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Abstract

The field of legal reasoning is full of logical
subtleties and probabilistic pitfalls. I survey
a number of these, pointing out some of the
problems and ambiguities, and various at-
tempts to deal with them. Some celebrated
court cases are used for illustration.

1 INTRODUCTION

Although the disciplines of Statistics and Law might
seem far apart, they share some fundamental inter-
ests — in particular, the interpretation of evidence,
testing of hypotheses, and decision-making under un-
certainty. However, their differing backgrounds and
approaches can often lead to misunderstandings, such
as in the celebrated Collins case (Fairley and Mosteller
1977). The “New Evidence Scholarship” of the 1970’s
generated interest within some legal circles in the use
of probability as an aid to rational interpretation of
evidence, as well as some criticism. Some particu-
larly interesting dialogues were stimulated by the pro-
probability paper by Finkelstein and Fairley (1970)
(see Tribe (1971b); Finkelstein and Fairley (1971);
Tribe (1971a); Brilmayer and Kornhauser (1978); Kaye
(1979)); and by the sceptical book by Cohen (1977)
(see Schum (1979); Williams (1979); Cohen (1980);
Williams (1980); Eggleston (1980)).

In recent years it has become apparent that problems
arising in legal settings raise some fascinating and deli-
cate issues of statistical logic, and that, in turn, proper
application of statistical reasoning has a role to play in
the pursuit of justice. In this paper I explore some of
these logical issues, with reference to some real cases:
see Dawid (2002) for some further background.

2 SUDDEN INFANT DEATHS

There have been a number of recent cases in the UK
where two or more young children in a family have
died suddenly from no obvious cause, and, even though
there is no specifically incriminating evidence, their
mother has been convicted of murdering them. In the
case of Sally Clark, a paediatrician testified at trial
that the probability P that her two sons would have
died of SIDS (unexplained natural causes) was 1 in 73
million. That figure was widely and properly criticised,
but it can not be denied that P is extremely small. The
question is: What are we to make of such “statistical
evidence”?

2.1 THE PROSECUTOR’S FALLACY

The correct interpretation P = Pr(£ | G) (where £
denotes the evidence — here the fact of two infant
deaths — G denotes “guilt” and G “innocence”) is
easily distorted into: P = Pr(G | £). After all, to say
that there is 1 chance in 73 million that the children
died of natural causes appears to be just the same as
saying that this is the probability that the mother did
not kill them — seemingly overwhelming evidence for
her being guilty. This mistaken “transposition of the
conditional” is so common in court, where it usually
favours the prosecution, that it has been termed “the
prosecutor’s fallacy” (see Gigerenzer (2002) for a clear
account of the prosecutor’s fallacy, and suggestions as
to how it might be avoided). It would have been hard
for Sally Clark’s jury to ignore this seemingly powerful
argument, and they did in fact convict.

2.2 COUNTER-ARGUMENT

There is an obvious counter-argument in this case,
which I presented at appeal. We are comparing two
alternative hypotheses: two deaths by SIDS, and two
deaths by murder. If the chance of the former is rele-
vant, should not that of the latter be equally relevant?



Using UK data, one could argue for a double murder
figure of around 1 in 2 billion, to set against the SIDS
figure of 1 in 73 million. One can see prosecution and
defence brandishing their respective figures in adver-
sarial combat, but the correct approach is to realise
that it is their relative, not absolute, values that mat-
ter. In fact, their ratio (1/2 billion)/(1/73 million) =
0.0365 can be interpreted as the odds on guilt given
the evidence of the two deaths, implying a guilt prob-
ability of only 3.5%.

In the event, although the appeal court accepted that
there had been some problems with the presentation
of the statistical evidence at trial, it was not interested
in properly identifying and understanding the logical
issues involved. Sally Clark was eventually cleared on
entirely unrelated grounds.

3 IDENTIFICATION EVIDENCE

Many criminal cases revolve about the issue of identity:
is the suspect S the same person as the perpetrator C
of the crime? Similar issues arise in civil cases, such
as disputed paternity.

Forensic trace evidence is often brought in such cases.
From the crime scene we obtain information Io that
can be assumed to apply to the criminal C' — thus
we may have a fingerprint, a footprint, fibres, or eye-
witness evidence of sex, age, race, etc. With advances
in DNA technology, it is now common to obtain a DNA
profile of the criminal from biological material left at
the scene of the crime. In addition, we have similar
information Is about the suspect S, for example his
DNA profile. When this matches the crime sample, i.e.
Is = I¢, = z, say, that is clearly evidence in favour of
the two samples having the same source. But how are
we properly to weigh and apply this evidence?

One relevant feature of match evidence is the match
probability P: this is the frequency with which the
characteristic z occurs in the population at large. In
the case of DNA profiling, the match probability can
be estimated from population figures and genetic the-
ory. Very tiny match probabilities, even as small as
one in one billion, are now routine.

3.1 THE PROSECUTOR’S FALLACY

We henceforth implicitly condition on the suspect’s
characteristic: Ig = x. The match probability can be
written as P = Pr(Ig = 2 | C # S). If we describe
this as “the probability that the crime sample came
from some one other than S”, we are immediately in
danger of committing the prosecutor’s fallacy of §2.1,
which interprets P as Pr(C # S | Ic = z), i.e. the
probability, in the light of the match, that S is in-

nocent — implying that the probability of guilt G is
1 — P. If say P = 0.0000001, the jury or judge might
well understand that the probability is only 1 in 10
million that S is not guilty, and convict.

3.2 THE DEFENCE ARGUMENT

A counter-argument along the lines of §2.2 does not
succeed here, since the probability of a match under
the alternative hypothesis of guilt is unity.

Instead the defence might point out that there are
N + 1 (say) people who could have committed this
crime. One of these is truly guilty, and so matches
the crime trace; while we would expect to see approx-
imately N P innocent matches out of the remaining N
innocent individual. We thus expect a total of 1+ NP
matching individuals, of whom just 1 is guilty. If all
we know about S is that he matches, the probability
he is guilty is 1/(1 + NP). Taking N = 30 million
and again P = 0.0000001, we would expect 3 innocent
matches, for a final guilt probability of 1 in 4 — which
is certainly not evidence “beyond a reasonable doubt”.

3.3 SOME OTHER ARGUMENTS

The above defence argument can be varied in a number
of ways (Dawid 1994), many of which are intuitively
appealing — and have been recommended for use —
but are in fact fallacious.

In all cases we assume that, prior to any evidence, any
of the N + 1 individuals in the population is equally
likely to be guilty, and that the only evidence £ against
S is that of the match: Ig = I = z. For illustration
we take N = 100, P = 0.004.

Let M denote the unknown number of individuals i
having I; = xz. We suppose that, before any sam-
ples are measured, M has the binomial distribution
Bin(N +1; P). We have Pr(G | £, M) = M ™', and the
final guilt probability, Pr(G | £), can be obtained by
taking the expectation of this quantity with respect to
the conditional distribution of M, given the evidence

£.

1. The evidence tells us that M > 1, and simple
conditioning on this yields

Pr(G | &) =BM | M >1).

For M ~ Bin(N +1; P) this is not easily expressed
in closed form, but can be calculated: for our
numbers it evaluates to 0.902.

2. An alternative argument is that, given the evi-
dence, we know that there is one guilty match,
and, out of the remaining /N innocent individuals,



each has, independently, probability P of supply-
ing a match. So the conditional distribution of M
is 1 4+ Bin(NV; P). Using this to take the expecta-
tion of M~ yields

1 p\N+1
Pr(G|E):%

which, for our values, gives 0.824.

3. Finally, the correct approach.

We can consider the total evidence (Io =z, Is =
x) as the results, both successes, of two draws,
with replacement (since C and S could be the
same individual), from the population. The prob-
ability of this, given M = m, is {m/(N+1)}? and,
using Bayes’s Theorem, the resulting conditional
distribution of M is

Pr(M =m | Ic =x,Is = x)

N
— cm< )Pm—l (l—P)N_m+1
m—1
(m=1,...,N+1),

where the normalising constant is ¢ = 1/(1+ N P).
Taking the expectation of M~! with respect to
this distribution then yields

Pr(G |€) =1/(1+ NP),

in agreement with the original (and much simpler)
defence argument. This evaluates numerically to
0.714.

The above is just one example of the pitfalls beset-
ting logical and probabilistic reasoning in cases at
law: see Balding and Donnelly (1995); Dawid and
Mortera (1995); Dawid and Mortera (1996); Dawid
and Mortera (1998) for a number of other subtle issues
of interpretation of forensic identification evidence.

3.4 BAYES

A serious problem with both the prosecution and the
defence arguments is that they do not allow for the in-
corporation of any other evidence in the case. The co-
herent approach to combining identification and other
evidence is through Bayes’s Theorem: Posterior Odds
(on G) = Prior Odds x Likelihood Ratio, where the
other evidence is accounted for in the prior odds, and
the likelihood ratio based on evidence £ (where here £
is the match evidence “Ic = Is = 2”) is defined by:

_Pr(€]Q)

LR = ————-.
Pr(€ | G)

1)

Because there is typically a subjective element in as-
sessing prior probabilities, it is often argued that ex-
perts should confine their evidence to assessment of
the more “objective” likelihood ratio, leaving the court
to apply Bayes’s Theorem with its own prior inputs.
(However, see §§ 4 and 5 below concerning ambiguities
in the definition of the likelihood ratio.)

In the case of identification evidence we can (usually)
take Pr(€ | G) = 1, Pr(€ | G) = P, so that the likeli-
hood ratio is 1/P. If the prior probability of guilt is
m, the posterior probability is 7w/(r + P — wP). This
agrees (approximately) with the argument of the pros-
ecutor when © = 0.5, and (exactly) with that of the
defence when all NV + 1 potential culprits are a pri-
ori equally likely to be the guilty party. This might
be seen as support for the defence argument in the
absence of any other evidence.

An interesting application of Bayes’s Theorem was in
the 1995 trial of Denis John Adams for sexual assault.
The only prosecution evidence was a DNA match, with
match probability assessed between 1 in 2 million and
1 in 200 million. The defence relied on the fact that
the victim did not identify Adams at an identification
parade, and also said that he did not look like the man
who had raped her. In addition Adams’s girlfriend
testified that he had been with her at the time of the
crime.

On the basis that the criminal was likely to be a local
male aged between about 18-60, the prior probabil-
ity of guilt, before any evidence, might be assessed
at around one in 200,000. The likelihood ratio based
on the DNA match is 1/P = 2 million, say. That
based on the victim’s non-recognition of Adams could
be assessed at, say, 0.1/0.9 = 1/9, and that based on
his girlfriend’s alibi at, say, 0.25/0.5 = 1/2. Assum-
ing suitable independence, the posterior odds on guilt
become (1/200,000) x (2,000,000) x (1/9) x (1/2) =
5/9, corresponding to a posterior probability of 35%
(though rising to 98% if we take P = 1 in 200 million).

In the actual case this argument was allowed at trial
(although it does not seem to have impressed the jury,
who convicted), but ruled out on appeal, on the basis
that explaining how to think about probabilistic evi-
dence “usurps the function of the jury”, which “must
apply its common sense”. Unfortunately that leaves
the door wide open to the prosecutor’s fallacy and
other tempting but misleading arguments.

4 DATABASE SEARCH

In some cases where a DNA profile is found at the
crime scene there may be no obvious suspect. Then a
trawl may be made through a police computer DNA



database in the hope that it will throw up a match.
Suppose this happens: how, if at all, does the fact of
the database search affect the strength of the evidence
against a suspect so identified?

For definiteness, suppose that the database D is of size
n = 10,000, that the match probability of the crime
profile is P = 1 in 1 million, and that exactly one
profile — that of S, say — in the database is found to
match.

One intuition is that the database search has elimi-
nated 9,999 individuals who would otherwise have re-
mained alternative suspects. Given the very large ini-
tial number of alternative suspects, this has the effect
of rendering the evidence in favour of S’s guilt very
marginally stronger. The relevant likelihood ratio is
still close to 1 million.

An entirely different intuition proceeds by analogy
with frequentist statistical approaches to testing mul-
tiple hypotheses. This would adjust the match prob-
ability to take account of the 10,000 possible ways of
obtaining a match in the database, replacing it by the
value, close to 10,000 x (1 in 1 million) = 1/100, of
the probability of finding a match in the database, if
it does not include the criminal. And a match proba-
bility of only 1 in 100 is vastly weaker evidence than
one of 1 in 1 million. In particular, it corresponds to
a likelihood ratio in favour of guilt of 100, rather than
1 million.

Whereas the former intuition focuses directly on the
hypothesis Hg that S is guilty, the latter addresses this
issue indirectly by focusing on the hypothesis Hp that
some one in the database is guilty. Since we know there
was exactly one match, to S, and only a matching in-
dividual can be guilty, these two hypotheses appear
logically equivalent. Were this so, there would be no
strong reason to focus on one rather than the other —
which would be problematic, in view of the enormous
difference between their associated likelihood ratios.
Stockmarr (1999) has argued in favour of Hp, and thus
of quoting a likelihood ratio of 100, on the grounds that
this hypothesis is data-independent, whereas hypothe-
sis Hg can not even be specified in advance of perform-
ing the search and identifying S. However, while such
data-dependence can affect frequentist inferences, its
relevance to likelihood inference is arguable.

In fact, although hypotheses Hp and Hg are indeed
equivalent once we know that the database D contains
exactly one match, to S, they were not equivalent be-
fore making that observation: we may term them con-
ditionally equivalent. A way of bridging the appar-
ent chasm between them appears on realising that the
prior probability of Hp is about 10,000 times larger
than that of Hg. And, as we move between these hy-

potheses, this factor between their prior odds cancels
exactly with that between their associated likelihood
ratios noted above. Both approaches thus produce the
identical posterior probability (whether for Hg or for
Hp being unimportant, since these have truly become
logically equivalent subsequent to the database search
and its findings). If, taking a fundamental Bayesian
position, we regard our inference as entirely carried by
the posterior probability, there is thus no incompati-
bility between the two analyses.

We see that, in the absence of a clearly specified hy-
pothesis, the concept of “the likelihood ratio” can not
be regarded as objectively meaningful in itself, but
rather is just one, volatile, ingredient of the (invari-
ant) posteror inference — requiring the equally and
oppositely volatile prior probability to complete that
inference.

While this fully Bayesian analysis resolves the concep-
tual paradox, a serious practical problem remains. If
“objectivity” requires that we offer likelihood ratios,
rather than posterior probabilities, in evidence, which
should we give? — and how can we ensure that its
meaning and use is properly appreciated? As a mat-
ter of psychology it seems to me preferable to quote the
likelihood ratio relating to Hg: the court will surely
find it easier to understand and assess the prior prob-
ability that S is guilty, which is what is then needed
to complete the analysis, rather than (as required for
a Hp-focused analysis) the prior probability that the
guilty party is in the database. This choice is also
legally preferable, since the fact that S was identified
by searching a database may be inadmissible as evi-
dence.

For further (often heated) discussion of these issues see
Balding and Donnelly (1996); Donnelly and Friedman
(1999); Stockmarr (1999); Evett et al. (2000); Dawid
(2001).

5 MULTIPLE PERPETRATORS
AND STAINS

A similar problem (Meester and Sjerps 2003; Meester
and Sjerps 2004) arises when we know there were two
criminals, two distinct DNA stains (say one on a pil-
low, one on a sheet) have been found at the scene of the
crime, and there is a single suspect, S, who matches
one of them — say the pillow stain — with its asso-
ciated match probability P. How is the strength of
the evidence against S affected by the multiplicity of
stains?

Once again there is a choice of hypotheses to compare,
these being logically equivalent in the light of the find-
ings, but not in advance. A first approach compares



“S left one of the two stains” with “S did not leave ei-
ther stain’; a second compares “S left the pillow stain”
with “S did not leave either stain”; and yet a third
compares “S left the pillow stain” with “S did not
leave the pillow stain”. Under some assumptions, the
associated likelihood ratios are, respectively, %P, P,
and 1P x (2 —§8)/(1 — &), where § is the prior proba-
bility that S is guilty. And once again, the differences
between these disappear after they are combined with
their varying relevant prior odds. In Dawid (2004) I
argue that it is the first of these likelihood ratios that
relates most directly to the relevant issue: that of the
guilt of S. But one must also take into account that
the knowledge that there were two culprits effectively
doubles the prior probability of S’s guilt, as compared
with a single-suspect case.

6 MIXED STAINS

In many cases, e.g. involving a rape or scuffle, a crime
trace may clearly! be a mixture of biological mate-
rial from more than one individual. We may or may
not know how many contributors are involved, or the
identity of some of them. It is sometimes possible to
separate out the components of different contributors,
e.g. by taking into account the differing amounts of
DNA at different bands, but this is unreliable.

Suppose we have a suspect S who “matches” the crime
trace, in that all his bands are contained in it. What is
the strength of the DNA evidence against him? This
can involve complex and subtle calculations and be
sensitive to assumptions made.

6.1 O.J. SIMPSON

In the celebrated trial of O. J. Simpson for double
murder, one of the crime samples could be explained
as a mixture of blood from Simpson and one of the
victims, Ron Goldman. At a certain locus, Simpson
had genotype AB, Goldman AC, and the crime sample
had ABC. In pre-trial depositions?, the prosecution
argued that the relevant match probability P should
be taken as the frequency of Simpson’s genotype AB —
about 5%. (Such a P would be multiplied by similar
figures calculated for other loci to obtain an overall
match probability). The defence argued that P should
be the total probability of any of the genotypes, AA,
AB, AC, BB, BC, CC, that would have “matched” the
crime sample: about 39%.

However, on the assumption that the mixture consists
of Goldman and the culprit, the culprit must have type

'For example, because it has more than two bands at
some locus.
*http://tinyurl.com/2fhsx

AB, BB or BC. These have combined probability 21%,
and it is the reciprocal of this figure for P that yields
the correct likelihood ratio. If we did not know Gold-
man’s genotype, or thought that the other contributor
was some one else, we need to conduct a more com-
plex calculation to obtain the relevant likelihood ratio.
Interpreting this as P~!, we again obtain P ~ 21%
(though this is an accidental concurrence of two po-
tentially different figures).

7 MISSING SUSPECT

When a suspect, or other relevant party, is not avail-
able for DNA profiling, useful information can some-
times be obtained by profiling relatives — although
the analysis then required can be both conceptually
and computationally challenging.

7.1 HANRATTY

In 1962 James Hanratty was executed for rape and
murder. In 1998 a DNA profile, assumed to be from
the culprit, was extracted from some items that had
been stored since the crime. Its associated match prob-
ability was around 1 in 2.5 million. Ever ready to fall
for the prosecutor’s fallacy, the Press duly reported
this as “There is a 1 in 2.5 million chance that Han-
ratty was not the A6 killer” — even though, since
Hanratty’s DNA was unavailable, there was no more
evidence against him than against any one else.

Hanratty’s mother and brother now offered their own
DNA for profiling — and this failed to exclude him.
Again reports of the above match probability circu-
lated as evidence of his guilt. In fact, the actual like-
lihood ratio, based on the indirect evidence of his rel-
atives’ DNA, was around 440.

Finally his body was exhumed, and a direct match ob-
tained. Although the defence attempted to attribute
this to contamination, it is generally agreed that the
case is now closed.

7.2 DISPUTED PATERNITY

Problems of disputed paternity necessarily revolve
around indirect “matching” of the DNA of the pu-
tative father with that of the true father, as partially
revealed through the child’s DNA. When profiles from
mother, child and putative father are available, the
likelihood ratio in favour of paternity can be calcu-
lated by standard formulae. When the putative fa-
ther’s profile is unavailable, profiles may be obtained
from his relatives: for example, two full brothers, and
an undisputed child and its (different) mother. Al-
though the logical steps in calculating the likelihood



ratio are clear in principle (though not always so to
the forensic and other experts directly involved in such
work), the computational difficulties of implementing
them can be severe.

8 BAYESIAN NETWORKS

In many court cases there is a mixed mass of evidence,
the various items relating to each other and to the
ultimate issue in complex and subtle ways. Whereas
most lawyers are content to handle these complexities
in purely intuitive ways, some legal scholars have con-
sidered formal tools to help in this process. An early
and still influential contribution was the development
of the Wigmore chart (Wigmore 1913; Wigmore 1937),
a graphical representation of qualitative relationships
between items of evidence.

There is some prima facie similarity between Wigmore
charts and the modern technology of Bayesian net-
works (Cowell et al. 1999). Bayesian networks have
been used for both qualitative and quantitative anal-
ysis of legal evidence. The former was undertaken by
Dawid and Evett (1997) in the context of a prosecu-
tion for robbery, where it was required to combine eye-
witness, fibre and blood evidence: the structure of the
network implies various conditional independence rela-
tionships between the variables, that can be extracted
and used to simplify expressions for likelihood ratios.
Another fascinating use of Bayesian networks (which
was also strongly influenced by Wigmorean analysis)
is the reanalysis by Kadane and Schum (1996) of the
evidence in the celebrated murder trial of Sacco and
Vanzetti.

Bayesian networks have proved particularly valuable
in addressing complex problems of interpretation of
DNA profile evidence. Thus Figure 1 shows a Bayesian
network representation of the absent father paternity
case described in §7.2. This displays evidential re-
lationships in a semantically unambiguous, clear and
striking manner, and supports complex computational
analysis using general purpose Probabilistic Expert
System software such as HUGIN® — see Dawid et al.
(2002) for further details. This technology is also be-
ing applied to still more complex problems of DNA
analysis, involving, separately or in combination, such
features as mixed stains (Mortera et al. 2003), muta-
tion (Dawid et al. 2001; Dawid 2003), contamination,
and field and laboratory errors.

3http://www.hugin.com

Figure 1: Bayesian Network Representation of a Com-
plex Paternity Case

9 CONCLUSIONS

Seemingly straightforward problems of legal reasoning
can quickly lead to complexity, controversy and confu-
sion: the above examples are just a few amongst many.
The field provides a rich and challenging testbed for
any general approach or technique for reasoning under
uncertainty. Success in this venture could also have
real impact on the fairer administration of justice.
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