η for J, K is adjacent to H on U, and K, J, and H 

forn a triangle, then if J is in Sepset(F,H) then mark J 

as a non-collider on subpath K ** J ** H  else 

orient K ** J ** H as K *→ J  ←* H. 

   until no more edges can be oriented. 

Theorem 5: If the input to the FCI algorithm is an oracle 

for G(O,S,L), the output is a PAG that represents 

G(O,S,L). 

The output of the FCI algorithm represents ancestor 

relations common to any DAG that is O-equivalent to G. 

This is because the output of the FCI algorithm is a 

function of the oracle for G(O,S,L) and hence it produces 

the same output for any DAG G’(O,S’,L’) that has the 

same observed d-separation relations as G.  

It is not known whether the PAG output by the FCI 

algorithm captures all of the ancestor relations common to 

the DAGs in the O-equivalence class of G. However, the 

PAG output by the FCI algorithm does contain enough 

orientation information to represent the observed d-

separation relations in G in the following way. Say B is a 

definite non-collider on undirected path <A,B,C> if and 

only if either A ← B ** C, A ** B → C, or A ** 

B ** C in π. A is a descendant of B in a PAG π if and 

only if there is a directed path (all of the edges on the path 

are oriented as “→”) from A to B in π  or A = B. In a 

PAG π, if X ≠ Y, and X and Y are not in Z, then an 

undirected path U definitely d-connects X and Y given Z 

if and only if every collider on U has a descendant in Z, 

every definite non-collider on U is not in Z, and every 

other vertex on U is not in Z but has a descendant in Z. If 

X, Y, and Z are disjoint sets of variables, then X is 

definitely d-connected to Y given Z if and only if some 

member of X is d-connected to some member of Y given 

Z. 

Theorem 6: If G(O,S,L) is a directed acyclic graph, and 

π is the output of the FCI algorithm whose input is an 

oracle for G(O,S,L), and X, Y, and Z are disjoint subsets 

of O, then X is d-connected to Y given Z∪S in G(O,S,L) 

if and only if X is definitely d-connected to Y given Z in 

π. 

5 ANYTIME FAST CAUSAL 
INFERENCE ALGORITHM 

The Anytime Fast Causal Inference Algorithm simply 

halts the outer  repeat loop in step B) of the algorithm at 

some fixed size n. The result of stopping the algorithm at 

that point is a PAG which is correct, but possibly less 

informative than if the algorithm had been allowed to 

continue running.  

Halting the outer repeat loop in step B) of the algorithm at 

some fixed size n is equivalent to having an oracle that 

always returns “no” for all conditioning sets of size 

greater than n. Let an n-oracle for G(O,S,L) be an 

algorithm that on input “X, Y, Z” outputs “no” if |Z| > n 

or X is not d-separated from Y given Z∪S, and otherwise 

outputs “yes”.  (|Z| represents the number of variables in 

Z.) 

The sense in which the Anytime Fast Causal Inference 

Algorithm is correct but possibly less informative than the 

Fast Causal Inference Algorithm is twofold. First, it 

correctly represents ancestor relations common to the set 

of DAGs that that have the same observed d-separation 

relations as G for all conditioning sets of size less than or 

equal to n. This condition can be expressed more formally 

using the following definitions. If X, Y, and Z are disjoint 

subsets of O, and for all |Y| ≤ n, X is d-separated from Z 

given Y∪(S=1) in G(O,S,L) if and only if X is d-

separated from Z given Y∪(S’=1) in G’(O,S’,L’) then 

G’(O,S’,L’) is in n-O-Equiv(G). The definition of a PAG 

π n-representing a DAG G(O,L,S) is the same as the 

definition of π representing DAG G(O,S,L) except that 

each occurrence of O-Equiv(G) in the definition is 

replaced with n-O-Equiv(G), and clause 4) of the 

definition is replaced by 4’: 

4’.   A and B are adjacent in π if and only if for  

every subset Z of O\{A,B} such that  

|Z| ≤ n, A and B are d-connected conditional on Z∪S 

in G(O,S,L) 

Suppose that O = {X,Z,Y,W}, L = {L}, and each S ∈ S 

(not shown) has no edges into or out of it. Then (i) of 

Figure 2 0-represents and 1-represents G of  Figure 1, and 

(ii) 2-represents G.  

 

 

 

 

 

 

Figure 2 

Theorem 7: If the input to the FCI algorithm is an n-

oracle for G(O,S,L), the output π is a PAG that n-

represents G(O,S,L). 

Second,, if the input to the anytime FCI algorithm is an n-

oracle for G(O,S,L) the output PAG represents all of the 

observable d-separation relations in the DAG G(O,S,L) 

whose conditioning sets are of size less than or equal to n. 

Theorem 8:  If π is the PAG output by the FCI algorithm 

with an n-oracle for G(O,S,L), and |Z| � n, then X and Y 

are definitely d-connected given Z in π if and only if X 

and Y are d-connected given Z∪S in G(O,S,L).  

X            Y               X            Y       

 

      Z              W            Z             W             

   (i) n= 0 or n=1             (ii)  n=2 
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In addition to stopping the FCI algorithm after any 

iteration in step B), it is also possible to stop the FCI 

algorithm in any iteration in step G. Once an edge is 

oriented in the repeat loop of step G of the anytime FCI 

algorithm the algorithm never changes that orientation. 

Hence step G can be halted at any stage without affecting 

the correctness of the output; only the informativeness of 

the output will be affected.  

6 APPENDIX 

The proof of Lemma 1 is in Spirtes, Glymour, and 

Scheines (1993).  

Lemma 1: In a DAG G over V, if X and Y are not in Z, 

and there is a sequence H of distinct vertices in V from X 

to Y, and there is a set T of undirected paths such that 

(i) for each pair of adjacent vertices V and W in H  

there is a unique undirected path in T that d-connects 

V and W given Z\{V,W}, and  

(ii) if a vertex Q in H is in Z, then the paths in T that 

contain Q as an endpoint collide (are both into) at Q, 

and 

(iii) if for three vertices V, W, Q occurring in that 

order in H the d-connecting paths in T between V and 

W, and W and Q collide at W then W has a 

descendant in Z,  

then there is a path U in G that d-connects X and Y given 

Z.  

Lemma 2: In a DAG G(O,S,L), if X is not an ancestor of 

{Y}∪S, and for each M ⊆ O, such that |M| ��U��;�DQG�<�
are d-connected given M∪S, then for each R ⊆ O, such 

that |R| �� U�� WKHUH� LV� D� SDWK� 8� WKDW� G-connects X and Y 

given R∪S that is into X.  

Proof. Let R be an arbitrary subset of O such that |R| = n 

��U��I will construct a sequence of subsets R0 ⊂ R1 … ⊂ 

Rn-1 ⊂ R, such that for each Ri, there is a path U into X 

that d-connects X and Y given Ri∪S, and each member of 

Ri is an ancestor of S∪{X,Y}.  

Let R0 = ∅. By hypothesis, X and Y are d-connected 

given S. It follows that there is an undirected path T 

between X and Y such that every collider on T is an 

ancestor of S. Because X is not an ancestor of Y, either T 

is a directed path from Y to X that does not contain S, or 

T contains a collider. If T is a directed path from Y to X 

that does not contain S then T d-connects X and Y given 

R0∪S, and is into X. If T contains a collider,  let C be the 

closest collider on T to X. C is an ancestor of S. If T is out 

of X, then X is an ancestor of C, and hence of S. Hence T 

is into X. Trivially, every member of R0 is an ancestor of 

{X,Y}∪S. 

 Suppose for Rm ⊂ R, every member of Rm is an ancestor 

of S∪{X,Y}, and there is a path U into X that d-connects 

X and Y given R∪S. I will now show that there is a set 

Rm+1 = Rm∪{W}, where W ∈ R\Rm, and a path U’ that d-

connects X and Y given Rm+1 that is into X, and every 

member of Rm+1 is an ancestor of {X,Y}∪S.  

If U does not contain some member of R\Rm as a non-

collider, then U d-connects X and Y given R∪S, and is 

into X. Suppose then that U does contain some member 

W of R\Rm as a non-collider. Because U d-connects X 

and Y given Rm∪S, it follows that every vertex on U is an 

ancestor of Rm∪S∪{X,Y}. By the induction hypothesis, 

every member of Rm is an ancestor of S∪{X,Y}, so W is 

an ancestor of S∪{X,Y}. Let Rm+1 = Rm∪{W}. It follows 

that every member of Rm+1 is an ancestor of S∪{X,Y}. 

By hypothesis, there is a path U’ that d-connects X and Y 

given Rm+1. Every vertex on U’ is an ancestor of 

S∪{X,Y}, because every collider on U’ is an ancestor of 

Rm+1, and every member of Rm+1 is an ancestor of 

S∪{X,Y}. If U’ is not into X, and there are no colliders 

on U’, then X is an ancestor of Y, contrary to the 

hypothesis. If U’ does contain a collider, let C be the 

collider on U’ closest to X. If U’ is out of X, then X is an 

ancestor of C. C is not an ancestor of X, because 

otherwise G(O,S,L) contains a cycle. Hence C is an 

ancestor of S∪{Y}. It follows that X is an ancestor of 

S∪{Y}, contrary to the hypothesis. Hence U’ is into X. 

It follows by induction that there is a path U that d-

connects X and Y given R that is into X.  Q.E.D. 

Lemma 3: In a DAG G(O,S,L), if X is an ancestor of 

{Y}∪S, and for each M ⊆ O, such that |M| ��U��;�DQG�<�
are d-connected given M∪S, then for each R ⊆ O such 

that |R| �� U�� WKHUH� LV� D� SDWK� 8� WKDW� G-connects X and Y 

given (R∪S)\{X,Y} that is out of X, or X is an ancestor 

of R∪S. 

Proof. Let R ⊆ O such that |R| ��U��%\�K\SRWKHVLV��;�LV�DQ�
ancestor of {Y}∪S. If X is an ancestor of S the proof is 

done. Suppose then that X is an ancestor of Y. There is a 

directed path D from X to Y that does not contain any 

member of S. If D contains a member of R, then X is an 

ancestor of R. If D does not contain a member of R, then 

D is a path that d-connects X and Y given (R∪S)\{X,Y} 

that is out of X. Q.E.D 

Lemma 4: In G(O,S,L), if {A,B} ⊆ O, A is an ancestor 

of {B}∪S, and B is an ancestor of {A}∪S, then A and B 

are ancestors of S.  

Proof. Because G(O,S,L) is acyclic, either A is not an 

ancestor of B, or B is not an ancestor of A. Suppose 

without loss of generality that A is not an ancestor of B. It 

follows that A is an ancestor of S. Either B is an ancestor 

of A, in which case it is an ancestor of S, or it is an 

ancestor of S. Q.E.D. 

For a DAG G(O,S,L), let Gn(O,S’,L’) be formed in the 

following way:  



• Initialize S’ = S and L’ = L. 

• If there is an edge from X to Y in G(O,S,L), there is 

a corresponding edge from X to Y in Gn(O,S’,L’). 

• If there is no edge between X and Y in G(O,S,L), but 

in G(O,S,L), X and Y are d-connected given every subset 

R∪S such that |R| ��Q��WKHQ� 
• if X is an ancestor of {Y}∪S, and Y is an ancestor 

of {X}∪S, add SXY to S’, and add edges X → SXY ← 

Y to Gn(O,S’,L’),   

• if X is an ancestor of {Y}∪S, and Y is not an 

ancestor of {X}∪S, add an edge X → Y to 

Gn(O,S’,L’),  

• if X is not an ancestor of {Y}∪S, and Y is an 

ancestor of {X}∪S,  add an edge X ← Y to 

Gn(O,S’,L'),  

• else if X is not an ancestor of {Y}∪S, and Y is not 

an ancestor of {X}∪S, add LXY to L’, and add edges 

X ← LXY → Y to Gn(O,S’,L’).  

Lemma 5: If X, Y ⊆ O in G(O,S,L), X is an ancestor or 

Y∪S in G(O,S,L) if and only if X is an ancestor or Y∪S’ 

in Gn(O,S’,L’). 

Proof. Because S ⊆ S’, and the edges in G(O,S,L) are a 

subset of the edges in Gn(O,S,L),  if X is an ancestor of 

Y∪S in G(O,S,L) then X is an ancestor or Y∪S’ in 

Gn(O,S’,L’). Suppose that X is an ancestor or Y∪S’ in 

Gn(O,S’,L’). If {A,B} ⊆ O, there is an edge from A to B 

in Gn(O,S,L) but not in G(O,S,L) only if A is an ancestor 

of {B}∪S in G(O,S,L). If A ∈ O, and S ∈ S’, there is an 

edge from A to S in Gn(O,S’,L’) but not in G(O,S,L) only 

if for some B ∈ O, A is an ancestor of {B}∪S in 

G(O,S,L), and B is an ancestor of {A}∪S in G(O,S,L). It 

follows from Lemma 4 that A and B are ancestors of S in 

G(O,S,L).  Q.E.D. 

Lemma 6: In Gn(O,S’,L’), if R ⊆ O, |R| ��Q��DQG�;1 and 

Xm are d-connected given R∪S’ in Gn(O,S,L), then X1 

and Xm are d-connected given R∪S in G(O,S,L). 

Proof. Suppose R ⊆ O,  |R| ��Q�� DQG�;1 and Xm are d-

connected given R in Gn(O,S’,L’) by some undirected 

path U = <X1, … , Xm>. Let US be the subsequence of 

vertices  <Xj(1), … , Xj(m)> on U that are in O∪S∪L. By 

the definition of d-connection, each pair of vertices Xj(i) 

and Xj(i+1) that are adjacent on US are d-connected 

conditional on (R∪S’)\{Xj(i},Xj(i+1)} by the subpath 

U(Xj(i),Xj(i+1)), and similarly for the subpath U(Xj(i-1),Xj(i)).  

 Suppose that U(Xj(i-1),Xj(i))  and U(Xj(i),Xj(i+1)) collide at 

Xj(i) in Gn(O,S’,L’). It follows that either U(Xj(i-1),Xj(i)) is 

an edge Xj(i-1) → Xj(i) or a path Xj(i) ← L → Xj(i+1). If 

U(Xj(i-1),Xj(i)) is an edge Xj(i-1) → Xj(i) and  there is a 

corresponding edge Xj(i-1) → Xj(i) in G(O,S,L), then let 

U’(Xj(i-1),Xj(i)) in G(O,S,L) be the edge Xj(i-1) → Xj(i), in 

which case U’(Xj(i-1),Xj(i)) in G(O,S,L) d-connects Xj(i-1) 

and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)} and is into Xj(i). On the 

other hand, if the subpath U(Xj(i-1),Xj(i)) is not an edge in 

Gn(O,S’,L’), or there is no corresponding edge Xj(i-1) → 

Xj(i) in G(O,S,L), by the definition of Gn(O,S’,L’) Xj(i) is 

not an ancestor of Xj(i-1)∪S in G(O,S,L). It follows from 

Lemma 2 that there is a path U’(Xj(i-1),Xj(i)) in G(O,S,L) 

that d-connects Xj(i-1) and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)} 

that is into Xj(i).  Hence, there is a path U’(Xj(i-1),Xj(i)) in 

G(O,S,L) that d-connects Xj(i-1) and Xj(i) given 

(R∪S)\{Xj(i-1},Xj(i)} that is into Xj(i)., and similarly in 

G(O,S,L) there is a path U’(Xj(i+1),Xj(i)) that d-connects 

Xj(i+1) and Xj(i) given (R∪S)\{Xj(i},Xj(i+1)} that is into Xj(i). 

Because the subpaths U(Xj(i-1),Xj(i))  and U(Xj(i),Xj(i+1)) 

collide at Xj(i) in Gn(O,S’,L’), Xj(i) is an ancestor of R∪S’ 

in Gn(O,S’,L’). By Lemma 5, Xj(i) is an ancestor of R∪S 

in G(O,S,L).  

Suppose that U(Xj(i-1),Xj(i)) and U(Xj(i),Xj(i+1)) do not 

collide at Xj(i) in Gn(O,S’,L’). Xj(i) is not in R∪S’, and 

hence by Lemma 5, Xj(i) is not in R∪S in Gn(O,S’,L’). At 

least one of the two subpaths U(Xj(i-1),Xj(i)) and 

U(Xj(i),Xj(i+1)) is out of Xj(i). Suppose without loss of 

generality that U(Xj(i-1),Xj(i)) is out of Xj(i). It follows that 

either U(Xj(i-1),Xj(i)) is Xj(i-1) ← Xj(i) or a path Xj(i)  → S ← 

Xj(i+1). If U(Xj(i-1),Xj(i)) is an edge Xj(i-1) ← Xj(i)  in 

Gn(O,S’,L’), and there is a corresponding edge in 

G(O,S,L), then  let U’(Xj(i-1),Xj(i)) in G(O,S,L) be Xj(i-1) ← 

Xj(i). Otherwise, by the definition of Gn(O,S’,L’), Xj(i) is 

an ancestor of  S∪{Xj(i-1)} in G(O,S,L). By  Lemma 3, 

either Xj(i) is an ancestor of R∪S in G(O,S,L) or in 

G(O,S,L) there is a path U’(Xj(i-1),Xj(i)) that d-connects 

Xj(i-1) and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)} that is out of 

Xj(i).. It follows that either U’(Xj(i-1),Xj(i)) d-connects Xj(i-1) 

and Xj(i) given the set (R∪S)\{Xj(i-1},Xj(i)} and 

U’(Xj(i),Xj(i+1)) d-connects Xj(i) and Xj(i+1) given the set 

(R∪S)\{Xj(i},Xj(i+1)}in G(O,S,L), and they are not both 

into Xj(i), or Xj(i) is an ancestor of R∪S in G(O,S,L). It 

follows from Lemma 1 that X1 and Xm are d-connected 

given R∪S in G(O,S,L). Q.E.D.  

Theorem 7: If the input to the FCI algorithm is an n-

oracle for G(O,S,L), the output π is a PAG that n-

represents G(O,S,L). 

Proof. By Theorem 5 the output of the FCI algorithm 

represents Gn(O,S’,L’) if the input is an oracle for 

Gn(O,S’,L’). Because every edge in G(O,S,L) is also in 

Gn(O,S’,L’), S ⊆ S’, and each member of S’\S has no 

edges out of it, for X, Y, Z ⊆ O, if X and Y are d-

connected given Z∪S in G(O,S,L), X and Y are d-

connected given Z ∪ S’ in Gn(O,S’,L’). Thus by Lemma 

6, an oracle for Gn(O,S’,L’) is an n-oracle for G(O,S,L).  

In order to show that π n-represents G(O,S,L) I will 

show that it satisfies the 7 clauses of the definition. Parts 

1 through 3 follow immediately.  



Suppose that A and B are d-connected given Z∪S in 

G(O,S,L) for all |Z| < n. It follows that there is a path U 

that d-connects A and B conditional on Z∪S in G(O,S,L). 

The corresponding path U’ with the same edges exists in 

Gn(O,S’,L’). Every collider on U is an ancestor of Z∪S in 

G(O,S,L) and hence by Lemma 5 every collider on U’ is 

an ancestor of Z∪S’ in Gn(O,S’,L’). Every non-collider 

on U is not in Z∪S, and hence every non-collider on U’ is 

not in Z∪S’. It follows that A and B are d-connected 

conditional on Z∪S’ in Gn(O,S’,L’). Since the FCI 

algorithm only removes an edge from π when the answer 

to a d-connection question from the n-oracle is “no”, it 

follows that there is an edge between A and B in π.  

Suppose that there is an edge between A and B in π. It 

follows that A and B are definitely d-connected given 

every subset Z, and hence are d-connected given Z∪S’ in 

Gn(O,S’,L’) By Lemma 6 if Z ⊆ O, |Z| ��Q��DQG�$�DQG�%�
are d-connected given Z∪S’ in Gn(O,S’,L’), then A and B 

are d-connected given Z ∪S in G(O,S,L). 

Suppose there is an edge in π oriented as A → B. By 

Theorem 5 A is an ancestor of B but not S’ in 

Gn(O,S’,L’). By Lemma 5, A is an ancestor of{B}∪S in 

G(O,S,L). If A is an ancestor of S in G(O,S,L) it is an 

ancestor of S in Gn(O,S’,L’), and because S ⊆ S’, A is an 

ancestor of S’ in Gn(O,S’,L’). But because A is not an 

ancestor of S’ in Gn(O,S’,L’), it is not an ancestor of S in 

G(O,S,L). Hence A is an ancestor of B but not S in 

G(O,S,L). Because the output of the FCI algorithm is a 

function of the n-oracle for G(O,S,L), it produces the 

same output for any DAG G’(O,S’,L’) in n-O-Equiv(G). 

Hence A is an ancestor of B but not S’ for any DAG 

G(O,S’,L’) in  n-O-Equiv(G). 

Suppose there is an edge oriented as A *→ B in π. Then 

by Theorem 5, B is not an ancestor of  {A}∪S’ in 

Gn(O,S’,L’). By Lemma 5 B is not an  ancestor of {A}∪S 

in G(O,S,L). Because the output of the FCI algorithm is a 

function of the n-oracle for G(O,S,L), it produces the 

same output for any DAG G’(O,S’,L’) in n-O-Equiv(G). 

Hence B is not an  ancestor of {A}∪S’ for any DAG 

G(O,S’,L’) in n-O-Equiv(G). 

Suppose that there are edges  A ** B** C in π. By 

Theorem 5 it follows that B is  ancestor of {A}∪{C}∪S’ 

in Gn(O,S’,L’). By Lemma 5, B is an ancestor of 

{A}∪{C}∪S in G(O,S,L). Because the output of the FCI 

algorithm is a function of the n-oracle for G(O,S,L), it 

produces the same output for any DAG G’(O,S’,L’) in n-

O-Equiv(G). Hence B is  ancestor of {A}∪{C}∪S’ for 

any DAG G(O,S’,L’) in n-O-Equiv(G). Q.E.D.  

Theorem 8:  If π is the PAG output by the FCI algorithm 

with an n-oracle for G(O,S,L), and |Z| � n, then X and Y 

are definitely d-connected given Z in P if and only if X 

and Y are d-connected given Z ∪ S in G(O,S,L).  

Proof. By Lemma 6, if π is the output of the FCI 

algorithm with an oracle for Gn(O,S’,L’), then π is also 

the output of the FCI algorithm with an n-oracle for 

G(O,S,L). By Theorem 6, X and Y are definitely d-

connected given Z in π if and only if X and Y are d-

connected given  Z∪S’ in Gn(O,S,L). By Lemma 6, if |Z| 

��Q��X and Y are d-connected given  Z∪S’ in Gn(O,S,L) 

if and only if X and Y are d-connected given  Z ∪ S in 

G(O,S,L). So X and Y are d-connected given  Z∪S in 

G(O,S,L) if and only if X and Y are definitely d-

connected given  Z in π. 
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