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Abstract

In this paper we evaluate forensic identi�cation
hypotheses conditionally to the characteristics
observed both on a crime sample and on individ-
uals contained in a database. First we solve the
problem via a computational e�cient Bayesian
Network obtained by transforming some rec-
ognized conditional speci�c independencies into
conditional independencies. Then we propose
an Object Oriented Bayesian Network represen-
tation, �rst considering a generic characteristic,
then inheritable DNA traits. In this respect we
show how to use the Object Oriented Bayesian
Network to evaluate hypotheses concerning the
possibility that some unobserved individuals, ge-
netically related to the individuals pro�led in the
database, are the donors of the crime sample.

1 INTRODUCTION

Bayesian Networks (BN) are a powerful and com-
pact representation of complex statistical models that
exploit some recognized conditional independencies
among random variables. A BN is de�ned as a pair
of objects: a Directed Acyclic Graph (DAG) whose
nodes represent discrete random variables, and a set
of Conditional Probability Tables (CPT) which de�nes
the conditional distributions of each vertex given the
parents.

One of the reasons to represent a statistical model as
a BN is the possibility to use well-established and ef-
fective algorithms to solve the inferential issue, i.e. to
compute the distribution of some variables of inter-
est conditionally to the evidence by using one of the
available propagation algorithms (e.g. Jensen, 2001).

A limit in the representation of a BN arises when the
number of random variables in the model increases due
to some features of the problem.

Typically, this happens for time series models where a
certain structure, a time-slice, is replicated over time,

so that links between random variables in di�erent
time slices are established. This also occurs when we
are interested in the relations between sets of random
variables and when some speci�ed relations between
the sets must be taken into account. In the former
case the model increases its dimensions over time, in
the latter its growth depends on the number of sets
involved.

In this respect, a new approach, stemmed from the
Object Oriented language, has been introduced in the
last few years. This modelling tool, called Object Ori-

ented Bayesian Network, provides a useful technique
capable of building a BN by merging pieces of simple
BNs. Each item is an instantiation of a well-de�ned
class which can be modi�ed in order to accomplish the
maintenance requirements. An update in the structure
or in the CPTs of a class is automatically extended
to all instantiations of that class. The subject is de-
veloped in Koller and Pfe�er (1997) and Bangso and
Wuillemin (2000).

Here, we speci�cally deal with the forensic identi�ca-
tion problem arising when a crime sample has been
found but there is no clue about its origin. Searching
a database (DB) of previously collected items is a com-
mon practice and the scope of this analysis is to assess
the probability for each member of the database to be
the origin of the trace. The problem has found consid-
erable attention in the literature, but only not inherita-
ble characteristics were considered, see e.g. Stockmarr
(1999), Donnelly and Friedman (1999), Dawid (2001)
and Meester and Sjerps (2003).

The aim of this paper is to show how this dimension-
dependent problem, once opportunely formulated as
a BN, can be e�ectively tackled. First, we provide a
theoretical contribution transforming some recognized
conditional speci�c independencies (Geiger and Heck-
erman, 1996) into conditional independencies, Sec-
tion (2). Then, since the resulting BN shows many
di�erent repetitive structures, we propose an OOBN
solution. The use of OOBN to model genetic data



for identi�cation was previously experienced by Dawid
(2003) with special attention to the possibility of mu-
tations.

The DB search problem is �rst developed for a not
inheritable characteristic, but our real aim is to con-
sider more complex genetic traits in order to extend
the search to the relatives of the individuals pro�led
in the database, providing hints also when no match
between the crime sample and one (or more) of the
database members is found, Section (3.2). In Sec-
tion (4) we provide the results of a simulation study
based on a real database, emphasizing some computa-
tional issues. Finally we draw some conclusions.

2 EQUIVALENT BN FOR THE DB

SEARCH PROBLEM

Let X the discrete population characteristic (or at-
tribute) considered for the forensic identi�cation prob-
lem. With X we indicate the set of the m states of
X. The parameter θx, with x ∈ X , is the probabil-
ity that X is in state x, that is P (X = x) = θx and∑

x∈X θx = 1. Uncertainty about these probabilities,
derived from an inference process, could be introduced
but this will not be considered here.

Let N the size of the reference population and
n the number of the individuals in the DB. For
each of them we de�ne a random variable Xj with
j ∈ J = {1, 2, . . . , n}. Also, we de�ne Xc, the
characteristic related to the crime scene, and the hy-
pothesis variable H which has n + 1 states. The �rst
n of them represent the originator status of each indi-
vidual, i.e. H = j, with j ∈ J , means that the origin
of the trace is the j-th individual in the DB, while
the last, H = r, is referred to the hypothesis that the
trace's donor is outside the DB.

To specify the DB search model we adopt some com-
mon and reasonable assumptions:

i. the individual characteristics in the DB are jointly
independent;

ii. the individual characteristics are jointly indepen-
dent of the hypothesis variable, i.e. X ⊥⊥ H
where X = {Xj : j ∈ J };

iii. if the individual j is the originator of the
trace the crime sample is observed without error
Xj ≡ Xc | H = j;

iv. for H = r the individual attributes are jointly
independent of the characteristic involved in the
crime scene, i.e., X ⊥⊥ Xc | H = r and
P (Xc = x | H = r ) = θx with x ∈ X ;
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Figure 1: A DAG for the DB search problem.
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Figure 2: The augmented DAG obtained from Figure (1).

v. no other clue is available in advance, so the prior
probability on H is P (H = j) = 1/N and
P (H = r) = 1− n/N .

The graphical structure, depicted in Figure (1), de-
rives only from the assumptions (i) and (ii) while the
CPTs are speci�ed according to the assumptions (iii)-
(v). Note that (iii) and (iv) imply a whole set of
n + 1 independence statements: for each value of H
a di�erent assertion of independence holds. This form
of independence is known as Conditional Speci�c Inde-
pendence (CSI) (Geinger and Heckerman, 1996), which
di�ers from the usual de�nition of conditional indepen-
dence since, in the latter, the independence assertions
between variables do not vary according to the values
of the conditioning sets.

The proposed network does not feature any conditional
independence, so, for some evidence, the probability
updating does not take advantage of the graphical rep-
resentation. Moreover, the size of the CPT of Xc in-
creases exponentially according to the number of in-
dividuals in the DB, so that the propagation becomes
rapidly unfeasible. Our scope is to provide a more ef-
�cient solution by introducing a set of instrumental
nodes in order to allow local computations. The result
is attained in three steps.

Step 1. First, a set of binary random variables
H̄ =

{
H̄j : j ∈ J

}
is added and a new network is

de�ned on the augmented domain, as in Figure (2).

The marginal distribution of the variables Xj and H
does not change with respect to the original network



and the remaining CPTs are de�ned as follows:

P̂ (H̄j = 1 | H = i) =

{
1 if j = i

0 otherwise
(1)

P̂ (Xc | X, H̄ = h̄) =

{
P (Xc | Xj ,H = j) if h̄ = 1j

P (Xc | H = r) if h̄ = 0
(2)

where 0 and 1j are vectors of size n. Each element of
0 is 0 while the i-th element of 1j is 0 ∀i 6= j and 1 for
i = j.

The CPTs for each node H̄j , speci�ed as in (1), are
the probabilistic translation of the deterministic logi-
cal if-then relation, i.e., ∀j if H = j then H̄j = 1
and ∀i 6= j, H̄i = 0. Thus, each variable H̄j repre-
sents the originator status for the j-th individual and
the deterministic relation is a consequence of the as-
sumption that the characteristic observed on the crime
scene was left by only one individual belonging to the
reference population.

It is easy to prove that:

∑
H̄

P̂ (Xc,X, H̄,H) =
n∑

j=1

P̂ (Xc,X, H̄ = 1j ,H)+

P̂ (Xc,X, H̄ = 0,H) = P (Xc,X,H). (3)

Since the hypotheses are mutually exclusive, all con-
�gurations of H̄ not equal to the 1js and 0 have zero
probability to realize. For this reason, in the marginal-
ization (3), we consider only the relevant con�gura-
tions of H̄.

The main consequence of the above mentioned result
concerns the updating of the query variable H. In fact,
for any evidence on X and Xc, the posterior probabil-
ity of the hypotheses variable can be calculated indif-
ferently by using the BNs of Figure (1) or Figure (2).

Step 2. Here a divorcing technique (Jensen, 2001)
is applied. The idea is to introduce a set of mediat-
ing variables between parents and children in a large
converging connection to lead some parents to divorce.
The main advantage of this method is the reduction of
the computational e�orts because the original clique,
{X, Xc,H}, is broken into a tree of smaller cliques.

A reasonable way to divorce the parents of node Xc in
Figure (2)'s network is to add n mediating variables
Z = {Zj : j ∈ J }, which take values in X , so that each
pair of variables Xj and Hj are married. Figure (3)
illustrates the DAG after divorcing. There, the node
X?

c represents the characteristic related to the crime
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Figure 3: The augmented DAG of Figure (2) after the
divorce.

scene which has been rede�ned for convenience. In
particular X?

c takes values in X ? = X ∪ {NA} where
the state labelled NA is an instrumental event to make
the conditional distribution of X?

c well de�ned also for
Z values di�erent from those allowed in this context.
The Z can be considered as private copies of the crime
sample, reproducing its value for each of the members
of the DB.

The CPTs speci�cation of the nodes X, H̄ and H re-
mains unchanged with respect to the BN of Figure (2).
Imposing the CSI conditions

∀j, Zj ⊥⊥ Xj | H̄j = 0, (4)

the rest of CPTs are speci�ed as follows

P̃ (Zj = x | H̄j = 0) = θx (5)

P̃ (Zj = x | Xj = x̂, H̄j = 1) =

{
1 if x = x̂

0 if x 6= x̂
(6)

P̃ (X?
c = x̄ | Z = z) =

{
1 if x̄ = NA or ∀j, x̄ = zj

0 otherwise
(7)

where x̄ ∈ X ? and x, x̂, zj ∈ X .

The following proposition provides the probabilistic
relation between the networks in Figure (2) and Fig-
ure (3).

PROPOSITION 2.1 For each x ∈ X and for a

given quantity C(x), depending on x, the following re-
lation holds:

P̂ (Xc = x,X, H̄,H) =

C(x) ·
∑
Z

P̃ (X?
c = x,X, H̄,H,Z) (8)

Proof in the Appendix.
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Figure 4: The network obtained by dropping the X?
c node

and the related incidental arcs from the DAG in Figure (3)

Finally, combining (3) with (8), we obtain the main
result:

P (Xc = x,X,H) =

C(x) ·
∑
Z,H̄

P̃ (X?
c = x,X, H̄,H,Z) (9)

The above equation establishes that for calculating the
posterior probability of the hypotheses variable H we
can use the network of Figure (4) instead of that in
Figure (3).

Step 3. As explained in the proof of PROPOSI-
TION 2.1, during the propagation each valid evidence
on X?

c is transferred to all mediating variables. So, op-
erationally, we build a new DAG merely by dropping
the node X?

c as well as its incidental arcs, Figure (4).
Moreover, we use the characteristic observed on the
crime scene for evidencing each vertex Zj .

3 OOBN FOR THE DB SEARCH

The graph depicted in Figure (4) is conspicuous for
its repetitive structure. For each individual pro�le in
the DB the same BN is built and all the networks are
mixed by the hypotheses variable H which is the only
parent of every H̄j . Therefore, a set of conditional
independence assertions appears, i.e., given H, each
triple (Zj , H̄j , Xj) is independent of the rest of the
variables so that, for calculating the posterior distri-
butions of H, local computations are allowed.

3.1 NOT INHERITABLE TRAITS

A more compact representation can be achieved by
transforming the proposed network into the OOBN
framework. As in Bangso and Wuillemin (2000), we
de�ne a class, F, containing a simple BN, H̄ → Z ←
X, where the node H̄ is an input node while X and
Z are interior nodes. For each instantiation of the
class F(j), with j ∈ J , we build a binary random vari-
able H̄r

j which is referenced node of F(j).H̄. They
are connected through a reference link (⇒), that is
H̄r

j ⇒ F(j).H̄. Moreover, a set of arcs from the gen-

'&%$ !"#H

76540123H̄r
1

76540123H̄r
2

. . . 76540123H̄r
n

76540123H̄1
76540123H̄2 . . . 76540123H̄n

F(1) F(2) . . . F(n)

ssggggggggggggggggggggg

wwoooooooooo

''OOOOOOOOOO

�� �� ��

Figure 5: The OOBN representation for the DB search
problem derived from Figure (4).

eral hypotheses variable H pointing towards each ref-
erenced node is drawn. Finally, the CPTs related to
the variables H̄r

j are speci�ed as in (1).

Figure (5) illustrates the OOBN representation for the
DB search problem as the basic model to solve the
forensic identi�cation issue.

3.2 INHERITABLE DNA TRAITS

A DNA pro�le involves measurements on several well-
speci�ed locations of the DNA, called loci. For each
locus we observe a genotype i.e. two alleles, one inher-
ited from the father and the other from the mother,
even if their origin is not distinguishable. For a generic
locus we de�ne two random variables A0 and A1 whose
states, a1, a2, . . . , am, are the inherited alleles. In ad-
dition, we consider a further random variable X whose
states represent the genotypes, i.e., an ordered pair of
alleles (at, au) with t ≤ u. In this paper we assume
Hardy-Weinberg (H-W) conditions and linkage equi-
librium. H-W implies that parents are not related so
that the inherited alleles in a genotype are indepen-
dent. Linkage equilibrium refers to the independence
among loci in the same individual. This is justi�ed
since the loci considered for identi�cation are chosen
far enough in the genome to make plausible that they
are generated by di�erent meiosis processes.

The genetic inheritance allows us to consider, as the
possible donors of the crime sample, also individuals
never typed but related to the DB members. In this
way the no-match case, the most common in prac-
tice, but unfortunately the less useful, could originate
compatible unobserved individuals, i.e. those having a
positive probability for the characteristic observed on
the crime sample, conditional to all the available evi-
dence. For instance, a DB member not matching the
crime sample but sharing at least one allele for each
considered locus has a compatible child.

Here, we consider a pedigree, F , constituted by a
generic individual (i), their parents (0 and 1), their
child (c), their partner (p) and their brother (b). Note



that Labels 0 and 1 refer to a generic parent and not
speci�cally to the mother or father because this infor-
mation is not available. Since each pedigree is built
around a member of the DB we call it a �rst-degree-

relative pedigree. This choice is essentially due to the
fact that, in the expectation of a signi�cant hint about
the trace's donor, we cannot explore too far from each
individual in the DB. Re�nements of the search could
be achieved if familiar connections between the DB
members were known. This kind of information is not
usually recorded in a DB but, if available, could be
exploited to relate two or more familiar classes with
suitable links.

In this new perspective, the variables H and Hr
j shown

in Figure (5) have a new meaning.

The j-th state of H, with j ∈ J, refers to the hypothe-
sis that the donor of the trace belongs to the family of
the j-th individual of the DB, while H = r concerns
the possibility that the trace was left by someone not
included in the considered families. Every variable H̄r

j

takes values in F̄ = F ∪ r. The state r concerns the
hypothesis that the trace is left by none of the consid-
ered family's members, while the statement H̄r

j = q,
with q ∈ F means that the donor of the trace is the
q-th member of the jth family.

Since, by de�nition, we have no clue about the donor
of the trace, all the considered individuals are assumed
to have the same prior probability to be the searched
person. Within each family we assume that six persons
are the possible suspects but, obviously, some of them
might be ruled out if, e.g., they were in jail or dead.
To re�ne the analysis we de�ne an indicator variable
Jh,j ∈ {0, 1} for the relevance of the q-th person in
the j-th family. Moreover, with kj =

∑
q∈F Jq,j we

indicate the number of the relevant persons in the j-th
family. The prior on H is P (H = j) = kj/N , and

P (H̄r
j = q | H = i) =


Jq,j/kj if j = i and q 6= r

1 if j 6= i and q = r

0 otherwise
(10)

where i, j ∈ J and q ∈ F .

For inheritable DNA traits the class F includes the
�rst-degree-relative pedigree and the set of hypothe-
ses variables related to a generic family. Considering
the Allele Network proposed by Lauritzen and Shee-
han (2003), we provide an OOBN representation of F
through de�ning two other classes: the Individual (I)
and the Segregation (S) class.

The individual class I is represented in Figure (6). If
no information about the individual's parents is avail-
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Figure 6: The individual class
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Figure 7: The segregation class

able, the allele input nodes Ai
0 and Ai

1 depend on the
reference population parameters, otherwise they are
determined by the transmitted alleles. Another input
node is the binary random variable H̃ representing the
originator status of a generic individual. To provide
the transmission of the individual genetic characteris-
tics to the child, a copy of the alleles is expressed as
output nodes (Ao

0 and Ao
1) and the other vertexes X

and Z being interior nodes. The variable X denotes
the observable genotype and its CPT is speci�ed as
follows

P (X = (ar, au) | A0
i = ah, A1

i = at) ={
1 if (h = r and t = u) or (h = u and t = r)

0 otherwise.
(11)

The segregation class, Figure (7), has two alleles as
input nodes and provides the selection mechanism to
generate the transmitted allele At via the following
CPT, which re�ects the �rst Mendelian law:

P (At = ar | A0 = at, A1 = au) =
1 if r = t = u

0.5 if (r = t and r 6= u) or (r = u and r 6= t)

0 otherwise.

(12)

On the whole the family class F is de�ned by a set
of instantiations of I, I(q), and S, S(q, t), with q, t ∈
F and q 6= t. The index q is referred to the donor
while t denotes the member who receives the allele in
the segregation. The links among the instantiations of
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Figure 8: The family class F when F = {0, 1, i}.

the basic classes, I and S, are drawn according to the
biological relationships and each input node I(q).H̃ has
its own referenced vertex H̃r

q . All of them are mixed
by the input node H̄ and the related CPTs are built
as follows

P (H̃r
q = 1 | H̄ = u) =

{
1 if q = u

0 otherwise
(13)

with u ∈ F̄ and q ∈ F . In Figure (8) we give a repre-
sentation of F, assuming, to simplify the picture, that
F = {0, 1, i}.

The OOBN speci�ed above deals with a single speci�c
locus and it aims at the evaluation of the marginal
posteriors for all the identi�cation hypotheses.

In forensic practice, about 13-15 loci are usually typed
for each individual and the support to the hypotheses
is required conditionally to all the evidence.

Fortunately, this evaluation can be performed by us-
ing the results of the locus-speci�c nets, since linkage
equilibrium still holds conditionally to the crime sam-
ple and the identi�cation hypotheses. In fact, given
an individual, the genotype distribution in a speci�c
locus assumes the value of the genotype observed on
the crime sample with probability one if identi�cation
is assumed; otherwise it follows the reference popula-
tion distribution i.e. it never depends on the genotypes
observed on other loci.

To give details, de�ne: L = {1, 2, . . . , k} the set of
the loci; x = {x1, . . . ,xk} the genotypes observed on
the DB members and xc = {xc,1, . . . , xc,k} the crime
samples observed on the considered loci.

If linkage equilibrium holds, the posterior of the identi-
�cation hypothesis expressed in odds form, concerning,
e.g., the q-th individual of the j-th family is:

P (Hr
j = q | x,xc)

P (Hr
j 6= q | x,xc)

=

k∏
i=1

P (xi | xc,i,H
r
j = q)

P (xi | xc,i,Hr
j 6= q)

·
P (Hr

j = q)
P (Hr

j 6= q)
, (14)

since ∀i, P (xc,i | Hr
j = q) = P (xc,i | Hr

j 6= q). The
�rst term on the RHS of (14) is the likelihood ratio
(LR) and can be evaluated making use of the results
provided by each locus-speci�c net after propagation,
in fact, ∀i ∈ L

P (xi | xc,i,H
r
j = q)

P (xi | xc,i,Hr
j 6= q)

=

P (Hr
j = q)

P (Hr
j 6= q)

·
P (Hr

j 6= q | xi, xc,i)
P (Hr

j = q | xi, xc,i)
. (15)

Merits and di�culties to provide results as posteriors
or LRs are discussed below.

1) The posterior probability of the hypothesis directly
provides an answer to the uncertainty about the origin
of the crime sample. Since a posterior requires the elic-
itation of a prior, this forces to deeply understand the
meaning of each hypothesis, avoiding misunderstand-
ing. This is a real problem as reveals the controversy
between Stockmarr (1999), Dawid (2001) and Meester
and Sjerps (2003): there the problem concerned the
choice among hypotheses that sound logical. In this
work both positions are represented: the Stockmarr's
hypothesis is represented by the event H 6= r and con-
siders the presence of the originator of the trace in the
(augmented) DB; The Dawid's individual hypotheses
are represented by the set of the Hr

j s. A possible draw-
back in the use of the posterior is that a large popula-
tion size often implies very small (marginal) priors for
each of the identi�cation hypotheses so that small pos-
teriors are likely to be obtained, wrongly suggesting a
failure of the identi�cation trial.

2) The LR is the measure usually provided to eval-
uate the evidence in a court; it does not imply any
choice about priors and can be combined by the judge
with others LRs obtained using di�erent sources of ev-
idence. An LR typically emphasizes a discover, even



Table 1: The rank distributions of the LR supporting
the correct identi�cation hypothesis.

Rank Child Brother
1◦ 54.99% 61.89%
2◦ 16.24% 10.71%
3◦ 7.53% 4.26%
4◦ 4.17% 2.36%
5◦ 2.90% 2.08%
6◦ 1.81% 1.27%
7◦ 1.63% 1.45%
≤ 8◦ 10.73% 15.98%

if the result might be of di�cult interpretation, since
the LR is not expressed in a normalized form.

4 APPLICATIONS

Now let us give account of a simulation study on a real
DB containing 1102 observations on 10 loci. What is
involved is how e�ective is the DB search in retrieving
the origin of the simulated crime samples.

To produce the �rst simulation, we generated for each
observed individual two crime samples obtained re-
spectively sampling from the posterior marginal dis-
tribution of the child's and brother's genotypes. We
call them the Child Crime Sample (CCS) and Brother
Crime Sample (BCS).

Consider �rst the CCS. For each considered �rst-
degree-relative pedigree we evaluate the hypothesis
concerning the identi�cation of the family originat-
ing the child. Obviously we expect that the LRs, or
the posteriors, evaluated for the family from which the
CCS was generated has one of the highest values. Sim-
ilar computations are provided if the BCSs are used,
and the results are in Table (1).

Concerning the identi�cation of a child, in over 85%
of the cases, the LR corresponding to the originating
family ranks in the top �ve highest positions; the iden-
ti�cation of a brother is slightly less successful, since
in this case the same �gure is just over 80%. In real
cases, it seems safe to suggest that the the results' eval-
uation should include a comparison between the LRs
or the posteriors for the families exhibiting the highest
values associated to a careful investigative work.

As a comment, it must be noted that our simulation is
disadvantaged with respect to real cases. For instance,
when we sample a BCS we do not know the relatives'
genotypes as the nature knows but our knowledge is re-
stricted to the brother posterior distribution, typically
over-dispersed. In real cases, brothers' genotypes are
often very similar: for each locus, if one of the par-
ents is homozygote the probability that brothers share

Table 2: Parameter estimates of the CPU time pro-
posed model

CPU α β θ
Pentium IV -10.93 1.82 0.01
AMD64 -11.75 1.84 0.01

one allele is equal to one and the probability they are
identical is equal to 0.5.

A further simulation experiment has been achieved,
making use of di�erent DB sizes in the range 5000 −
50000, and loci with a number of alleles varying in the
range 5−20. We estimate the dependence of the CPU
times (t) required to perform the search with respect to
the DB size (n) and the alleles' number (a) according
to the model log(t) = α+β ·log(n)+θ ·log(a)+e where
e is the stochastic error with zero mean. Results are
in Table (2).

Clearly the estimation of the βs and the θs produced
very similar results and the di�erence in technology is
provided by α. Note that there is a very slight depen-
dence on the number of the alleles, due to the adoption
of an allele recoding strategy (Lauritzen and Sheehan,
2003). Instead the dependence of t on the DB size
is less then quadratic, making the search feasible also
when very large DB are involved.

5 CONCLUSIONS

The use of BN to provide an evaluation of the LR for
forensic identi�cation purposes is a new but already
well-established approach, see Dawid (2003), Mortera
and al. (2003) and Corradi et al. (2003).

Here, the BN technology is invoked when there is no
clue about the origin of the trace, but a list of well
identi�ed individuals, not apparently related to the
crime, is available in the DB. This result is all the
more e�ective when an augmented DB is introduced,
having assumed that all its members belong to the
population of the crime sample's possible donors, even
if some of them are not observed. In this new perspec-
tive the OOBN approach provides the most striking
solution: the familiar, the individual and the segrega-

tion classes of hierarchy provide a concise representa-
tion of the repetitive part of the problem, saving e�orts
whenmaintenance operations are required. This could
happen, for instance, when we want to introduce the
possibility of a mutation in the alleles transmission: in
this case a slight modi�cation of the segregation class
produces the result. At the same time the proposed
solution leaves some room to operate on the single in-
stance of the classes. This is compulsory for our prob-
lem since we are required not to consider as possible



originator of the crime sample those individuals in the
augmented DB who are not included in the donors'
population since e.g. dead or in jail. In the OOBN
environment this can be realized just by intervening
on the hypotheses input nodes concerning each family
and detailed for each considered members.

PROOF OF PROPOSITION 2.1

The joint marginal distribution of {X, H̄,H} is the
same in the two BNs of Figure (2) and Figure (3) so
(8) becomes

P̂ (Xc = x, | X, H̄) =

C(x) ·
∑
Z

P̃ (X?
c = x, | Z) ·

n∏
j=1

P̃ (Zj | Xj , H̄j). (16)

When the variable X?
c receives an evidence x ∈ X it

is easy to show that after the reduction (7) can be
written as product of n potential φj , that is

P̂ (X?
c = x | Z) =

n∏
j=1

φj(Zj) (17)

where

φj(Zj = x̂) =

{
1 if x̂ = x

0 otherwise
(18)

with x̂ ∈ X .

The equation (18), which de�nes a �nding on Zj , es-
tablishes that all mediating variables take value x with
probability 1. So, combining equations (17) and (18)
with (16) we obtain

P̂ (Xc = x, | X, H̄) = C(x) ·
n∏

j=1

P̃ (Zj = x | Xj , H̄j).

(19)

If H̄ = 1j then from (2) and (4) we have

P (Xc = x, | Xj ,H = j) = C(x)·∏
i 6=j

P̃ (Zi = x | H̄i = 0) · P̃ (Zj = x | Xj , H̄j = 1).

(20)

The third part of RHS of (20) involves n − 1 terms.
From (5), each of them is equal to θx so, considering
(6) and assumption (iii) we obtain C(x) = θ1−n

x .

The same result is achieved for H̄ = 0 as well. In fact,
in that case, considering (2) and (4), the equation (19)
becomes

P (Xc = x, | H = r) = C(x) ·
n∏

j=1

P̃ (Zj = x | H̄j = 0).

(21)

Finally, from condition (iv) and equation (5) we obtain
again C(x) = θ1−n

x .
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