
Dynami
 Positional Trees for Stru
tural Image Analysis

Amos J Storkey Christopher K I Williams

Institute of Adaptive and Neural Computation

Division of Informati
s, University of Edinburgh

5 Forrest Hill, Edinburgh UK

a.storkey�ed.a
.uk 
.k.i.williams�ed.a
.uk

Abstra
t

Dynami
 positional trees are a signi�
ant ex-

tension of dynami
 trees, in
orporating mov-

able nodes. This addition makes sequen
e

tra
king viable within the model, but requires

a new formulation to in
orporate the prior

over positions. The model is implemented us-

ing a stru
tured variational pro
edure, and is

illustrated on syntheti
 raytra
ed images and

image sequen
es.

We 
onsider the problem of stru
tural image analy-

sis and in parti
ular the inferen
e of s
ene properties

from image data. We are espe
ially 
on
erned with im-

age de
omposition, that is obtaining the 
hara
teristi


parts of an image and the relationships between them.

The 
omponents of an image are not independent of

ea
h other; 
ertain obje
ts are expe
ted to o

ur to-

gether, and obje
ts are made up of di�erent sub
om-

ponents. One way of thinking of this problem is by

analogy with parsing a language; we are interested in

parsing images. However, the important 
hara
teris-

ti
s and stru
ture in an image is signi�
antly di�erent

from linguisti
 data.

Those familiar with work on dynami
 trees will be

aware that they have been developed in the 
ontext

of single stati
 images [15, 1, 13℄. It would be desirable

if the bene�ts of the dynami
 tree approa
h 
ould also

be made available for image sequen
es. Introdu
ing a

sequen
e model into the basi
 dynami
 tree formalism

is not straightforward as a 
hange in the position of an

obje
t is re
e
ted in a 
hange in the 
onne
tivity stru
-

ture of the dynami
 tree. This 
hange would be hard

to predi
t from the previous time sli
e and would be

an inelegant representation of the dynami
s: the 
on-

ne
tivity stru
ture is supposed to represent the stru
-

tural 
hara
teristi
s of an obje
t, most of whi
h will be

preserved during movement. Here the dynami
 tree is

modi�ed to in
orporate position variables, resulting in

a model where obje
t movement 
an be represented in

terms of a 
hange in position 
omponents of the nodes

representing that obje
t.

The stru
ture of the remainder of the paper is as fol-

lows. The �rst se
tion of this paper develops some of

the issues surrounding image analysis in general and

then outlines the form of the dynami
 positional tree,

and the rationale behind its design. This leads in to

a more formal de�nition of the dynami
 tree model

in se
tion 2, and we dis
uss related models in se
tion

3. De�ning a Bayesian model is one thing, being able

to implement it is another. In se
tion 4, we take a

variational approa
h to the implementation problem

and give a set of stru
tured variational approximations

whi
h 
an be 
al
ulated eÆ
iently, and whi
h have the

stru
tural information we need. The resulting set of

update equations are given in se
tion 5. Illustrations

of the approa
h appear in se
tion 7, after a brief dis-


ussion of the issue of sequen
es (se
tion 6).

1 Dynami
 Positional Trees

1.1 Pixel Models

When developing models for images, it is advisable to

separate the 
on
ept of an image model from that of

a pixel model. The former should develop a model of

the s
ene, and the latter gives the method by whi
h

the s
ene is represented in terms of pixels. The latter

depends on the 
hara
teristi
s of the 
amera or mea-

surement pro
ess, the nature of the measurement noise

et
. The s
ene des
ription should not depend on a

parti
ular 
hoi
e of pixellation. Having the measure-

ment pro
ess dealt with by a separate model from that

whi
h deals with the stru
ture of the s
ene ensures that

this is the 
ase. The above approa
h will be followed

here. For now we will 
on
entrate on the s
ene model,

and will make the assumption that there is some pixel

model whi
h will relate the s
ene to the a
tual pixel

image whi
h the observer is presented with. Details of

the pixel model are given in x1.6



1.2 S
ene Stru
ture

Dynami
 positional trees are used to build representa-

tive tree stru
tured belief networks for images. Like dy-

nami
 trees, dynami
 positional tree stru
tures are de-

signed to represent the inherent relationships between

and within obje
ts in a s
ene. The following are some

of the features whi
h would be appropriate for image

related stru
tures:

� Lo
ality: In general, 
hild nodes will be spatially


loser to the parent rather than far from the parent.

� Spatial 
oheren
e: Two nearby parts of an image

are more likely to be related to one another than parts

separated by a larger distan
e.

� Multis
ale representation: Obje
ts further up the hi-

erar
hy will have greater spatial extent than those fur-

ther down the hierar
hy.

Spatial 
oheren
e is a key feature, and is illustrated by

�gure 1. Like its prede
essor [15℄ the dynami
 posi-

tional tree 
an be seen as a mixture of tree stru
tured

belief networks. Ea
h tree stru
ture represents one set

of relationships whi
h might be useful in des
ribing an

image.

Figure 1: Various trees. Left: highest prior probabil-

ity. Middle: high probability. Right: low probability.

Think of the leaf node positions as representing pixels.

1.3 Node Properties

Before looking at the stru
ture model in detail, it is im-

portant to des
ribe what ea
h node of the belief net-

work represents. It is these nodes whi
h denote the


hara
teristi
 variables needed to generate the image.

In this implementation they must represent the follow-

ing random variables:

� Class labels. These label the type of obje
t or obje
t


hara
teristi
 whi
h the node is representing.

� Positions. Two dimensional real variables represent-

ing the position of the node in image spa
e.

In addition variables/parameters representing spatial

extent would be useful, and for sequen
es, momenta

would also be ne
essary. These momenta would de-

s
ribe what movement would be expe
ted between time

frames.

1.4 Stru
ture and Position

The prior over possible network stru
tures and the

prior over node positions must be de�ned together.

The belief networks with the highest prior probabili-

ties will have spatial 
oheren
e, but positions are spa-

tial variables, and so the positions 
annot be ignored

when de�ning the stru
ture. Likewise the prior on po-

sitions will depend on the network stru
ture. Di�erent

stru
tures will produ
e di�erent lo
alisation require-

ments when it 
omes to de�ning the node positions.

We 
annot es
ape the need for these 
on
epts to be

dealt with together.

One way of de�ning a prior over stru
ture and position

involves using a distribution similar to that introdu
ed

in [14℄ as a hierar
hi
al Gaussian mixture model.

Suppose we have a network with a given number of lay-

ers, and that the number of nodes in ea
h layer is �xed.

In the hierar
hi
al Gaussian mixture model ea
h node

is allowed to 
hoose its parent uniformly from the nodes

in the layer above. This de�nes a tree stru
ture. Given

this tree stru
ture, the probability of the position r

i

of

ea
h node i is given by a Gaussian distribution 
entred

at the position of the parent node (see �gure 2). The

result of this model is far from uniform or regular at the

leaf nodes. In fa
t this approa
h was developed spe
i�-


ally to 
ater for 
lustering of the leaf node values. This

is a problem for images as it means the model would

not des
ribe large parts of the image spa
e, whereas we

expe
t every part of an image to relate to some obje
t.

However, the standard hierar
hi
al Gaussian mixture

model 
an be modi�ed to give a distribution with the

required stru
ture. The approa
h used here is to 
on-

dition the hierar
hi
al Gaussian mixture model on the

fa
t that the leaf nodes are on a regular grid.

Figure 2: The �rst few layers of the hierar
hi
al Gaus-

sian mixture. The top pi
ture give the parent/
hild

stru
ture, and the bottom pi
ture gives the node 
en-

tres and varian
es.



1.5 Class Label Model

The main remaining 
omponent of the s
ene model in-

volves the relationship between the 
lass labels of the

nodes. A sample from the stru
ture-position model

de�nes a tree stru
tured belief network. Hen
e 
on-

ditioned on the stru
ture-position, ea
h node has a

known parent. This parent-
hild relationship repre-

sents the 
omponent-sub
omponent relationship be-

tween obje
ts in an image. Hen
e we need some 
ondi-

tional probability whi
h says how likely the 
hild node

is to have a 
ertain label given that the parent has a

parti
ular label. The only 
onstraint we make here is

that this 
onditional probability is always the same for

this 
hild/parent pair whatever the state of the other


onne
tions.

1.6 Pixel Model

We 
an now return to the pixel model, and relate the

leaf nodes of the dynami
 positional tree with the pixel

RGB values. The simplest form of pixel model gener-

ates the pixels from the state of the leaf nodes whose

position lies within the pixel area. Then what is needed

is a model of pixel 
olour intensity 
onditioned on node


lass label. The resulting 
olour intensities 
an be av-

eraged over the leaf nodes within a pixel area to give

the intensity for that pixel. The simplest 
ase is where

we arrange for there to be one leaf node per pixel.

Sometimes more textural information 
an be utilised

if multi-pixel regions are used instead of pixels.

There are many ways that the 
lass 
onditional model

of pixel 
olour intensity 
an be obtained. We have ex-

amined a number of approa
hes in
luding modelling

s
aled likelihoods for multi-pixel regions using neural

network methods [16℄, and simple approa
hes, su
h as

using empiri
al (histogram) 
lass 
onditional distribu-

tions.

2 Theory

In this se
tion we de�ne the dynami
 positional tree

model expli
itly. We denote the set of network nodes

by N = f1; 2; : : : ; ng. The nodes are organised into

layers, and the bottom layer of nodes are the leaf nodes,

denoted by L. The remainder are denoted by L

0

.

We denote the position value of node i by the random

variable R

i

whi
h takes ve
tor values r

i

, one 
ompo-

nent for ea
h dimension of the system (2 for an image).

We denote the 
lass state of the node i by random vari-

able X

i

whi
h takes ve
tor values x

i

, one 
omponent

for ea
h of C possible obje
t labels. The indi
ator x

k

i

is

zero for all k ex
ept if node i is of 
lass k, when x

k

i

= 1.

We generally use the supers
ript notation to represent

a set of random variables. For example X

B

represents

the set fX

i

ji 2 Bg, and R

B

represents fR

i

ji 2 Bg. For

the state of all nodes we drop the N : X

N

= X .

The tree 
onne
tivity is given by Z = fZ

ij

ji; j 2 Ng,

where Z

ij

is a random variable whi
h takes indi
ator

values z

ij

= 1 if node j is the parent of node i, and

z

ij

= 0 otherwise. We 
an allow node i to dis
onne
t

from all parents; this dis
onne
tion state is denoted by

z

i0

= 1 ; z

ij

= 0 8j 6= 0. Finally, the set of pixels

(whi
h will be our data) is denoted by Y .

2.1 The Node Position Model

In se
tion 1.4 it was argued that the distribution

P (X;R) of node position and 
onne
tivity need to be

de�ned together. We do that using a 
onditional hier-

ar
hi
al Gaussian mixture model.

2.1.1 Hierar
hi
al Gaussian Mixture Models

We de�ne the distributions over stru
ture, P (Z), and

position, P (RjZ), as follows. First the distribution

over trees P (Z) is given by P (Z) =

Q

ij




z

ij

ij

where 


ij

is a prior probability of i 
onne
ting to j. This simply

says that ea
h node in 
an 
hoose its parent from one

of the nodes in the layer above. Usually the probability




ij

is taken to be uniform over all parents j, with an

additional low probability of the node 
hoosing to be

a root.

The other term P (RjZ) is given by P (RjZ) =

Q

i;jjz

ij

=1

P (r

i

jr

j

) with

P (r

i

jr

j

) =

1

�

exp

�

�

1

2

(r

i

� r

j

� �

ij

)

T

�

�1

ij

(r

i

� r

j

� �

ij

)

�

(1)

and where the normalisation 
onstant � =

(2�)j�

ij

j

1=2

. Here �

ij

is a given 
ovarian
e matrix,

and �

ij

is an o�set, usually set to zero. Note that z

ij

is non-zero for only one value of j, whi
h must be in

the layer above that 
ontaining node i. More infor-

mally P (RjZ) is formed by generating the positions of

the next layer from a Gaussian 
entred at the position

of the parent.

The position of a root node i is 
hosen independently

from a Gaussian mean r

i0

and varian
e �

i0

. We gen-

erally take r

i0

� r

0

to be zero, and �

i0

to be large. In

other words root positions are 
hosen from a relatively

broad Gaussian.

This hierar
hi
al Gaussian mixture model has many

of the 
omponents whi
h we want. It has 
ompo-

nent/sub
omponent stru
ture, spatial 
oheren
e and

hierar
hi
al form. It remains to ensure that every part

of the image is properly des
ribed by some 
omponent

of the model. To enfor
e this, the leaf nodes R

L

are

taken to be �xed in a suitable grid. The distribution

of the remaining variables, P (Z;R

L

0

jR

L

), is given by

the 
onditional distribution

P (Z;R

L

0

jR

L

) = P (ZjR

L

)P (R

L

0

jZ;R

L

): (2)



This gives the �nal prior in equation (2).

2.2 Node Labels and Pixel Model

The hierar
hi
al Gaussian mixture model of the pre-

vious se
tion needs to be 
ombined with some distri-

bution over X to get the full dynami
 positional tree

prior.

In
luding these positions, and a pixel model, the overall

prior model (again given �xed R

L

) 
an be written as

P (Z;X;R

L

0

; Y jR

L

) = P (Z;R

L

0

jR

L

)P (XjZ)P (Y jX;R):

(3)

P (Y jX;R) is the pixel model and determines how the

obje
t stru
ture is represented in terms of pixels Y .

The original dynami
 tree model appears here through

the distribution of the node states P (X jZ) whi
h is to

be

P (X jZ) =

Y

i;j

(P

kl

ij

)

x

k

i

x

l

j

z

ij

where P

kl

ij

is the probability that node i is in state k

given that j is the parent of i and node j is in state l.

Note again the power of z

ij

only pi
ks out one of the j

elements (the parent) for ea
h i in the produ
t.

Finally we want to 
hoose some form for the pixel

model. The simplest form assumes a one to one re-

lationship between pixels Y

i

and leaf nodes X

i

i 2 L,

and takes P (Y jX;R) = P (Y jX

L

) =

Q

i2L

P (Y

i

jX

i

),

meaning that the pixel representation 
omes dire
tly

from the lowest level obje
t representation.

In generative terms we 
hoose a stru
ture Z and

positions R

L

0

a

ording to the model P (Z;R

L

0

jR

L

).

Then the obje
t 
lass labels are generated a

ording

to P (X jZ). Finally the pixel values are obtained from

P (Y jX;R). This gives the full prior model of the im-

age in terms of a position en
oding dynami
 tree. This

prior model is a rather 
ompli
ated mixture of trees,

and so we would not expe
t to be able to 
al
ulate the

posterior exa
tly. In se
tion 4 we develop a stru
tured

variational approa
h.

3 Related Work

The general aim of our work is to provide a prior distri-

bution whi
h is spatially 
oherent, giving rise to obje
t-

like groupings of pixels. There are a number of other

approa
hes to this problem; two of the best known are

tree-stru
tured belief networks (TSBNs) and Markov

random �elds (MRFs). Below we dis
uss these meth-

ods, and their relative strengths and weaknesses.

In tree-stru
tured belief networks, the leaves will be

taken as pixels; the higher levels of the tree in-

du
e 
orrelations between the leaf nodes. TSBNs us-

ing dis
rete-valued nodes [4, 10℄ and Gaussian nodes

[2, 11℄ have been investigated. These ar
hite
tures are

tree-stru
tured analogues of the linear hidden Markov

model and Kalman �lter respe
tively. TSBNs have

the advantage that inferen
e 
al
ulations 
an be 
ar-

ried out eÆ
iently (using upward-downward algorithms

analogous to forward-ba
kward algorithms on 
hains).

However, they have a rigid ar
hite
ture (often of quad-

tree type) that is unresponsive to the image 
ontent.

This 
an give rise to "blo
ky" artefa
ts in image gen-

eration/analysis. We also note that DeBonet and Vi-

ola [6℄ have used an interesting tree-stru
tured network

for image synthesis using non-Gaussian densities. In

this work the higher levels 
orrespond to wavelet 
oeÆ-


ients and are observable rather than hidden variables.

Markov random �eld models [3, 8℄ are undire
ted

graphi
al models that de�ne a stationary pro
ess

(thereby over
oming problems of blo
kiness). They

have two disadvantages (i) they are non-hierar
hi
al

and (ii) inferen
e in su
h a MRF is NP-hard in gen-

eral.

The Dynami
 Tree (DT) ar
hite
ture seeks to gain the

advantages of the hierar
hi
al stru
ture of the TSBN

whilst over
oming the disadvantage of its rigid stru
-

ture. It does this by de�ning a prior distribution over

trees; 
onditional on the tree stru
ture (denoted by

Z), the network is a TSBN. Typi
ally there are a very

large number of possible trees in the prior; in response

to data the posterior distribution will be re-weighted to

favour those ar
hite
tures most 
onsistent with the im-

age data. Dynami
 tree ar
hite
tures were introdu
ed

in [15℄ and in [9℄.

One attra
tive feature of the DT is that dis
onne
-

tions 
an o

ur, giving rise to a `forest' of more than

one tree. The roots 
an be interpreted as identifying

individual obje
ts; an obje
t is de�ned by all of those

nodes whi
h are 
hildren of a root. Noti
e that this

interpretation is not possible in a single TSBN. In [8℄

an edge pro
ess was introdu
ed to the MRF allowing

expli
it dis
onne
tions. However, in 
ontrast to the

dynami
 tree ar
hite
ture there is no guarantee that

the prior over the edge pro
ess will produ
e a ni
e set

of regions.

The ri
h variety of trees generated in the DT ar
hi-

te
ture is reminis
ent of the parse trees in 
ontext free

grammars (CFGs), although the DT models are 
on-

strained to have a �xed number of layers. There is a

O(n

3

) algorithm for evaluating the MAP parse et
 in

CFGs; however, this algorithm depends 
ru
ially on a

one-dimensional ordering of inputs and thus 
annot be

applied to 2-d analyses.

The 
onstru
tion of a number of belief networks de-

pendent on a variable Z has been used in the work of

Geiger and He
kerman on multinets [7℄. In that work

multinets were used as a way of speeding inferen
e, as


onditional on Z the networks will typi
ally be mu
h



simpler than an equivalent network whi
h ignores this


onditioning. In our work, integrating out Z leads to a

network whi
h is layerwise fully 
onne
ted. Su
h fully-


onne
ted models have been used before e.g. the sig-

moidal belief network model used in the Helmoltz ma-


hine [5℄, but we believe that the `
lean' semanti
s of

the DT model (where we expe
t that ea
h pixel should

belong to one obje
t) should aid the interpretability

and utility of the model.

4 Variational Approa
h

Exa
t inferen
e using propagation methods is not fea-

sible in this network, and so a variational approa
h is

used. This develops and extends the approa
h used in

[13℄ to the new 
ase of the positional dynami
 tree.

This approa
h involves approximating the posterior

distribution with a fa
torising distribution of the form

Q(Z)Q(X jZ)Q(R

L

0

), where Q(Z) is the approximat-

ing distribution over the Z variables, Q(X jZ) is the ap-

proximating distribution over the states, and Q(R

L

0

) is

an approximating distribution over the non-leaf node

positions.

To 
hoose good forms for the Q's the Kullba
k-Liebler

divergen
e between the Q(Z)Q(X jZ)Q(R

L

0

jZ) distri-

bution and the true posterior should be minimised. In

fa
t the approximate distributions whi
h are used take

the form of a dynami
 tree model, and give propagation

rules whi
h are eÆ
ient and lo
al. Similar approxima-

tions used for the basi
 dynami
 tree 
an be seen in

[13℄.

The KL divergen
e between the approximation and the

true posterior is of the form

Z

R

L

0

dR

P

0

L

Z;XQ(Z)Q(X jZ)Q(R

L

0

)

log

 

Q(Z)Q(X jZ)Q(R

L

0

)

P (Z;R

L

0

jY;R

L

)P (X jZ; Y;R

L

)

!

: (4)

We now need to dis
uss the forms of ea
h of the ap-

proximating distributions. We use a Q(Z) of the form

Q(Z) =

Y

ij

�

z

ij

ij

with parameters �. Q(R

L

0

) takes the form Q(R

L

0

) =

Y

i2L

0

1

p

(2�)j


i

j

exp

�

�

1

2

(r

T

i

� �

T

i

)


�1

i

(r

i

� �

i

)

�

where �

i

and 


i

are position and 
ovarian
e param-

eters respe
tively. In this paper 


i

is assumed to be

diagonal. Lastly the Q(X jZ) is a dynami
 tree approx-

imation of a form identi
al to that used in [13℄:

Q(X jZ) =

Y

ijkl

(Q

kl

ij

)

x

k

i

x

l

j

z

ij

:

Again Q

kl

ij

are parameters to be optimised.

5 Update Equations

We want to minimize the KL divergen
e (4), with the

forms of approximate distribution given in the last se
-

tion. We need to do this subje
t to 
ontstraint that

P

k

Q

kl

ij

= 1 (probabilities sum to 1). We add to (4) a

set of Lagrange multiplier terms 
orresponding to these


onstraints, and set the derivatives to zero. Solving this

gives the following set of update equations.

5.1 Class Labels

Minimizing the KL divergen
e gives us a set of update

equations. Given all the �'s, letm

k

i

be given re
ursively

from the top down by

m

k

i

=

X

jl

�

ij

Q

kl

ij

m

l

j

:

Then m

k

i

is the marginal probability of node i being in


lass k under the variational distribution. Again given

the �'s we �nd that minimization of theKL divergen
e

gives

Q

kl

ij

=

P

kl

ij

�

k

i

P

k

0

P

k

0

l

ij

�

k

0

i

where �

k

i

=

Y


2
(i)

"

X

g

P

gk


i

�

g




#

�


i

:

In the last equation 
(i) is used to denote the possible


hildren of i, in other words the nodes in the layer

below that 
ontaining node i.

Hen
e given � all the Q 
an be updated by making a

single pass up the tree to 
al
ulate the � values, and

then 
al
ulating the Q. In fa
t 
al
ulating the Q values

themselves 
an be avoided 
ompletely as the marginal

m values 
an be obtained dire
tly from the � and the

prior P values.

5.2 Positions

The update equations for the positions (again given the

�'s) take the following forms

�

i

=

X

j

(�

ji

(�

ji

)

�1

+ �

ij

(�

ij

)

�1

)�

j

;

(


i

)

pp

=

1

P

j

�

�

ij

(�

ij
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where we have assumed that both � and 
 are diag-

onal. The equations for � need to be iterated until

suitably 
onverged.

5.3 Conne
tivity

Lastly the 
onne
tivity needs to be 
onsidered. For

�xed parameters in Q(X jZ) and Q(R) of the forms

given above, we obtain
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In the above the 
onstant of proportionality is found

by normalisation.

5.4 Optimization Pro
ess

The above equations give all the ne
essary update

rules. The whole optimization pro
ess involves an

outer loop optimizing the Q(Z) values and an inner

loop 
ontaining up and down passes of the Q(X jZ)

optimzation and a number of passes of the Q(R) opti-

mization. The KL divergen
e 
an be 
al
ulated up to

an additive 
onstant, and so 
an be used as an expli
it

obje
tive fun
tion and be monitored a

ordingly.

There are a few hidden problems in the optimzation.

Most of the updates are inexpensive. However there is

the issue of summing over all possible 
hildren/parents.

Most of these will give negligible 
ontributions to the

relevant sums be
ause their 
ontribution 
ontains a

probabilisti
 fa
tor from the tail of a Gaussian. Hen
e

grid based methods are used to index positions and

thereby redu
e the number of referen
es to z

ij


ompo-

nents whi
h are irrelevant. This keeps 
omputations

down to something near the order of the number of

nodes.

Learning This variational method gives a lower

bound to the log likelihood. The lower bound 
an be

used in the way des
ribed in [12℄ to optimise the pa-

rameters of the a
tual distributions using a form of

EM algorithm. This approa
h was used here for learn-

ing the 
onditional probabilities P

kl

ij

. It was assumed

that these 
onditional probabilities were the same for

all nodes in the same layer.

6 Sequen
e Model

Given the dynami
 positional tree formalism, we are

able to develop a model of sequen
es. We 
onsider a

Markovian model, where the dynami
 positional tree

posterior at the previous time step in
uen
es the prior

at the next step. There is not spa
e to give full details

of the model here. However, the form 
hosen sets all

of the approximating distributions at time t+ 1 to be

similar posterior at time t, but at the same time allow-

ing for some 
hange in the stru
ture, some movement

of the position values, or some 
hange in the 
lass la-

bel. This form also allows the information from the

approximate distribution to then be �ltered through

the Markovian dynami
s, and obtain a model of the

similar form to the prior of the single image model.

Hen
e this pro
ess 
an be repeated for as many images

as there are in the sequen
e.
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Figure 3: A test example. (a) The image, and (b) the

ground truth labelling. (
) The pixelwise labelling and

(d) the positional dynami
 tree labelling. (e) A sli
e

proje
tion of the highest posterior dynami
 tree (from

down the middle of the image) and (f) the positions

and labels of the sixth layer of the tree. (g) gives the

next image in the sequen
e, while (h) gives shows where

the nodes in the sixth layer move to.

7 Illustrations

The dynami
 positional tree model was tested on arti-

�
ial ray tra
ed images. There were 6 training images,

ea
h with a ground truth label set of 5 
lass labels, one

for ea
h of sky, 
loud, heli
opter, sea, sun. The im-

ages were 160 by 120 pixels and were used to learn the


onditional probabilities (CPTs) P (X

i

jX

j

). The CPTs

were assumed to be the same for all nodes in a given

layer. The training images were also used to build a

simple empiri
al pixel model: the RGB 
olour
ube was



partitioned into 64 sub
ubes, and the histogram of the

pixel values was used as the 
lass 
onditional proba-

bilities for ea
h label 
lass. The standard deviations

of the Gaussian distributions in the Gaussian aÆnity

model were set by hand to be of a suitable width: one

whi
h generally gave a few (10 to 20) possible 
hoi
es

of parent for a node.

One image 
an be seen in �gure 3a along with the

ground truth segmentation (3b). Below that, the pix-

elwise segmentation without the use of the dynami


positional tree 
an be seen in �gure 3
. The pi
ture

in 3d gives the maximum posterior segmentation ob-

tained using the variational approa
h on the dynami


positional tree. This pi
ture only gives a 
rude pi
-

ture of the overall posterior distribution. Note the dif-

feren
e in form between the solid obje
ts and more

etherial ones su
h as 
louds. Figure 3e gives a proje
-

tion of a sli
e of the maximum posterior tree stru
ture

obtained (we a
tually have a distribution over trees),

while �gure 3f gives a pi
ture of the positions and la-

bels of nodes in the sixth layer from the root (out of

nine) of the posterior dynami
 positional tree. Given

a se
ond image (�gure 3g) in sequen
e with the �rst,

we 
an see what happens to the node positions after

passing through the sequen
e model in �gure 3h.

8 Dis
ussion

The dynami
 positional tree model enables the possi-

bility of using dynami
 tree like stru
tures for image

sequen
es. However it also has the bene�t that the

stru
tures obtained 
an be interpreted in terms of ob-

je
ts, where the position labels relate to the position of

the obje
t and ea
h of the parts of the obje
t. Dynami


positional trees go beyond simple segmentation meth-

ods, and move towards stru
tural s
ene de
omposition.
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