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Abstract

Temporal matching is the problem of match-

ing observations to prede�ned temporal pat-

terns or templates. This problem arises

in many applications including medical and

model-based diagnosis, plan-recognition, and

temporal databases. This work examines the

sources of uncertainty in temporal matching

and presents a probabilistic technique to per-

form temporal matching under uncertainty.

This technique is then applied to the problem

of �nding the onset of infection with Toxo-

plasma Gondii.

1 Introduction

Temporal matching is the process of matching a lim-

ited set of observations to known temporal evolution

patterns in order to identify the stage of evolution or

determine the onset of the temporally evolving pat-

tern. Given a sequence of observations, and some tem-

poral evolution patterns, a temporal match consistent

with the sequence of observations maps observation

times to particular points in a pattern.

Formally, S is a set of states, T

R

is the set of time

points measured relative to a pattern onset time t

0

, E

is the set of known temporal evolutions between states

de�ned as

E � S � S � T

R

and the set of observation O is in turn de�ned as

O � S � T

A

where T

A

is the set of actual time points measured

with respect to an arbitrary time origin. The tem-

poral matching problem is that of �nding a matching

mapping M : T

R

 T

A

to obtain a pattern instance

consistent with O.

Temporal matching is needed for many applications.

For example, model-based diagnosis of physical sys-

tems uses temporal matching to check temporal con-

straints and to identify failure patterns [9]. Fuzzy tem-

poral matching algorithms are used to determine the

onset of infections in medical diagnosis [11]. These

techniques have been used to identify the maturity of a

given technology by analyzing relevant patent entries

and their rate [7]. In computer vision, probabilistic

and stochastic techniques have been applied to track

moving objects [5]. Humans use di�erent forms of tem-

poral matching in their daily lives. For example, we

can determine the time-of-day by observing the angle

and direction of the sun. In this example, the E con-

sists of the motion pattern of the sun, by observing

the sun, it is possible to match the observation to the

known pattern and approximately deduce the time.

Note that temporal matching in this work di�ers from

matching in temporal databases in that the latter aims

at �nding instances in the database that match a tem-

poral query [3]. If the database contains all possible

matches, the results would coincide. Work on bidirec-

tional persistence [4, 12] can be viewed as a special

case of temporal matching discussed here. Bidirec-

tional persistence considers simpler evolution patterns

corresponding to the persistence of a 
uent.

This work is organized as follows: Section 2 examines

the sources of uncertainty in temporal matching. Sec-

tion 3 presents a probabilistic approach to the prob-

lem. Section 4 shows how to apply the proposed so-

lution to the problem of �nding the onset time of in-

fection with toxoplasmosis. In the remainder of this

section we introduce an example of temporal match-

ing.

Example The evolution pattern of a state variable

over time is shown in Figure 1-A. If a time t

obs

this

variable is as shown in Figure 1-B, then there are two

possibilities: either the variable has reached this level
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Figure 1: Temporal pattern and matches to an obser-

vation

on its way down after starting its evolution at time

t

0

1

or on its way up after starting at t

0

2

. Note that

the observed level occurs twice during the pattern. In

this example, it is therefore possible to match the ob-

served level to two instances of the same pattern with

di�erent start times.

2 Uncertainty in Temporal Matching

In the absence of uncertainty, temporal matching can

be formulated as a constraint satisfaction problem.

Temporal constraint networks [1, 10] represent tempo-

ral patterns using graphs where the nodes correspond

to states (variables) and edges correspond to temporal

precedence constraints. The temporal constraints have

a set of intervals associated with them indicating the

duration separating the states. These networks can be

used to test if a set of temporal assignments is con-

sistent. Finding a match corresponds to �nding such

temporal assignments to observed states. However, in

many cases both the pattern and the observations are

uncertain. In such cases constraint satisfaction tech-

niques do not yield conclusive results. The sources of

uncertainty may include:

� Pattern uncertainty: A pattern may exhibit tem-

poral uncertainty and state uncertainty. If the

pattern exhibits temporal uncertainty, the dura-

tion separating consecutive states and the persis-

tence of each state is uncertain. In such cases,

a probability distribution represents this uncer-

Time0

State

Figure 2: A pattern exhibiting uncertainty

tainty. A particular state in the pattern may be

reached with a certain probability.

� Observation uncertainty: Observations may be

uncertain in their timing or may not re
ect the

state with certainty.

� Low sampling rate: A low sampling rate makes it

impossible to fully reconstruct the observed pat-

tern from the observations alone. If the sampling

rate is low, the number of possible matches in-

creases, threatening the e�ectiveness of the tem-

poral matching.

� Repeated states: If a pattern includes repeated

states, observing such states is less informative.

It is preferable in these situations to add to the

state de�nition additional attributes to discrimi-

nate between similar states if possible.

� Pattern estimation: The amount of historic data

available may limit our ability to accurately infer

the pattern and the probability distribution.

� Pattern combination: Sometimes, it is necessary

to compose and cross validate a group of matching

patterns to properly match given observations.

Figure 2 illustrates the fact that in the presence of un-

certainty, observing a particular state is less conclusive

in determining the possible pattern onset time.

It is desirable in such cases to assign probabilistic be-

liefs to possible matches rather than just stating that

they are all possible. We use here state and transition

probabilities. State probability is the probability of a

given at a given pattern time. Transition probabilities

represent the probability of moving from one state to

another at di�erent pattern times.
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Figure 3: An onset interval consistent with two obser-

vations obtained by intersecting the onset intervals

3 Dealing with Limited Uncertain

Persistence

Temporal matching under limited uncertain persis-

tence can be de�ned as follows: given some obser-

vation(s) at times t

i

2 T

A

and a temporal pattern

which allows limited uncertain persistence of X , it is

required to �nd the probability that t

i

matches a par-

ticular pattern relative times t

R

2 T

R

consistent with

the observation(s) for all possible t

r

.

Within the constraint satisfaction formulation dis-

cussed earlier, each observation limits the possible

matches to a more restricted set of intervals on the

timeline. A solution that satis�es all the observations

lies at the intersection of these intervals. Figure 3

shows how the intersection of intervals is consistent

with di�erent observations. Pattern and observations

uncertainties detailed later calls for a pattern represen-

tation that allows for variations. For example, instead

of using a line to describe a pattern as in Figure 1, a

band is used. The envelope of this band de�nes the

pattern. Consequently, the onset time corresponding

to an observation is an interval (or a set of intervals).

Intersecting these intervals, we get a set of possible on-

set times consistent will all observations. Frequently,

the set of possible onset times thus obtain contains

candidates that are very improbable. State probabil-

ities identify improbable states and transition proba-

bilities identify unlikely temporal evolutions.

For a temporal matching problem to have a solu-

tion within this framework, conditions similar to those

speci�ed by N}okel [8] have to be met. These conditions

are:

1. Probabilistic pattern: The evolution pattern

E is speci�ed in terms of states and transition

probabilities.

2. Availability of observations: The set O is not

empty.

3. Validity of observations: Observations in O

are valid states.

4. Compatibility of Observations: The intersec-

tion of all possible pattern time onset intervals is

not empty.

5. Pattern composition: All observations belong

to a single pattern occurrence or an appropriate

combination of patterns is used.

In addition to the above conditions, we assume the

process is Markovian so that the transition probability

depends only on the previous state, and observations

are conditionally independent so that the probability

of a sequence of observations O

t

up to time t, given a

state sequence X

t

up to t is:

p(O

t

jX

t

) = �

t

i=1

p(o

i

jx

i

):

Temporal pattern matching therefore requires to be

performed in two phases: a learning phase and a

matching phase. During the learning phase, the pat-

tern and the probability distributions are acquired

from data. During the matching phase, observations

are assigned pattern times.

3.1 Temporal Pattern Acquisition

The training set here is assumed to consist of a se-

quence of time stamped records. Each record describes

the state of a member of the training set at a particular

time. This time is measured with respect to an onset

time. To acquire a temporal pattern, both the prior

probability of being in state s at time t and the prob-

ability that a transition from state s

i

to state s

j

have

to be evaluated. The transition probabilities capture

the probabilistic persistence as well as the probabilistic

change possible.

3.2 Temporal Matching Algorithm

Given a set of observations and a temporal pattern as

described above, the algorithm aims at �nding how the

observations can match the pattern.

1. For each observation, identify all possible pattern

times at which the observed state is possible. A

set of possible pattern onset times is formed from

the identi�ed pattern times. Each onset time is

assigned a prior probability equal to the proba-

bility of the state at the corresponding pattern

time.



2. By intersecting the sets of possible onset times for

individual observations and evaluating the prob-

ability distribution over time points (or intervals)

in the intersection, we obtain a set of onset times

consistent with all observations.

3. For each possible onset time in the intersection,

the transition probabilities are used to estimate

the likelihood of reaching all observed states start-

ing from this particular onset time. The proba-

bility that the pattern started at a particular on-

set time and progressed through all the observed

states is thus obtained.

Hence, the algorithm evaluates the posterior probabil-

ities of each onset time given all available observations.

This temporal matching algorithm has been applied to

the problem of �nding the onset time of an infection

with toxoplasma gondii.

4 Application: Finding the Onset of

Infection with Toxoplasmosis

Toxoplasmosis is a medical diagnosis indicating that a

person has been infected with toxoplasma gondii. Tox-

oplasmosis is asymptomatic in immune-competent in-

dividuals but it can be very dangerous for an immune-

compromised individual or a fetus particularly during

the �rst trimester of pregnancy. Serological tests mea-

suring the immunoglobulins G, M and A are used to

diagnose toxoplasmosis. A recent infection is usually

characterized by high concentrations of IgG and IgM

antibodies. Tests measuring the IgG antigen-binding

avidity are also used. Routine screening for toxoplas-

mosis during pregnancy is common in many countries.

Diagnostic guidelines have been developed by organi-

zations such as the Canadian Pediatric Society, speci-

fying how to determine the recency of infection using

a combination of standardized tests such as the Sabin-

Felman dye test, IgG avidity test, IgM, IgA and IgE

tests. Interpreting the test results is usually compli-

cated if the sera are collected late in pregnancy [2].

Statistical course of infection data during pregnancy

are di�cult to obtain for obvious ethical and health

reasons. A study involving 27 pregnant women, for

whom it has been possible to establish the time of

primary infection, shows a large variance in immune

responses which could be attributed to factors such

as the strain of toxoplasma, the severity and quantity

of infecting organisms, and other individual variations

[6]. The 27 women in the study have been followed up

for durations that ranged from few weeks to a year.

Serological test results have been obtained.

4.1 Data Preparation

Due to the small number of individuals (27), and the

limited number of sera (126) we have grouped the test

results into four levels and we used linear interpolation

and extrapolation to obtain additional data points be-

fore calculating state and transition probabilities for

these patterns.Due to a lack of international standards,

the training data does not use the same units as the

test data and a unit conversion had to be conducted

during the data preparation phase.

4.2 Results

A test dataset consisting serological test results (dye

test, IgM and IgG avidity) for 394 patients has been

used to evaluate the performance of the temporal

matching algorithm. A clinician classi�ed the data

as preconceptional infection (latent), postconceptional

infection (acute), uncertain (suspected acute), or in-

consistent. The temporal matching algorithm esti-

mated the probability for all possible onset times, and

compared the onset times to the week of conception to

determine if the infection is preconceptional or post-

conceptional. Probabilities in the .4 to .6 range are

considered uncertain. In some cases di�erent tests

gave con
icting results and these were labeled incon-

sistent. The temporal matching algorithm agreed with

the clinician on 87% of the cases and has been able to

make conclusive decisions on about 10 % of the cases

that the clinician found uncertain. The program may

therefore be correct on up to 97% of the cases.

We then used C5.0 decision tree induction algorithm

to �ne tune the range of the uncertain class and de-

termine if some tests are more conclusive. We found

that the IgG avidity test is the most conclusive but

it is only available for about 10% of the patients. Af-

ter revising the program to use this information, the

performance of the program reached the 89% to 99%

range.

TempMatch + Acute Uncertain Latent Total

Clinician )

Acute 5 0 0 5

Uncertain 17 10 21 48

Latent 3 2 336 341

Total 25 12 357

Table 1: Temporal matching results

Table 1 indicates that the temporal matching algo-

rithm did not miss any of the cases diagnosed by the

clinician as acute. It also agrees with the clinician on

336 latent cases. However, most uncertain cases have

been classi�ed as acute or latent. This is not nec-

essarily a misclassi�cation as each infection is really



acute or latent (with respect to the date of concep-

tion). Three cases classi�ed as acute by the algorithm

are considered latent by the clinician. The algorithm

is uncertain about two cases considered latent by the

clinician.

5 Conclusions

This work has presented a methodical approach to

temporal matching under uncertainty. This approach

relies on Markov models and the use of probabilities

to perform quantitative matching. The approach has

been applied to the problem of determining the on-

set of infection with toxoplasmosis and the results ob-

tained are comparable to other systems custom built

to perform this task like Onset [11].

The temporal matching algorithm presented here can

be viewed as a probabilistic extension to the constraint

satisfaction solution. The transition probabilities im-

pose weak constraint on the solution. Moreover, prob-

ability distributions over the set of values for each vari-

able allow the temporal matching to select a solution

based on its likelihood.
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