
An Anytime Algorithm for Causal Inference

Peter Spirtes
Department of Philosophy

Carnegie Mellon University

Pittsburgh, PA 15213

ps7z@andrew.cmu.edu

Abstract

The Fast Casual Inference (FCI) algorithm
searches for features common to observationally
equivalent sets of causal directed acyclic graphs.
It is correct in the large sample limit with
probability one even if there is a possibility of
hidden variables and selection bias. In the worst
case, the number of conditional independence
tests performed by the algorithm grows
exponentially with the number of variables in the
data set. This affects both the speed of the
algorithm and the accuracy of the algorithm on
small samples, because tests of independence
conditional on large numbers of variables have
very low power. In this paper, I prove that the
FCI algorithm can be interrupted at any stage
and asked for output. The output from the
interrupted algorithm is still correct with
probability one in the large sample limit,
although possibly less informative (in the sense
that it answers “Can’t tell” for a larger number of
questions) than if the FCI algorithm had been
allowed to continue uninterrupted.

1 INTRODUCTION

One approach to causal inference from observational data

represents causal relations by directed acyclic graphs

(DAGs) and makes assumptions relating the causal DAG

structure to probability distributions. The problem of

making causal inferences then becomes the problem of

finding the “best” DAG or set of DAGs for a given

sample (Spirtes, Glymour, and Scheines 1993,

Heckerman, Meek, and Cooper 1999).

There are two distinct types of algorithms that have been

proposed for finding the “best” DAG or set of DAGs for a

given data set. Both of these types of algorithms share the

problem that they are very slow for data sets with large

numbers of variables. “Score-based algorithms” assign a

score to each causal model (e.g. a Bayesian posterior, an

MDL, or BIC score) and perform searches over a large

number of different DAGs for the DAG with the highest

score (Heckerman, Meek, and Cooper 1999). One

problem with this approach is that a conclusion about a

causal influence can be reversed if a DAG with a higher

score is later found. If the possibility of unmeasured

variables is disallowed, the number of possible DAGs

grows super-exponentially with the number of variables.

Hence heuristic searches are performed, and a very

extensive search is needed if a causal conclusion drawn

by a score-based algorithm is to be held with any

confidence. Moreover, if one allows the possibility of

unmeasured variables, scoring the models becomes slow,

and the number of potential models is infinite, so it is not

clear how the search should be structured.

In contrast, a “constraint-based algorithm” constructs a

graphical object that represents features common to all

DAGS compatible with the results of a set of statistical

tests of conditional independence selected by the

algorithm. For example, there are cases in which all

causal structures compatible with the results of a set of

selected conditional independence tests have the features

that “A causes B”, other cases where all agree that “A

does not cause B”, and still others in which all agree that

“There is an unmeasured common cause of A and B”. If

some causal structures in which A causes B are

compatible with a given set of conditional independence

tests C, and other causal structures in which A does not

cause B are compatible with C, then with respect to the

question of whether A causes B the algorithm outputs

“Can’t tell”. In addition, there are cases in which the size

of a causal effect can be estimated in the limit as well.

There is a constraint-based algorithm (the Fast Causal

Inference, or FCI algorithm) which is correct in the large

sample limit with probability one (Spirtes, Glymour, and

Scheines 1993, Spirtes, Meek, and Richardson 1999) even

if there is a possibility of latent variables and selection

bias. Although it does not perform all possible tests of

conditional independence among the measured variables,

in the worst case, the number of conditional independence

tests performed by the algorithm grows exponentially

with the number of variables in the data set. Hence, in the

worst case the algorithm is not feasible on data sets with

large numbers of variables (although in many cases it is

feasible with large numbers of variables). In addition,

tests of independence conditional on large numbers of

variables have very low power and hence the accuracy of

the algorithm on small sample sizes decreases if the

algorithm requires tests of independence conditional on a

large set of variables.

In this paper, I prove that the FCI algorithm can be

interrupted at any stage and asked for output, and that the

output is still correct in the large sample limit with

probability one, although possibly less informative (in the

sense that it answers “Can’t tell” for a larger number of

questions) than if it had been allowed to continue

uninterrupted. (The FCI algorithm has an outer loop in

which tests of independence conditional on sets of

variables of increasing size are considered. “Interrupting

at any stage” means stopping the outer loop at any chosen

size). Limiting the number of variables in the

conditioning set of the independence tests that the FCI

algorithm performs not only increases the speed of the

algorithm, it also makes the algorithm more reliable on

finite samples because the statistical tests with the least

power have been eliminated. Call this modified version of

the FCI algorithm the anytime FCI algorithm.

2 CAUSAL DAGS

Causal relations among random variables are represented

by a DAG. A set of variables V is causally sufficient if

every cause of two members of V is also a member of V.

A DAG G is a causal DAG for a causally sufficient set of

variables V and a population Pop if and only if there is an

edge from A to B in G if and only if A is a direct cause of

B relative to V for some units in Pop.

Causal relationships between a set of variables V, on the

one hand, and the mechanism by which individuals in the

sample are selected from a population, on the other hand,

may lead to differences between the expected parameter

values in a sample and the population parameter values. In

this case say that the differences are due to selection bias.

For the purposes of representing selection bias, following

Cooper (1995) for each measured random variable A,

there is a binary random variable SA that is equal to one if

the value of A has been recorded, and is equal to zero

otherwise. (Say that a variable is measured if its value is

recorded for any member of the sample.) If V is a set of

variables, V can be partitioned into three sets: the set O

(standing for observed) of measured variables, the set S

(standing for selection) of selection variables for O, and

the remaining variables L (standing for latent). Although

this representation allows for the possibility that some

units have missing values for some variables and not

others, the algorithms for causal inference that are

described in this paper use only the data for the subset of

the sample in which all of the units have no missing data

for any of the measured variables (i.e. S=1). Since in some

circumstances this reduces the usable sample dramatically

(or even to zero) it would obviously be desirable to make

use of the full sample; how to do this is an open research

problem.

For a given DAG G, and a partition of the variable set V

of G into observed (O), selection (S), and latent (L)

variables, write G(O,S,L). I assume that the only

conditional independence relations that can be tested are

those among variables in O conditional on any subset X

of O when S=1 (which is written as X∪(S=1). Let

I(X,Y,Z) mean X is independent of Z given Y. If X, Y,

and Z are included in O, and I(X,Y∪ (S=1),Z), then say it

is an observed conditional independence relation.

Say that a distribution P satisfies the Markov Condition

for a DAG G if in the distribution P each vertex V is

independent of the set of vertices which are neither

parents nor descendants of V, conditional on the parents

of V. A DAG G entails a conditional independence

relation I(A,B,C) if I(A,B,C) is true in every distribution

that satisfies the Markov condition for G. There is a

graphical relationship, d-separation, among three disjoint

sets of vertices in a DAG, which determines whether or

not a DAG G entails I(A,C,B). A vertex V is a collider on

an undirected path U if and only if U contains a pair of

distinct edges adjacent on the path and into V. For three

disjoint sets of variables A, B, and C, A is d-separated

from B given C in DAG G, if and only if there is an

undirected path from some member of A to a member of

B such that every collider on that path is either in C or has

a descendant in C, and every non-collider on the path is

not in C. For three disjoint sets of variables A, B, and C,

A is d-connected to B given C in DAG G if and only if A

is not d-separated from B given C. Geiger, Pearl, and

Verma have shown that G entails I(A,C,B) if and only if

A is d-separated from B given C in G. See Pearl(1988). In

a DAG G(O,S,L), if X, Y, and Z are included in O, and X

is d-separated from Z given Y∪(S=1) then say it is an

observed d-separation relation (in the sense that it entails

an observed conditional independence relation.) It is

possible that the set of observed d-separation relations in

two different DAGs are identical, in which case say that

they are O-equivalent. More formally, if X, Y, and Z are

disjoint subsets of O, and X is d-separated from Z given

Y∪(S=1) in G(O,S,L) if and only if X is d-separated from

Z given Y∪(S’=1) in G’(O,S’,L’) then G’(O,S’,L’) is in

O-Equiv(G). If two DAGs are O-equivalent, then no set

of conditional independence tests can distinguish between

them. Since the FCI algorithm uses just tests of

conditional independence relations to construct its output,

the output of the algorithm should be an object that

represents an entire O-equivalence class of DAGs.

3 PARTIAL ANCESTRAL GRAPHS

Partial ancestral graphs (PAGs) serve a dual purpose.

They represent all of the observed d-separation relations

in a DAG G(O,S,L) and they represent some of the

features common to every member of an O-equivalence

class of DAGs. There are three kinds of endpoints an edge

in a PAG can have: “– ”, “o”, or “>”. These can be

combined to form the following four kinds of edges: A →

B, A ↔ B, A o→ B, or A oo B. Let “*” be a meta-

symbol that stands for any of the three kinds of endpoints,

e.g. “A *→ B” stands for “A o→ B” or “A ↔ B” or “A

→ B”. A PAG π represents a DAG G(O,L,S) if and only:

1. The set of variables in π is O.

2. If there is any edge between A and B in π, it is one of

the following kinds: A → B, A ο→ B, A οο B, or

A ↔ B.

3. There is at most one edge between any pair of

vertices in π.

4. A and B are adjacent in π if and only if for every

subset Z of O\{A,B} A and B are d-connected

conditional on Z∪S in G.

5. An edge between A and B in π is oriented as A → B

only if A is an ancestor of B but not S in every DAG

in O-Equiv(G).

6. An edge between A and B in π is oriented as A *→ B

only if B is not an ancestor of A or S in every DAG

in O-Equiv(G).

7. A ** B** C in π only if in every DAG in O-

Equiv(G) B is an ancestor of either C, or A, or S.

(Suppose that A and B are adjacent, and B and C are

adjacent, and A and C are not adjacent, and the edges

in the PAG are not both into B, i.e. the PAG does not

contain A *→ B ←* C. Then the underlining of B

should be assumed to be present, although it is not

explicitly represented in π.)

Note that an “o” endpoint does not place any restriction

on the ancestor relations in G. Hence there can be several

different PAGs representing the same DAG G(O,S,L)

because where one PAG π may have a “>” or “”

endpoint, or an underlined pair of endpoints, the other

PAG π’ may have a “o” endpoint or a non-underlined pair

of endpoints respectively; if this is the case say that π is

more informative than π’. An example of a PAG is

shown in Figure 1 where O = {X,Z,Y,W}, L = {L}, and

each S ∈ S (not shown) has no edges into or out of it.

Figure 1

The proofs of the following theorems are in Spirtes,

Meek, and Richardson (1999).

Theorem 1: If π is a partial ancestral graph, and there is a

directed path U from A to B in π, then in every DAG

G(O,S,L) represented by PAG π, there is a directed path

from A to B, and A is not an ancestor of S.

A semi-directed path from A to B in a PAG π is an

undirected path U from A to B in which no edge contains

an arrowhead pointing towards A, (i.e. there is no

arrowhead at A on U, and if X and Y are adjacent on the

path, and X is between A and Y on the path, then there is

no arrowhead at the X end of the edge between X and Y).

Theorem 2, Theorem 3, and Theorem 4 give information

about what variables appear on causal paths between a

pair of variables A and B, i.e. information about how

those paths could be blocked.

Theorem 2: If π is a partial ancestral graph, and there is

no semi-directed path from A to B in π that contains a

member of C, then every directed path from A to B in

every DAG G(O,S,L) represented by PAG π that contains

a member of C also contains a member of S.

Theorem 3: If π is a partial ancestral graph of DAG

G(O,S,L), and there is no semi-directed path from A to B

in π, then every directed path from A to B in every DAG

G(O,S,L) represented by PAG π contains a member of S.

Theorem 4: If π is a partial ancestral graph, and every

semi-directed path from A to B contains some member of

C in π, then every directed path from A to B in every

DAG G(O,S,L) represented by PAG π contains a

member of S∪C.

Pearl (1995) showed how in some cases to use the

“Causal Calculus” (equivalent to Theorem 7.1 of Spirtes,

Glymour, and Scheines 1993) to calculate the effects of

interventions from a DAG of completely known structure

and a marginal observed distribution, even if the DAG

contains latent variables. PAGs represent partial

knowledge about DAGs (possibly with latent variables.)

There is an algorithm which can take partial knowledge

about a DAG which may contain latent variables (in the

form of a PAG) and an observed marginal distribution as

input, and in some cases calculate the magnitude of an

effect of an intervention. See Spirtes, Glymour, and

Scheines (1993).

4 FAST CAUSAL INFERENCE
ALGORITHM

For details, proofs, and examples for this section see

Spirtes, Meek, and Richardson (1999). The fundamental

assumption I will make relating causal DAGs to

probability distributions is the following:

Selection Bias Causal Assumption: For each set of

variables O, and each population Pop such that S=1,

there is a causally sufficient set of variables V such that

O∪S ⊆ V and for all A, B, C ⊆ O, I(A,(C∪(S=1),B) in

Pop if and only if the causal DAG G(O,S,L) relative to V

in Pop entails that I(A,(C∪(S= 1),B) in Pop.

X L Y X Y

 Z W Z W

 G PAG

o o o

The justification of this assumption, and conditions under

which it may fail are discussed in Spirtes, Meek, and

Richardson, 1999. One of its consequences is a kind of

Markov condition, i.e. the indirect causes of a variable V

are screened off from V by its immediate causes.

In practice, for several different families of

parameterizations of DAGs there are statistical tests of

conditional independence that can be performed. For the

purposes of this paper, however, problems of sample size

will not be considered. I will assume that there is an

oracle that the FCI algorithm can use to determine if

I(A,(C∪(S=1),B) in Pop; in that case say that the oracle is

an input for the FCI algorithm.

DAG G(O,S,L) entails that I(A,(C∪(S=1),B) if and only

if A is d-separated from B conditional on C∪(S=1). So

given the Selection Bias Causal Assumption, the

assumption of an oracle that can determine whether

I(A,(C∪(S=1),B) in Pop. is equivalent to having an oracle

that can determine whether A is d-separated from B

conditional on C∪S in G(O,S,L).

The algorithm starts off with a complete undirected graph

between the observed variables. When the algorithm

removes an edge between A and B, it does so because it

has queried its oracle and received a “yes” answer to the

question of whether some subset Z of O\{A,B} is such

that A and B are d-separated conditional on Z∪S. The

subset Z is recorded in Sepset(A,B) and Sepset(B,A).

This information is used later in the orientation phase of

the algorithm. Because each edge is removed at most

once, Sepset(A,B) contains at most one subset of

O\{A,B}. In the algorithm, Adjacencies(Q,X) is the set of

vertices that are adjacent to X in graph Q.

Adjacencies(Q,X) changes as the algorithm progresses,

because the algorithm removes edges from Q. (However,

Possible-D-Sep is calculated only once, and remains

fixed, even as the graph changes.) When an orientation

rule changes the orientation of an edge, e.g. from “A**

B” to “A*→* B” this means that the orientation of the A

endpoint of the edge remains at whatever its current value

is, and the the orientation of the B endpoint of the edge is

changed to “>”.

The following definitions are used in the algorithm. A, B,

and C form a triangle in a DAG or a PAG if and only if A

and B are adjacent, B and C are adjacent, and A and C are

adjacent. V is in Possible-D-Sep(A,B,π) in a PAG π if

and only if there is an undirected path U between A and B

in π such that for every subpath X ** Y ** Z of U

either Y is a collider on the subpath, or X, Y, and Z form a

triangle in π. In a partial ancestral graph π, U is a definite

discriminating path for B if and only if U is an

undirected path between X and Y, B is the predecessor of

Y on U, B ≠ X, every vertex on U except for the endpoints

and possibly B is a collider on U, for every vertex V on U

except for the endpoints there is an edge V → Y, and X

and Y are not adjacent.

Fast Causal Inference Algorithm

 Input: Oracle for G(O,S,L)

A). Form the complete undirected graph Q on the vertex

set V.

B). n = 0.

 repeat

 repeat

select an ordered pair of variables X and Y that

are adjacent in Q such that

Adjacencies(Q,X)\{Y} contains at least n

members,

 repeat

select a subset T of Adjacencies(Q,X)\{Y}

with n members, and if X and Y are d-

separated given T ∪ S according to the

oracle for G(O,S,L), delete the edge

between X and Y from Q, and record T in

Sepset(X,Y) and Sepset(Y,X)

until all subsets of Adjacencies(Q,X)\{Y} of

size n have been checked for d-separation

given T ∪ S or there is no edge between X

and Y;

until all ordered pairs of adjacent variables X and

Y such that Adjacencies(Q,X)\{Y} has at least n

members have been selected;

 n = n + 1;

until for each ordered pair of adjacent vertices X, Y,

Adjacencies(Q,X)\{Y} has fewer than n members.

C). Let π0 be the undirected graph resulting from step B).

Orient each edge as “”. For each triple of vertices A, B,

C such that the pair A, B and the pair B, C are each

adjacent in π0 but the pair A, C are not adjacent in π0,

orient A  B  C as A → B ← C if and only if B is

not in Sepset(A,C).

D). Let π1 be the graph resulting from step C.) For each

pair of variables A and B adjacent in π1, if there is a

subset T of Possible-D-SEP(A,B, π1)\{A,B} or of

Possible-D-SEP(B,A, π1)\{A,B} such that A and B are d-

separated conditional on T∪S according to the oracle for

G(O,S,L), remove the edge between A and B from π1, and

record T in Sepset(A,B) and Sepset(B,A).

E.) Orient each edge in π1 as “oo”. Call this graph π2.

F. For each triple of vertices A, B, C such that the pair A,

B and the pair B, C are each adjacent in π2 but the pair A,

C are not adjacent in F', orient A ** B ** C as A *→

B ←* C if and only if B is not in Sepset(A,C).

G. repeat

(i) If there is a directed path from R to S, and an edge

R ** S, orient R ** S as R *→ S,

(ii) else if P *→ M ** R then orient as P *→ M →

R.,

(iii) else if B is a collider along <A,B,C>, A is not

adjacent to C, B is adjacent to D, and D is a non-

collider along <A,D,C>, then orient B ** D as B

←* D,

(iv) else if X ←* Y, X → Z, and Z o* Y, orient as

Z ←* Y;

(v) If U is a definite discriminating path between F

and Η for J, K is adjacent to H on U, and K, J, and H

forn a triangle, then if J is in Sepset(F,H) then mark J

as a non-collider on subpath K ** J ** H else

orient K ** J ** H as K *→ J ←* H.

 until no more edges can be oriented.

Theorem 5: If the input to the FCI algorithm is an oracle

for G(O,S,L), the output is a PAG that represents

G(O,S,L).

The output of the FCI algorithm represents ancestor

relations common to any DAG that is O-equivalent to G.

This is because the output of the FCI algorithm is a

function of the oracle for G(O,S,L) and hence it produces

the same output for any DAG G’(O,S’,L’) that has the

same observed d-separation relations as G.

It is not known whether the PAG output by the FCI

algorithm captures all of the ancestor relations common to

the DAGs in the O-equivalence class of G. However, the

PAG output by the FCI algorithm does contain enough

orientation information to represent the observed d-

separation relations in G in the following way. Say B is a

definite non-collider on undirected path <A,B,C> if and

only if either A ← B ** C, A ** B → C, or A **

B ** C in π. A is a descendant of B in a PAG π if and

only if there is a directed path (all of the edges on the path

are oriented as “→”) from A to B in π or A = B. In a

PAG π, if X ≠ Y, and X and Y are not in Z, then an

undirected path U definitely d-connects X and Y given Z

if and only if every collider on U has a descendant in Z,

every definite non-collider on U is not in Z, and every

other vertex on U is not in Z but has a descendant in Z. If

X, Y, and Z are disjoint sets of variables, then X is

definitely d-connected to Y given Z if and only if some

member of X is d-connected to some member of Y given

Z.

Theorem 6: If G(O,S,L) is a directed acyclic graph, and

π is the output of the FCI algorithm whose input is an

oracle for G(O,S,L), and X, Y, and Z are disjoint subsets

of O, then X is d-connected to Y given Z∪S in G(O,S,L)

if and only if X is definitely d-connected to Y given Z in

π.

5 ANYTIME FAST CAUSAL
INFERENCE ALGORITHM

The Anytime Fast Causal Inference Algorithm simply

halts the outer repeat loop in step B) of the algorithm at

some fixed size n. The result of stopping the algorithm at

that point is a PAG which is correct, but possibly less

informative than if the algorithm had been allowed to

continue running.

Halting the outer repeat loop in step B) of the algorithm at

some fixed size n is equivalent to having an oracle that

always returns “no” for all conditioning sets of size

greater than n. Let an n-oracle for G(O,S,L) be an

algorithm that on input “X, Y, Z” outputs “no” if |Z| > n

or X is not d-separated from Y given Z∪S, and otherwise

outputs “yes”. (|Z| represents the number of variables in

Z.)

The sense in which the Anytime Fast Causal Inference

Algorithm is correct but possibly less informative than the

Fast Causal Inference Algorithm is twofold. First, it

correctly represents ancestor relations common to the set

of DAGs that that have the same observed d-separation

relations as G for all conditioning sets of size less than or

equal to n. This condition can be expressed more formally

using the following definitions. If X, Y, and Z are disjoint

subsets of O, and for all |Y| ≤ n, X is d-separated from Z

given Y∪(S=1) in G(O,S,L) if and only if X is d-

separated from Z given Y∪(S’=1) in G’(O,S’,L’) then

G’(O,S’,L’) is in n-O-Equiv(G). The definition of a PAG

π n-representing a DAG G(O,L,S) is the same as the

definition of π representing DAG G(O,S,L) except that

each occurrence of O-Equiv(G) in the definition is

replaced with n-O-Equiv(G), and clause 4) of the

definition is replaced by 4’:

4’. A and B are adjacent in π if and only if for

every subset Z of O\{A,B} such that

|Z| ≤ n, A and B are d-connected conditional on Z∪S

in G(O,S,L)

Suppose that O = {X,Z,Y,W}, L = {L}, and each S ∈ S

(not shown) has no edges into or out of it. Then (i) of

Figure 2 0-represents and 1-represents G of Figure 1, and

(ii) 2-represents G.

Figure 2

Theorem 7: If the input to the FCI algorithm is an n-

oracle for G(O,S,L), the output π is a PAG that n-

represents G(O,S,L).

Second,, if the input to the anytime FCI algorithm is an n-

oracle for G(O,S,L) the output PAG represents all of the

observable d-separation relations in the DAG G(O,S,L)

whose conditioning sets are of size less than or equal to n.

Theorem 8: If π is the PAG output by the FCI algorithm

with an n-oracle for G(O,S,L), and |Z| � n, then X and Y

are definitely d-connected given Z in π if and only if X

and Y are d-connected given Z∪S in G(O,S,L).

X Y X Y

 Z W Z W

 (i) n= 0 or n=1 (ii) n=2

o o o
o

o

o o

o

o

In addition to stopping the FCI algorithm after any

iteration in step B), it is also possible to stop the FCI

algorithm in any iteration in step G. Once an edge is

oriented in the repeat loop of step G of the anytime FCI

algorithm the algorithm never changes that orientation.

Hence step G can be halted at any stage without affecting

the correctness of the output; only the informativeness of

the output will be affected.

6 APPENDIX

The proof of Lemma 1 is in Spirtes, Glymour, and

Scheines (1993).

Lemma 1: In a DAG G over V, if X and Y are not in Z,

and there is a sequence H of distinct vertices in V from X

to Y, and there is a set T of undirected paths such that

(i) for each pair of adjacent vertices V and W in H

there is a unique undirected path in T that d-connects

V and W given Z\{V,W}, and

(ii) if a vertex Q in H is in Z, then the paths in T that

contain Q as an endpoint collide (are both into) at Q,

and

(iii) if for three vertices V, W, Q occurring in that

order in H the d-connecting paths in T between V and

W, and W and Q collide at W then W has a

descendant in Z,

then there is a path U in G that d-connects X and Y given

Z.

Lemma 2: In a DAG G(O,S,L), if X is not an ancestor of

{Y}∪S, and for each M ⊆ O, such that |M| ��U��;�DQG�<�
are d-connected given M∪S, then for each R ⊆ O, such

that |R| �� U�� WKHUH� LV� D� SDWK� 8� WKDW� G-connects X and Y

given R∪S that is into X.

Proof. Let R be an arbitrary subset of O such that |R| = n

��U��I will construct a sequence of subsets R0 ⊂ R1 … ⊂

Rn-1 ⊂ R, such that for each Ri, there is a path U into X

that d-connects X and Y given Ri∪S, and each member of

Ri is an ancestor of S∪{X,Y}.

Let R0 = ∅. By hypothesis, X and Y are d-connected

given S. It follows that there is an undirected path T

between X and Y such that every collider on T is an

ancestor of S. Because X is not an ancestor of Y, either T

is a directed path from Y to X that does not contain S, or

T contains a collider. If T is a directed path from Y to X

that does not contain S then T d-connects X and Y given

R0∪S, and is into X. If T contains a collider, let C be the

closest collider on T to X. C is an ancestor of S. If T is out

of X, then X is an ancestor of C, and hence of S. Hence T

is into X. Trivially, every member of R0 is an ancestor of

{X,Y}∪S.

 Suppose for Rm ⊂ R, every member of Rm is an ancestor

of S∪{X,Y}, and there is a path U into X that d-connects

X and Y given R∪S. I will now show that there is a set

Rm+1 = Rm∪{W}, where W ∈ R\Rm, and a path U’ that d-

connects X and Y given Rm+1 that is into X, and every

member of Rm+1 is an ancestor of {X,Y}∪S.

If U does not contain some member of R\Rm as a non-

collider, then U d-connects X and Y given R∪S, and is

into X. Suppose then that U does contain some member

W of R\Rm as a non-collider. Because U d-connects X

and Y given Rm∪S, it follows that every vertex on U is an

ancestor of Rm∪S∪{X,Y}. By the induction hypothesis,

every member of Rm is an ancestor of S∪{X,Y}, so W is

an ancestor of S∪{X,Y}. Let Rm+1 = Rm∪{W}. It follows

that every member of Rm+1 is an ancestor of S∪{X,Y}.

By hypothesis, there is a path U’ that d-connects X and Y

given Rm+1. Every vertex on U’ is an ancestor of

S∪{X,Y}, because every collider on U’ is an ancestor of

Rm+1, and every member of Rm+1 is an ancestor of

S∪{X,Y}. If U’ is not into X, and there are no colliders

on U’, then X is an ancestor of Y, contrary to the

hypothesis. If U’ does contain a collider, let C be the

collider on U’ closest to X. If U’ is out of X, then X is an

ancestor of C. C is not an ancestor of X, because

otherwise G(O,S,L) contains a cycle. Hence C is an

ancestor of S∪{Y}. It follows that X is an ancestor of

S∪{Y}, contrary to the hypothesis. Hence U’ is into X.

It follows by induction that there is a path U that d-

connects X and Y given R that is into X. Q.E.D.

Lemma 3: In a DAG G(O,S,L), if X is an ancestor of

{Y}∪S, and for each M ⊆ O, such that |M| ��U��;�DQG�<�
are d-connected given M∪S, then for each R ⊆ O such

that |R| �� U�� WKHUH� LV� D� SDWK� 8� WKDW� G-connects X and Y

given (R∪S)\{X,Y} that is out of X, or X is an ancestor

of R∪S.

Proof. Let R ⊆ O such that |R| ��U��%\�K\SRWKHVLV��;�LV�DQ�
ancestor of {Y}∪S. If X is an ancestor of S the proof is

done. Suppose then that X is an ancestor of Y. There is a

directed path D from X to Y that does not contain any

member of S. If D contains a member of R, then X is an

ancestor of R. If D does not contain a member of R, then

D is a path that d-connects X and Y given (R∪S)\{X,Y}

that is out of X. Q.E.D

Lemma 4: In G(O,S,L), if {A,B} ⊆ O, A is an ancestor

of {B}∪S, and B is an ancestor of {A}∪S, then A and B

are ancestors of S.

Proof. Because G(O,S,L) is acyclic, either A is not an

ancestor of B, or B is not an ancestor of A. Suppose

without loss of generality that A is not an ancestor of B. It

follows that A is an ancestor of S. Either B is an ancestor

of A, in which case it is an ancestor of S, or it is an

ancestor of S. Q.E.D.

For a DAG G(O,S,L), let Gn(O,S’,L’) be formed in the

following way:

• Initialize S’ = S and L’ = L.

• If there is an edge from X to Y in G(O,S,L), there is

a corresponding edge from X to Y in Gn(O,S’,L’).

• If there is no edge between X and Y in G(O,S,L), but

in G(O,S,L), X and Y are d-connected given every subset

R∪S such that |R| ��Q��WKHQ�
• if X is an ancestor of {Y}∪S, and Y is an ancestor

of {X}∪S, add SXY to S’, and add edges X → SXY ←

Y to Gn(O,S’,L’),

• if X is an ancestor of {Y}∪S, and Y is not an

ancestor of {X}∪S, add an edge X → Y to

Gn(O,S’,L’),

• if X is not an ancestor of {Y}∪S, and Y is an

ancestor of {X}∪S, add an edge X ← Y to

Gn(O,S’,L'),

• else if X is not an ancestor of {Y}∪S, and Y is not

an ancestor of {X}∪S, add LXY to L’, and add edges

X ← LXY → Y to Gn(O,S’,L’).

Lemma 5: If X, Y ⊆ O in G(O,S,L), X is an ancestor or

Y∪S in G(O,S,L) if and only if X is an ancestor or Y∪S’

in Gn(O,S’,L’).

Proof. Because S ⊆ S’, and the edges in G(O,S,L) are a

subset of the edges in Gn(O,S,L), if X is an ancestor of

Y∪S in G(O,S,L) then X is an ancestor or Y∪S’ in

Gn(O,S’,L’). Suppose that X is an ancestor or Y∪S’ in

Gn(O,S’,L’). If {A,B} ⊆ O, there is an edge from A to B

in Gn(O,S,L) but not in G(O,S,L) only if A is an ancestor

of {B}∪S in G(O,S,L). If A ∈ O, and S ∈ S’, there is an

edge from A to S in Gn(O,S’,L’) but not in G(O,S,L) only

if for some B ∈ O, A is an ancestor of {B}∪S in

G(O,S,L), and B is an ancestor of {A}∪S in G(O,S,L). It

follows from Lemma 4 that A and B are ancestors of S in

G(O,S,L). Q.E.D.

Lemma 6: In Gn(O,S’,L’), if R ⊆ O, |R| ��Q��DQG�;1 and

Xm are d-connected given R∪S’ in Gn(O,S,L), then X1

and Xm are d-connected given R∪S in G(O,S,L).

Proof. Suppose R ⊆ O, |R| ��Q�� DQG�;1 and Xm are d-

connected given R in Gn(O,S’,L’) by some undirected

path U = <X1, … , Xm>. Let US be the subsequence of

vertices <Xj(1), … , Xj(m)> on U that are in O∪S∪L. By

the definition of d-connection, each pair of vertices Xj(i)

and Xj(i+1) that are adjacent on US are d-connected

conditional on (R∪S’)\{Xj(i},Xj(i+1)} by the subpath

U(Xj(i),Xj(i+1)), and similarly for the subpath U(Xj(i-1),Xj(i)).

 Suppose that U(Xj(i-1),Xj(i)) and U(Xj(i),Xj(i+1)) collide at

Xj(i) in Gn(O,S’,L’). It follows that either U(Xj(i-1),Xj(i)) is

an edge Xj(i-1) → Xj(i) or a path Xj(i) ← L → Xj(i+1). If

U(Xj(i-1),Xj(i)) is an edge Xj(i-1) → Xj(i) and there is a

corresponding edge Xj(i-1) → Xj(i) in G(O,S,L), then let

U’(Xj(i-1),Xj(i)) in G(O,S,L) be the edge Xj(i-1) → Xj(i), in

which case U’(Xj(i-1),Xj(i)) in G(O,S,L) d-connects Xj(i-1)

and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)} and is into Xj(i). On the

other hand, if the subpath U(Xj(i-1),Xj(i)) is not an edge in

Gn(O,S’,L’), or there is no corresponding edge Xj(i-1) →

Xj(i) in G(O,S,L), by the definition of Gn(O,S’,L’) Xj(i) is

not an ancestor of Xj(i-1)∪S in G(O,S,L). It follows from

Lemma 2 that there is a path U’(Xj(i-1),Xj(i)) in G(O,S,L)

that d-connects Xj(i-1) and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)}

that is into Xj(i). Hence, there is a path U’(Xj(i-1),Xj(i)) in

G(O,S,L) that d-connects Xj(i-1) and Xj(i) given

(R∪S)\{Xj(i-1},Xj(i)} that is into Xj(i)., and similarly in

G(O,S,L) there is a path U’(Xj(i+1),Xj(i)) that d-connects

Xj(i+1) and Xj(i) given (R∪S)\{Xj(i},Xj(i+1)} that is into Xj(i).

Because the subpaths U(Xj(i-1),Xj(i)) and U(Xj(i),Xj(i+1))

collide at Xj(i) in Gn(O,S’,L’), Xj(i) is an ancestor of R∪S’

in Gn(O,S’,L’). By Lemma 5, Xj(i) is an ancestor of R∪S

in G(O,S,L).

Suppose that U(Xj(i-1),Xj(i)) and U(Xj(i),Xj(i+1)) do not

collide at Xj(i) in Gn(O,S’,L’). Xj(i) is not in R∪S’, and

hence by Lemma 5, Xj(i) is not in R∪S in Gn(O,S’,L’). At

least one of the two subpaths U(Xj(i-1),Xj(i)) and

U(Xj(i),Xj(i+1)) is out of Xj(i). Suppose without loss of

generality that U(Xj(i-1),Xj(i)) is out of Xj(i). It follows that

either U(Xj(i-1),Xj(i)) is Xj(i-1) ← Xj(i) or a path Xj(i) → S ←

Xj(i+1). If U(Xj(i-1),Xj(i)) is an edge Xj(i-1) ← Xj(i) in

Gn(O,S’,L’), and there is a corresponding edge in

G(O,S,L), then let U’(Xj(i-1),Xj(i)) in G(O,S,L) be Xj(i-1) ←

Xj(i). Otherwise, by the definition of Gn(O,S’,L’), Xj(i) is

an ancestor of S∪{Xj(i-1)} in G(O,S,L). By Lemma 3,

either Xj(i) is an ancestor of R∪S in G(O,S,L) or in

G(O,S,L) there is a path U’(Xj(i-1),Xj(i)) that d-connects

Xj(i-1) and Xj(i) given (R∪S)\{Xj(i-1},Xj(i)} that is out of

Xj(i).. It follows that either U’(Xj(i-1),Xj(i)) d-connects Xj(i-1)

and Xj(i) given the set (R∪S)\{Xj(i-1},Xj(i)} and

U’(Xj(i),Xj(i+1)) d-connects Xj(i) and Xj(i+1) given the set

(R∪S)\{Xj(i},Xj(i+1)}in G(O,S,L), and they are not both

into Xj(i), or Xj(i) is an ancestor of R∪S in G(O,S,L). It

follows from Lemma 1 that X1 and Xm are d-connected

given R∪S in G(O,S,L). Q.E.D.

Theorem 7: If the input to the FCI algorithm is an n-

oracle for G(O,S,L), the output π is a PAG that n-

represents G(O,S,L).

Proof. By Theorem 5 the output of the FCI algorithm

represents Gn(O,S’,L’) if the input is an oracle for

Gn(O,S’,L’). Because every edge in G(O,S,L) is also in

Gn(O,S’,L’), S ⊆ S’, and each member of S’\S has no

edges out of it, for X, Y, Z ⊆ O, if X and Y are d-

connected given Z∪S in G(O,S,L), X and Y are d-

connected given Z ∪ S’ in Gn(O,S’,L’). Thus by Lemma

6, an oracle for Gn(O,S’,L’) is an n-oracle for G(O,S,L).

In order to show that π n-represents G(O,S,L) I will

show that it satisfies the 7 clauses of the definition. Parts

1 through 3 follow immediately.

Suppose that A and B are d-connected given Z∪S in

G(O,S,L) for all |Z| < n. It follows that there is a path U

that d-connects A and B conditional on Z∪S in G(O,S,L).

The corresponding path U’ with the same edges exists in

Gn(O,S’,L’). Every collider on U is an ancestor of Z∪S in

G(O,S,L) and hence by Lemma 5 every collider on U’ is

an ancestor of Z∪S’ in Gn(O,S’,L’). Every non-collider

on U is not in Z∪S, and hence every non-collider on U’ is

not in Z∪S’. It follows that A and B are d-connected

conditional on Z∪S’ in Gn(O,S’,L’). Since the FCI

algorithm only removes an edge from π when the answer

to a d-connection question from the n-oracle is “no”, it

follows that there is an edge between A and B in π.

Suppose that there is an edge between A and B in π. It

follows that A and B are definitely d-connected given

every subset Z, and hence are d-connected given Z∪S’ in

Gn(O,S’,L’) By Lemma 6 if Z ⊆ O, |Z| ��Q��DQG�$�DQG�%�
are d-connected given Z∪S’ in Gn(O,S’,L’), then A and B

are d-connected given Z ∪S in G(O,S,L).

Suppose there is an edge in π oriented as A → B. By

Theorem 5 A is an ancestor of B but not S’ in

Gn(O,S’,L’). By Lemma 5, A is an ancestor of{B}∪S in

G(O,S,L). If A is an ancestor of S in G(O,S,L) it is an

ancestor of S in Gn(O,S’,L’), and because S ⊆ S’, A is an

ancestor of S’ in Gn(O,S’,L’). But because A is not an

ancestor of S’ in Gn(O,S’,L’), it is not an ancestor of S in

G(O,S,L). Hence A is an ancestor of B but not S in

G(O,S,L). Because the output of the FCI algorithm is a

function of the n-oracle for G(O,S,L), it produces the

same output for any DAG G’(O,S’,L’) in n-O-Equiv(G).

Hence A is an ancestor of B but not S’ for any DAG

G(O,S’,L’) in n-O-Equiv(G).

Suppose there is an edge oriented as A *→ B in π. Then

by Theorem 5, B is not an ancestor of {A}∪S’ in

Gn(O,S’,L’). By Lemma 5 B is not an ancestor of {A}∪S

in G(O,S,L). Because the output of the FCI algorithm is a

function of the n-oracle for G(O,S,L), it produces the

same output for any DAG G’(O,S’,L’) in n-O-Equiv(G).

Hence B is not an ancestor of {A}∪S’ for any DAG

G(O,S’,L’) in n-O-Equiv(G).

Suppose that there are edges A ** B** C in π. By

Theorem 5 it follows that B is ancestor of {A}∪{C}∪S’

in Gn(O,S’,L’). By Lemma 5, B is an ancestor of

{A}∪{C}∪S in G(O,S,L). Because the output of the FCI

algorithm is a function of the n-oracle for G(O,S,L), it

produces the same output for any DAG G’(O,S’,L’) in n-

O-Equiv(G). Hence B is ancestor of {A}∪{C}∪S’ for

any DAG G(O,S’,L’) in n-O-Equiv(G). Q.E.D.

Theorem 8: If π is the PAG output by the FCI algorithm

with an n-oracle for G(O,S,L), and |Z| � n, then X and Y

are definitely d-connected given Z in P if and only if X

and Y are d-connected given Z ∪ S in G(O,S,L).

Proof. By Lemma 6, if π is the output of the FCI

algorithm with an oracle for Gn(O,S’,L’), then π is also

the output of the FCI algorithm with an n-oracle for

G(O,S,L). By Theorem 6, X and Y are definitely d-

connected given Z in π if and only if X and Y are d-

connected given Z∪S’ in Gn(O,S,L). By Lemma 6, if |Z|

��Q��X and Y are d-connected given Z∪S’ in Gn(O,S,L)

if and only if X and Y are d-connected given Z ∪ S in

G(O,S,L). So X and Y are d-connected given Z∪S in

G(O,S,L) if and only if X and Y are definitely d-

connected given Z in π.

Acknowlegements

This research was partially supported by NSG grant

DMS-9873442.

References

Cooper, G. (1995). Causal discovery from data in the

presence of selection bias. Proceedings of the Fifth

International Workshop on Artificial Intelligence and

Statistics, Fort Lauderdale, FL.

Heckerman, D., Meek, C., and Cooper, G. (1999) A

Bayesian approach to causal discovery. Computation,

Causation and Discovery. C. Glymour and G. Cooper.

Cambridge, MA, MIT Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent

Systems. San Mateo, Morgan Kaufmann.

Pearl, J. (1995). Causal diagrams for empirical research.

Biometrika, 82, 669-709.

Spirtes, P., Glymour, C., and Scheines, R. (1993)

Causation, Prediction, and Search. Springer-Verlag

Lecture Notes in Statistics, New York.

Spirtes, P., Meek, C., and Richardson, T. (1999). An

algorithm for causal inference in the presence of latent

variables and selection bias. Computation, Causation and

Discovery. C.Glymour and G. Cooper. Cambridge, MA.

